JPH0740211Y2 - Concentration measuring device - Google Patents
Concentration measuring deviceInfo
- Publication number
- JPH0740211Y2 JPH0740211Y2 JP9528589U JP9528589U JPH0740211Y2 JP H0740211 Y2 JPH0740211 Y2 JP H0740211Y2 JP 9528589 U JP9528589 U JP 9528589U JP 9528589 U JP9528589 U JP 9528589U JP H0740211 Y2 JPH0740211 Y2 JP H0740211Y2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- pressure
- concentration measuring
- valve
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010802 sludge Substances 0.000 claims description 39
- 230000002265 prevention Effects 0.000 claims description 26
- 239000012530 fluid Substances 0.000 claims description 24
- 239000000725 suspension Substances 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Sampling And Sample Adjustment (AREA)
Description
この考案は汚泥等懸濁液の濃度を測定する濃度測定装置
に関し、特に、加圧ダイヤフラムの反転防止を図った濃
度測定装置に関する。The present invention relates to a concentration measuring device for measuring the concentration of a suspension such as sludge, and more particularly to a concentration measuring device for preventing inversion of a pressure diaphragm.
第3図は従来の一般的なリペアゲート式濃度測定装置を
示す断面図である。 図において、1は汚泥等懸濁液が流れる汚泥本管として
の汚泥管路であり、この汚泥管路1の両端には図示しな
い上流側汚泥管路と下流側汚泥管路を接続するためのフ
ランジ部1a,1bが一体形成されている。 また、上記汚泥管路1は、この内壁部に一体形成された
隆起部1cと、この隆起部1cに対向する開口部1dを有して
いる。 そして、上記汚泥管路1には、これの開口部1dに連通し
て外方に分岐突出する濃度測定室2が設けられている。 この濃度測定室2は、上記汚泥管路1の外壁面に装着さ
れたリペアゲート取付用カバー3の開口部3aを介して上
記汚泥管路1の開口部1dに連通する円筒体から成る弁取
付筒体4と、この弁取付筒体4の上端に着脱可能に連結
されたセンサー取付筒体5とを有し、このセンサー取付
筒体5の上端には加圧ダイヤフラム6を介して外箱7が
着脱可能に固設され、この外箱7内は上記加圧ダイヤフ
ラム6を外側から加圧する加圧室7aを形成している。 そして、上記弁取付筒体4内には、上記濃度測定室2の
開閉する仕切弁8が回動自在に軸支され、この仕切弁8
は第3図では図示しないシリンダ弁によって90度角の開
弁位置(実線位置)と閉弁位置(点線位置)とに開閉駆
動されるようになっている。 また、上記センサー取付筒体5の対向位置には一対の超
音波送受信子からなる濃度センサー9,10が配置されてい
る。 更に、上記外箱7にはリークディテクター11が取付けら
れ、その外箱7内には図示省略の給排制御手段からの加
圧空気が供給・排出されるようになっており、普通の場
合、エアコンプレッサからの加圧空気が上記外箱7内に
供給され、且つ、該外箱7内の加圧空気は大気中に開放
されるようになっている。 一方、上記リペアゲート取付用カバー3内には、汚泥管
路1の開口部1dをスライド開閉するリペアゲート12が取
付けられている。 かかるリペアゲート12は、上記リペアゲート取付用カバ
ー3内に定位置回転自在に軸支されて一端部が外方に突
出するスクリューロッド13に螺合された移動駒14に連結
され、上記スクリューロッド13の外端部をスパナ等で回
動操作することにより、上記移動駒14をネジ送りして上
記リペアゲート12を開閉させるようにしている。 次に動作について説明する。 リペアゲート12の開状態において、汚泥管路1内を流れ
る懸濁液は隆起部1cによって、第2図の矢印方向に誘導
される。 従って、懸濁液をサンプリングすべくシリンダ弁で仕切
弁8を90°回転させて第3図の点線位置に開弁すると、
この開弁状態にある仕切弁8と隆起部1cとの協働作用に
より、上記汚泥管路1を流れる懸濁液が濃度測定室2内
に導入される。 このため、上記仕切弁8の開弁時には、上記汚泥管路1
を上流側から流れてくる懸濁液の大部分が上記濃度測定
室2を経由して上記汚泥管路1の下流側に流れることと
なる。 この状態で、上記仕切弁8を図中実線で示す水平位置に
閉弁すると、上記濃度測定室2内には、汚泥管路1を流
れる懸濁液と同じ懸濁状態の懸濁液が封入採取される。 このような懸濁液の封入採取(サンプリング)後に、加
圧室7a内に加圧空気を供給すると、この加圧空気で気密
性可動膜6が内側に加圧変形することにより、上記濃度
測定室2内にサンプリングされた懸濁液の加圧・消泡が
行われる。 次いで、このような加圧・消泡状態で濃度センサー9,10
により上記懸濁液の汚泥濃度が測定される。 このような従来の濃度測定装置では、仕切弁8の開弁時
に汚泥管路1および濃度測定室2が負圧になる場合があ
る。この場合、上記濃度測定室2内の加圧ダイヤフラム
6が汚泥管路1を流れる汚泥流体に起因して発生する負
圧により第3図中の点線の如く汚泥管路1側に引き込ま
れて反転し、加圧ダイヤフラム6自身の復元により正常
位置に復帰できなくなり、その後における懸濁液の加圧
・消泡および濃度測定に支障を来す結果となる。 そこで、上記加圧ダイヤフラム6の反転防止手段とし
て、第4図および第5図に示す復元スプリング方式およ
び大気開放閉止弁方式の濃度測定装置がある。 まず、第4図に示す復元スプリング方式の濃度測定装置
について説明すると、この濃度測定装置では、加圧室7a
内における加圧ダイヤフラム6と外箱7の相互中心部に
復元スプリング15を組み込み、この復元スプリング15の
引張力(加圧ダイヤフラム6を加圧室7a側に引っ張る
力)を、汚泥管路1側の負圧による該汚泥管路1側への
吸引力より大きく、且つ、上記加圧室7a内に供給されて
上記加圧ダイヤフラム6を汚泥管路1側に加圧変形させ
る加圧力より小さく設定している。従って、上記復元ス
プリング15による上記加圧ダイヤフラム6の引張力で該
加圧ダイヤフラム6の反転を防止することができる。 第5図に示す大気開放閉止弁方式の濃度測定装置では、
加圧室7a内とコンプレッサ16とを接続する加圧管17に、
上記加圧室7a側から大気開放閉止弁(電磁弁)18と大気
開放口付三方電磁弁19のそれぞれを設け、上記コンプレ
ッサ16から上記加圧室7a内への加圧空気供給による加圧
ダイヤフラム6の加圧時以外は上記加圧管17を大気開放
とし、上記加圧時およびその開放時以外は上記加圧管17
を上記大気開放閉止弁18と三方電磁弁19とで閉止するよ
うにしている。 これにより、汚泥管路1側の負圧発生によって加圧ダイ
ヤフラム6が吸引されようとすると、上記加圧室7a側に
も負圧が発生するため、上記加圧ダイヤフラム6が反転
し難くなるようにしている。FIG. 3 is a sectional view showing a conventional general repair gate type concentration measuring device. In the figure, 1 is a sludge conduit as a main sludge in which a suspension of sludge or the like flows, and both ends of this sludge conduit 1 are used to connect an upstream sludge conduit and a downstream sludge conduit which are not shown. The flange portions 1a and 1b are integrally formed. Further, the sludge conduit 1 has a raised portion 1c integrally formed on the inner wall portion and an opening 1d facing the raised portion 1c. The sludge conduit 1 is provided with a concentration measuring chamber 2 which communicates with the opening 1d of the sludge conduit 1 and which projects and branches outward. This concentration measuring chamber 2 is a valve mounting consisting of a cylindrical body communicating with the opening 1d of the sludge pipeline 1 through the opening 3a of the repair gate mounting cover 3 mounted on the outer wall surface of the sludge pipeline 1. It has a tubular body 4 and a sensor mounting tubular body 5 detachably connected to the upper end of the valve mounting tubular body 4, and an outer casing 7 is provided on the upper end of the sensor mounting tubular body 5 via a pressure diaphragm 6. Is detachably fixed, and a pressure chamber 7a for pressurizing the pressure diaphragm 6 from the outside is formed in the outer box 7. A sluice valve 8 that opens and closes the concentration measuring chamber 2 is rotatably and pivotally supported in the valve mounting cylinder 4.
Is opened and closed by a cylinder valve (not shown in FIG. 3) between a valve opening position (solid line position) and a valve closing position (dotted line position) of 90 degrees. Further, concentration sensors 9 and 10 composed of a pair of ultrasonic wave transmitters and receivers are arranged at positions facing the sensor mounting cylinder 5. Further, a leak detector 11 is attached to the outer box 7, and pressurized air from a supply / discharge control means (not shown) is supplied / exhausted into / from the outer box 7, and in a normal case, Pressurized air from the air compressor is supplied into the outer box 7, and the pressurized air in the outer box 7 is opened to the atmosphere. On the other hand, a repair gate 12 that slides and opens the opening 1d of the sludge pipeline 1 is installed in the repair gate mounting cover 3. The repair gate 12 is rotatably supported in a fixed position in the repair gate mounting cover 3 and has one end connected to a moving piece 14 screwed to a screw rod 13 projecting outward. By rotating the outer end of 13 with a spanner or the like, the moving piece 14 is screw-fed to open and close the repair gate 12. Next, the operation will be described. In the open state of the repair gate 12, the suspension flowing in the sludge conduit 1 is guided by the raised portion 1c in the arrow direction of FIG. Therefore, when the sluice valve 8 is rotated by 90 ° with the cylinder valve to sample the suspension and the valve is opened to the dotted line position in FIG.
The suspension flowing through the sludge conduit 1 is introduced into the concentration measuring chamber 2 by the cooperative action of the sluice valve 8 in the open state and the raised portion 1c. Therefore, when the gate valve 8 is opened, the sludge pipeline 1 is
Most of the suspension flowing from the upstream side flows through the concentration measuring chamber 2 to the downstream side of the sludge pipeline 1. In this state, when the sluice valve 8 is closed at the horizontal position indicated by the solid line in the figure, the suspension in the same suspension state as the suspension flowing through the sludge conduit 1 is enclosed in the concentration measuring chamber 2. Collected. When pressurized air is supplied into the pressurizing chamber 7a after enclosing and sampling such a suspension (sampling), the airtight movable film 6 is deformed by pressurization inward by the pressurized air, whereby the concentration measurement is performed. The suspension sampled in the chamber 2 is pressurized and defoamed. Then, under such pressure and defoaming condition, the concentration sensor 9,10
The sludge concentration of the suspension is measured by. In such a conventional concentration measuring device, the sludge pipe line 1 and the concentration measuring chamber 2 may have a negative pressure when the sluice valve 8 is opened. In this case, the pressure diaphragm 6 in the concentration measuring chamber 2 is pulled toward the sludge pipeline 1 side by the negative pressure generated due to the sludge fluid flowing in the sludge pipeline 1 as shown by the dotted line in FIG. However, due to the restoration of the pressure diaphragm 6 itself, the pressure diaphragm 6 cannot be returned to the normal position, resulting in trouble in the subsequent pressurization / defoaming and concentration measurement of the suspension. Therefore, as a means for preventing the pressure diaphragm 6 from reversing, there are the concentration measuring devices of the restoring spring type and the atmosphere opening / closing valve type shown in FIGS. 4 and 5. First, the restoration spring type concentration measuring device shown in FIG. 4 will be described. In this concentration measuring device, the pressurizing chamber 7a is used.
A restoring spring 15 is incorporated in the mutual center portion of the pressure diaphragm 6 and the outer box 7 inside, and the tensile force of the restoring spring 15 (the force pulling the pressure diaphragm 6 to the pressure chamber 7a side) is adjusted to the sludge pipeline 1 side. Is set to be smaller than the suction force to the sludge pipeline 1 side due to the negative pressure of, and smaller than the pressing force that is supplied into the pressurizing chamber 7a and pressurizes and deforms the pressure diaphragm 6 to the sludge pipeline 1 side. is doing. Therefore, it is possible to prevent the pressure diaphragm 6 from being reversed by the tensile force of the pressure diaphragm 6 by the restoring spring 15. In the concentration measuring device of the atmosphere open / close valve system shown in FIG.
In the pressure pipe 17 that connects the inside of the pressure chamber 7a and the compressor 16,
An atmosphere release stop valve (solenoid valve) 18 and a three-way solenoid valve 19 with an atmosphere release port are provided from the pressure chamber 7a side, and a pressure diaphragm is provided by supplying compressed air from the compressor 16 into the pressure chamber 7a. The pressurizing pipe 17 is opened to the atmosphere except when the pressurization of 6 is performed, and the pressurizing pipe 17 is opened at the time of the pressurizing and the time of not releasing
Is closed by the atmosphere open / close valve 18 and the three-way solenoid valve 19. As a result, when the pressure diaphragm 6 is sucked due to the negative pressure generated on the sludge conduit 1 side, the negative pressure is generated on the pressure chamber 7a side, so that the pressure diaphragm 6 is less likely to be inverted. I have to.
従来の復元スプリング方式濃度測定装置では、復元スプ
リング15の引張力の設定が難しく、且つ、該復元スプリ
ング15の早期劣化を招くなどして加圧ダイヤフラム6の
確実な反転防止および加圧ダイヤフラム6の常時円滑な
動作を期待できないなどの問題点があった。 また、従来の大気開放閉止弁方式の濃度測定装置では、
加圧ダイヤフラム6の反転防止対策として、電磁弁設置
や回路改造を含む煩雑な電気工事を必要とし、その電磁
弁設置や該電磁弁制御装置の設置等によって構成が複雑
化し、それらの据付場所も制限されると共に、既設の濃
度測定装置に対する対応に時間を要するなどの問題点が
あった。 この考案は上記のような問題点を解消するためになされ
たもので、電気工事を一切必要とせず、且つ、既設装置
への対応も容易に行え、しかも加圧ダイヤフラムの反転
を常時確実に防止できる濃度測定装置を提供することを
目的とする。In the conventional restoring spring type concentration measuring device, it is difficult to set the tensile force of the restoring spring 15 and it is possible to prevent the restoring spring 15 from prematurely deteriorating. There were problems such as not always expecting smooth operation. Moreover, in the conventional concentration measuring device of the atmosphere open / close valve system,
As a measure for preventing the pressure diaphragm 6 from reversing, complicated electric work including installation of a solenoid valve and circuit modification is required, and the installation becomes complicated due to the installation of the solenoid valve and the installation of the solenoid valve control device. There is a problem that it is limited and it takes time to cope with the existing concentration measuring device. This invention has been made to solve the above problems, does not require any electrical work, can easily support existing equipment, and reliably prevents the pressure diaphragm from inverting. It is an object of the present invention to provide a concentration measuring device that can be used.
この考案に係る濃度測定装置は、濃度を測定すべき汚泥
等の懸濁液が流れる汚泥管路に付設され、該汚泥管路に
連通分岐する濃度測定度と、この濃度測定室内に張設さ
れた加圧ダイヤフラムと、この加圧ダイヤフラムより上
記汚泥管路側で上記濃度測定室内を開閉する仕切弁と、
圧力流体供給源に接続され該圧力流体供給源からの供給
流体圧力で上記仕切弁を開閉駆動する弁開閉手段と、上
記仕切弁と上記気密性可動膜との間で上記濃度測定室の
側壁に設けられた濃度検出手段とを備え、上記仕切弁の
閉弁時に上記加圧ダイヤフラムを内側に加圧変形させて
上記濃度測定室内の導入懸濁液を加圧し、該加圧状態の
懸濁液濃度を上記濃度検出手段で測定する濃度測定装置
において、上記加圧ダイヤフラムに連結され、該加圧ダ
イヤフラムが上記濃度測定室内の負圧で上記汚泥管路側
に反転するのを防止するための反転防止用シリンダを備
え、この反転防止用シリンダを上記仕切弁の開弁時の戻
り圧力流体で上記加圧ダイヤフラムの反転防止方向に駆
動させるようにしたものである。The concentration measuring device according to the present invention is attached to a sludge pipeline through which a suspension of sludge or the like whose concentration is to be measured flows, and a concentration measuring degree communicating with and branched from the sludge pipeline and installed in the concentration measuring chamber. A pressure diaphragm, and a sluice valve for opening and closing the concentration measuring chamber on the sludge conduit side of the pressure diaphragm,
A valve opening / closing means connected to a pressure fluid supply source to open / close the sluice valve by a supply fluid pressure from the pressure fluid supply source; and a side wall of the concentration measuring chamber between the sluice valve and the airtight movable membrane. And a concentration detecting means provided, pressurizing and deforming the pressure diaphragm inward when the gate valve is closed to pressurize the suspension introduced into the concentration measuring chamber, and the suspension in the pressurized state. In a concentration measuring device for measuring the concentration by the concentration detecting means, a reversal prevention for preventing the pressure diaphragm from being reversed to the sludge conduit side by a negative pressure in the concentration measuring chamber, which is connected to the pressure diaphragm. The cylinder is provided with an inversion prevention cylinder, and the inversion prevention cylinder is driven in the inversion prevention direction of the pressure diaphragm by the return pressure fluid when the sluice valve is opened.
この考案における濃度測定装置では、濃度測定室内の仕
切弁の開弁時に、該仕切弁の弁開閉手段からの戻り圧力
流体が反転防止用シリンダに供給され、これによって、
該反転防止用シリンダが加圧ダイヤフラムの反転防止方
向に駆動される。もって、上記反転防止用シリンダで上
記加圧ダイヤフラムの反転が確実に防止される。In the concentration measuring device according to the present invention, when the sluice valve in the concentration measuring chamber is opened, the return pressure fluid from the valve opening / closing means of the sluice valve is supplied to the inversion prevention cylinder.
The inversion prevention cylinder is driven in the inversion prevention direction of the pressure diaphragm. Therefore, the reversal prevention cylinder reliably prevents the pressure diaphragm from reversing.
以下、この考案の一実施例を図について説明する。第1
図はこの考案の一実施例による濃度測定装置の断面図、
第2図は第1図の要部拡大断面図であり、第3図〜第5
図と同一または相当部分には同一符号を付して重複説明
は省略する。 第1図において、20は濃度測定室2内の仕切弁8の弁軸
に連結され、該仕切弁8を開閉駆動する弁開閉手段とし
てのシリンダ弁であり、このシリンダ弁20には、上記仕
切弁8を閉止させるための閉止側管路21と、上記仕切弁
8を開動させる側の開放側管路22とが接続され、これら
の閉止側管路21および開放側管路22は電磁弁23を介して
コンプレッサ等の圧力流体供給源24に接続されている。 また、上記圧力流体供給源24は加圧用電磁弁25を有する
加圧管路17を介して加圧室7aの入口7bに接続されてい
る。 一方、上記加圧室7aを形成している外箱7の外部には反
転防止用シリンダ30が装備されている。 この反転防止用シリンダ30のピストンロッド31は、上記
外箱7に貫設された軸受スリーブ32をスライド自在に貫
通して加圧ダイヤフラム6の中心部に連結されている。 また、上記反転防止用シリンダ30のボトム側には、該反
転防止用シリンダ30のピストン33を上記加圧ダイヤフラ
ム6の反転防止方向(図示では上昇方向)に押圧作動さ
せる圧力流体を導入するための入口ポート34が設けられ
ている。 この入口ポート34には、上記開放側管路22からの分岐管
路35が接続されている。 更に、上記反転防止用シリンダ30のヘッド部にはエア出
入口36が設けられている。 このエア出入口36は、上記ピストン33の往復動作に応じ
て反転防止用シリンダ30内における上記エア出入口36側
のシリンダ室内に対するエアの吸引および排出を行う。 次に動作について説明する。 まず、汚泥管路1を流れる懸濁液の濃度測定に際して
は、汚泥管路1を流れる懸濁液が濃度測定室2内を流通
している状態において、圧力流体供給源24からの圧力流
体が電磁弁23を介し閉止側管路21を通ってシリンダ弁20
に供給されることにより、該シリンダ弁20が作動して仕
切弁8を閉止させる。 これにより、上記濃度測定室2内に導入された懸濁液が
上記仕切弁8で封入される。 そして、上記仕切弁8の閉止後に、上記圧力流体供給源
24からの圧力流体が加圧管路17により加圧用電磁弁25を
介して加圧室7a内に入口7bから供給される。 これにより、上記加圧ダイヤフラム6が上記圧力流体で
加圧され、該加圧ダイヤフラム6によって上記濃度測定
室2内の封入懸濁液が加圧・消泡される。 そして、この状態で、上記懸濁液の濃度が濃度センサー
9,10で検出・測定される。 このような濃度測定後には、上記電磁弁23の切換えによ
って、上記シリンダ弁20が仕切弁8の開弁方向に作動す
る。 これによって、上記仕切弁8が開弁する。このとき、上
記シリンダ弁20からの戻り圧力流体が加圧管路17を通る
ことにより、その戻り圧力流体は分岐管路35を介して上
記反転防止用シリンダ30内にこの入口ポート34から供給
される 従って、上記シリンダ弁20からの戻り圧力流体により、
上記反転防止用シリンダ30のピストン33が押圧されて動
作し、該ピストン33と一体のピストンロッド31が上昇動
作する。 もって、上記ピストンロッド31で加圧ダイヤフラム6が
反転防止方向に引っ張られ、該加圧ダイヤフラム6は反
転防止位置に保持される。An embodiment of the present invention will be described below with reference to the drawings. First
FIG. 1 is a sectional view of a concentration measuring device according to an embodiment of the present invention,
FIG. 2 is an enlarged cross-sectional view of an essential part of FIG. 1, and FIGS.
The same or corresponding parts as those in the figure are designated by the same reference numerals and duplicate description will be omitted. In FIG. 1, 20 is a cylinder valve that is connected to the valve shaft of the sluice valve 8 in the concentration measuring chamber 2 and serves as a valve opening / closing means for driving the sluice valve 8 to open and close. A closing-side conduit 21 for closing the valve 8 and an opening-side conduit 22 for opening the sluice valve 8 are connected, and the closing-side conduit 21 and the opening-side conduit 22 are electromagnetic valves 23. Is connected to a pressure fluid supply source 24 such as a compressor. The pressure fluid supply source 24 is connected to the inlet 7b of the pressurizing chamber 7a via a pressurizing conduit 17 having a pressurizing solenoid valve 25. On the other hand, an inversion prevention cylinder 30 is provided outside the outer box 7 forming the pressurizing chamber 7a. A piston rod 31 of the inversion prevention cylinder 30 slidably penetrates a bearing sleeve 32 penetrating the outer casing 7 and is connected to a central portion of the pressure diaphragm 6. In addition, for introducing a pressure fluid to the bottom side of the inversion prevention cylinder 30, a piston 33 of the inversion prevention cylinder 30 is pressed in the inversion prevention direction of the pressure diaphragm 6 (upward direction in the drawing). An entrance port 34 is provided. A branch pipe 35 from the opening side pipe 22 is connected to the inlet port 34. Further, an air inlet / outlet port 36 is provided in the head portion of the inversion prevention cylinder 30. The air inlet / outlet port 36 sucks and discharges air into / from the cylinder chamber on the side of the air inlet / outlet port 36 in the inversion prevention cylinder 30 according to the reciprocating movement of the piston 33. Next, the operation will be described. First, when measuring the concentration of the suspension flowing through the sludge conduit 1, while the suspension flowing through the sludge conduit 1 is flowing through the concentration measuring chamber 2, the pressure fluid from the pressure fluid supply source 24 is Cylinder valve 20 through solenoid valve 23 and passage 21 on the closing side
Is supplied to the cylinder valve 20, the cylinder valve 20 operates to close the gate valve 8. As a result, the suspension introduced into the concentration measuring chamber 2 is enclosed by the gate valve 8. Then, after closing the sluice valve 8, the pressure fluid supply source
The pressure fluid from 24 is supplied from the inlet 7b into the pressurizing chamber 7a through the pressurizing conduit 17 via the pressurizing electromagnetic valve 25. As a result, the pressure diaphragm 6 is pressurized by the pressure fluid, and the pressure diaphragm 6 pressurizes and defoams the enclosed suspension in the concentration measuring chamber 2. Then, in this state, the concentration of the suspension is measured by the concentration sensor.
It is detected and measured at 9,10. After such concentration measurement, by switching the solenoid valve 23, the cylinder valve 20 operates in the opening direction of the gate valve 8. As a result, the gate valve 8 is opened. At this time, the return pressure fluid from the cylinder valve 20 passes through the pressurizing conduit 17, so that the return pressure fluid is supplied from the inlet port 34 into the inversion prevention cylinder 30 via the branch conduit 35. Therefore, by the return pressure fluid from the cylinder valve 20,
The piston 33 of the inversion prevention cylinder 30 is pressed and operates, and the piston rod 31 integrated with the piston 33 moves upward. Accordingly, the pressure diaphragm 6 is pulled by the piston rod 31 in the inversion prevention direction, and the pressure diaphragm 6 is held in the inversion prevention position.
以上のように、この考案によれば、濃度測定室内の仕切
弁の開弁時に、該仕切弁の弁開閉手段からの戻り圧力流
体が反転防止用シリンダに供給され、これによって、該
反転防止用シリンダが加圧ダイヤフラムの反転防止方向
に駆動されるので、従来の如き煩雑な電気工事を一切必
要とせず、流体機械的な上記反転防止用シリンダだけで
上記加圧ダイヤフラムの反転を確実に防止でき、しかも
上記反転防止用シリンダは濃度測定装置に既存の圧力流
体を利用できるので、既設の濃度測定装置にも容易に対
応させることができるなどの優れた効果がある。As described above, according to the present invention, when the sluice valve in the concentration measuring chamber is opened, the return pressure fluid from the valve opening / closing means of the sluice valve is supplied to the inversion prevention cylinder, whereby the inversion prevention cylinder is provided. Since the cylinder is driven in the direction to prevent the pressure diaphragm from reversing, no complicated electric work is required as in the past, and the pressure diaphragm can be surely prevented from reversing only with the fluid mechanical cylinder. Moreover, since the inversion prevention cylinder can use the existing pressure fluid for the concentration measuring device, it has an excellent effect that it can be easily applied to the existing concentration measuring device.
第1図はこの考案の一実施例による濃度測定装置の断面
図、第2図は第1図の要部拡大断面図、第3図は従来の
一般的な濃度測定装置の断面図、第4図は従来の復元ス
プリング式濃度測定装置の断面図、第5図は従来の大気
開放閉止弁方式濃度測定装置の断面図である。 1…汚泥管路、2…濃度測定室、6…加圧ダイヤフラ
ム、8…仕切弁、9,10…濃度センサー(濃度検出手
段)、20…シリンダ弁(弁開閉手段)、30…反転防止用
シリンダ。 なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is a sectional view of a concentration measuring apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of an essential part of FIG. 1, and FIG. 3 is a sectional view of a conventional general concentration measuring apparatus. FIG. 5 is a cross-sectional view of a conventional restoration spring type concentration measuring device, and FIG. 5 is a cross-sectional view of a conventional atmosphere open / close valve type concentration measuring device. 1 ... Sludge pipeline, 2 ... Concentration measuring chamber, 6 ... Pressurized diaphragm, 8 ... Gate valve, 9,10 ... Concentration sensor (concentration detecting means), 20 ... Cylinder valve (valve opening / closing means), 30 ... Inversion prevention Cylinder. In the drawings, the same reference numerals indicate the same or corresponding parts.
Claims (1)
汚泥管路に付設され、該汚泥管路に連通分岐する濃度測
定室と、この濃度測定室内に張設された加圧ダイヤフラ
ムと、この加圧ダイヤフラムより上記汚泥管路側で上記
濃度測定室内を開閉する仕切弁と、圧力流体供給源に接
続され該圧力流体供給源からの供給流体圧力で上記仕切
弁を開閉駆動する弁開閉手段と、上記仕切弁と上記気密
性可動膜との間で上記濃度測定室の側壁に設けられた濃
度検出手段とを備え、上記仕切弁の閉弁時に上記加圧ダ
イヤフラムを内側に加圧変形させて上記濃度測定室内の
導入懸濁液を加圧し、該加圧状態の懸濁液濃度を上記濃
度検出手段で測定する濃度測定装置において、上記加圧
ダイヤフラムに連結され、該加圧ダイヤフラムが上記濃
度測定室内の負圧で上記汚泥管路側に反転するのを防止
するための反転防止用シリンダを備え、この反転防止用
シリンダを上記仕切弁の開弁時の戻り圧力流体で上記加
圧ダイヤフラムの反転防止方向に駆動させるようにした
ことを特徴とする濃度測定装置。1. A concentration measuring chamber attached to a sludge pipeline through which a suspension of sludge or the like whose concentration is to be measured flows, and a pressure diaphragm stretched in the concentration measuring chamber. And a sluice valve that opens and closes the concentration measurement chamber on the sludge conduit side of the pressure diaphragm, and a valve that is connected to a pressure fluid supply source and that opens and closes the sluice valve by the fluid pressure supplied from the pressure fluid supply source. Means and a concentration detecting means provided on the side wall of the concentration measuring chamber between the sluice valve and the airtight movable membrane, and when the sluice valve is closed, the pressure diaphragm is pressurized and deformed inward. Then, the introduced suspension in the concentration measuring chamber is pressurized, and in the concentration measuring device for measuring the suspension concentration in the pressurized state by the concentration detecting means, the pressure diaphragm is connected to the pressure diaphragm. Negative pressure in the above concentration measurement chamber An inversion prevention cylinder for preventing inversion to the sludge conduit side is provided, and this inversion prevention cylinder is driven in the inversion prevention direction of the pressure diaphragm by the return pressure fluid when the sluice valve is opened. A concentration measuring device characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9528589U JPH0740211Y2 (en) | 1989-08-11 | 1989-08-11 | Concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9528589U JPH0740211Y2 (en) | 1989-08-11 | 1989-08-11 | Concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0335463U JPH0335463U (en) | 1991-04-08 |
JPH0740211Y2 true JPH0740211Y2 (en) | 1995-09-13 |
Family
ID=31644559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9528589U Expired - Lifetime JPH0740211Y2 (en) | 1989-08-11 | 1989-08-11 | Concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0740211Y2 (en) |
-
1989
- 1989-08-11 JP JP9528589U patent/JPH0740211Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0335463U (en) | 1991-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0258399A1 (en) | Apparatus for measuring entrained gas phase content | |
US3782198A (en) | Device for measuring or detecting gas | |
KR19980702019A (en) | Test gas leak detector | |
CN110043676A (en) | A kind of pressure seal parallel slide valve | |
BG101487A (en) | Device for liquid sampling | |
JPH0740211Y2 (en) | Concentration measuring device | |
CA1066255A (en) | Vacuum operated check valve for vacuum conduits | |
ATE111597T1 (en) | COUNTER-FLOW PORTABLE HELIUM LEAK DETECTOR FOR TESTING SYSTEMS THAT HAVE ITS OWN PUMP ASSEMBLY. | |
US3861217A (en) | Gas detection device | |
CN215296588U (en) | Building door and window air tightness performance detection device | |
US4376444A (en) | Vacuum operated check valve for vacuum conduits | |
AU2001271648A1 (en) | Device and method for pneumatic gas sampling for gas sensors | |
CN206891919U (en) | A kind of glass fabric air permeability detection means | |
JPH11281515A (en) | Helium leak test equipment | |
JPH0740212Y2 (en) | Concentration measuring device | |
CN215566537U (en) | Petroleum and petrochemical pump monitoring and alarm device | |
JPS6333440U (en) | ||
JPH04177820A (en) | Vacuum degree adjusting mechanism | |
JPS5752846A (en) | Method for measuring moisture within device | |
CN117782247A (en) | High sensitivity flow detector detection device | |
FR2704762A1 (en) | Portable device for creating respiratory cycles, constituting a respiratory simulator | |
JPS5819244U (en) | Leak test equipment | |
CN2045490U (en) | Multifunction pressure tester | |
JP3054200U (en) | Water pressure test equipment | |
JPH0535329Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |