[go: up one dir, main page]

JPH073381A - Thin steel sheet excellent in impact resistance and production thereof - Google Patents

Thin steel sheet excellent in impact resistance and production thereof

Info

Publication number
JPH073381A
JPH073381A JP15074493A JP15074493A JPH073381A JP H073381 A JPH073381 A JP H073381A JP 15074493 A JP15074493 A JP 15074493A JP 15074493 A JP15074493 A JP 15074493A JP H073381 A JPH073381 A JP H073381A
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
rolling
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15074493A
Other languages
Japanese (ja)
Other versions
JP3288483B2 (en
Inventor
Kazunori Osawa
一典 大沢
Eiji Iizuka
栄治 飯塚
Kazuya Miura
和哉 三浦
Makoto Imanaka
誠 今中
Toshiyuki Kato
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15074493A priority Critical patent/JP3288483B2/en
Publication of JPH073381A publication Critical patent/JPH073381A/en
Application granted granted Critical
Publication of JP3288483B2 publication Critical patent/JP3288483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a thin steel sheet excellent in impact resistance by subjecting a low carbon steel slab to hot rolling, cold rolling and annealing under specified conditions. CONSTITUTION:A low carbon steel slab contg., by weight, 0.01 to 0.10% C, <1.5% Si, <3.0% Mn, <1.00% P, <0.10% S, <0.10% Al and <0.0050% N is subjected to hot rough rolling at <=1250 deg.C, is thereafter held to the temp. range of 950 to 1100 deg.C, is subjected to bending and rebending treatment and is successively subjected to hot finish rolling into a hot rolled sheet, which is cooled at >=10 deg.C/sec cooling rate and is thereafter annealed at 300 to 500 deg.C or, after the hot finish rolling, it is subjected to cold rolling, is subsequently heated to the temp. range of the recrystallization temp. to the AC3 transformation point for >=30sec, is rapidly cooled at 10 to 1000 deg.C/sec cooling rate and is thereafter annealed at 300 to 500 deg.C. When the grain diameter of ferrite in the structure is defined as Fdmum, the number of cementite in one piece of ferrite crystal is defined as Cn piece and the area per piece of cementite is defined as Camum<2>, (Cn+Ca)/Fd=0.10 to 2.00 is satisfied, by which the hot rolled steel sheet or cold rolled steel sheet excellent in impact resistance can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐衝撃性に優れる薄鋼
板とその製造方法に関し、とくにプレス成形等の加工が
施される自動車用鋼板として用いられるものであって、
とりわけ自動車が走行中に万一衝突した場合の特性, 即
ち耐衝撃性が求められる部位の素材として好適な薄鋼板
とそれの製造方法に関する提案である。最近、地球環境
保全の機運が高まってきたことから、自動車からのCO2
排出量の低減が求められている。そのために、自動車車
体の軽量化が図られており、それはまた、鋼板の高強度
化によって板厚を低減させることを意味するものであ
り、素材としてはプレス成形性と強度の両方に優れたも
のが求められている。さらに、自動車車体の設計思想に
着目すると、鋼板の単なる高強度化のみでなく、より大
切なことは走行中に万一衝突した場合の耐衝撃性に優れ
た鋼板、すなわち板厚が薄く、高歪速度で変形した場合
の変形抵抗が大きい鋼板の開発が必要であり、これを実
現してこそ自動車の安全性の向上を伴った車体の軽量化
が図られ、より望ましい自動車用鋼板を提供することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel sheet having excellent impact resistance and a method for producing the same, and is particularly used as a steel sheet for automobiles which is subjected to processing such as press forming,
In particular, it is a proposal regarding a thin steel sheet suitable as a material for a portion where a car should collide during traveling, that is, a shock resistance, and a manufacturing method thereof. Since the momentum for global environment conservation has increased recently, CO 2 emitted from automobiles
Reduction of emissions is required. For this reason, the weight of automobile bodies has been reduced, which also means that the strength of the steel sheet is increased to reduce the thickness of the steel sheet, and the material is excellent in both press formability and strength. Is required. Furthermore, focusing on the design concept of an automobile body, it is not only the strength of the steel plate that is simply strengthened, but more importantly, the steel plate that has excellent impact resistance in the event of a collision during running, that is, the plate thickness is thin and high. It is necessary to develop a steel plate that has a large deformation resistance when deformed at a strain rate, and it is only when this is realized that the weight of the car body can be reduced while improving the safety of the automobile, and a more desirable automobile steel plate can be provided. be able to.

【0002】[0002]

【従来の技術】従来、自動車用鋼板の材質強化の方法
は、フェライト単相組織鋼では主としてSi, Mn, Pとい
った置換型固溶元素の添加による固溶強化、あるいはN
b, Tiといった炭・窒化物形成元素を添加することによ
る析出強化といった方法が一般的である。例えば、特開
昭56−139654号公報等に記載されているように、加工
性、時効性を改善するために極低炭素鋼にTi, Nbを含有
させ、さらに加工性を害しない範囲でP等の強化成分を
含有させて高強度化を図った鋼板が数多く提案されてい
る。この他にも、例えば特開昭59−193221号公報には、
Si添加によってさらに高強度化を図る方法の提案もなさ
れている。
2. Description of the Related Art Conventionally, a method for strengthening a material of a steel sheet for automobiles has been a solid solution strengthening method for a ferrite single-phase steel mainly by adding substitutional solid solution elements such as Si, Mn and P, or N.
A common method is precipitation strengthening by adding carbon and nitride forming elements such as b and Ti. For example, as described in JP-A-56-139654, etc., ultra-low carbon steel contains Ti and Nb in order to improve workability and aging property, and P is added within a range not impairing workability. Many steel sheets have been proposed that contain strengthening components such as to improve the strength. In addition to this, for example, in JP-A-59-193221,
A method of further strengthening by adding Si has also been proposed.

【0003】たしかに、このような方法での鋼板の高強
度化によって、自動車ボディーの板厚減少はある程度可
能となった。しかしながら、これらの提案は、鋼板強度
の指標である降伏強度あるいは引張強度を、歪速度が10
-3〜10-2(s-1) と極めて遅い静的な評価方法に基づいて
判断している。しかしながら、実際の自動車ボディーの
設計では、このような“静的”な強度よりも、衝突時の
安全性を考慮した、歪速度10〜104 (s-1) での衝撃的な
変形を伴う“動的”な強度の方がより重要になるため、
従来のような提案では、自動車車体の軽量化に対しては
真に有効な手段を提供するものとは言えない。
Certainly, by increasing the strength of the steel sheet by such a method, the thickness of the automobile body can be reduced to some extent. However, in these proposals, the yield rate or tensile strength, which is an index of steel plate strength, is determined by
-3 to 10 -2 (s -1 ) based on a very slow static evaluation method. However, in actual car body design, rather than such "static" strength, impact deformation at a strain rate of 10 4 to 10 4 (s -1 ), which takes into account safety during a collision, is involved. Because “dynamic” strength is more important,
The conventional proposals cannot be said to provide truly effective means for reducing the weight of the automobile body.

【0004】[0004]

【発明が解決しようとする課題】というのは、従来、上
述した静的な強度と動的な強度とは、同じ傾向をもつも
のとして一義的に取り扱っており、主として静的な強度
のみを基準にして判断していた。ところが、発明者らの
研究によると、動的な強度は、必ずしも静的な強度に対
応しておらず、従って、各種改良素材の静的強度の改良
がそのまま動的強度の向上にはつながらないということ
が判った。そして、この傾向は、とくに高張力鋼板につ
いて著しいものがあった。
Conventionally, the above-mentioned static strength and dynamic strength are uniquely treated as having the same tendency, and the static strength is mainly used as a standard. I was making a decision. However, according to the research conducted by the inventors, the dynamic strength does not always correspond to the static strength, so that the improvement of the static strength of various improved materials does not directly lead to the improvement of the dynamic strength. I knew that. And this tendency was remarkable especially in high-strength steel sheets.

【0005】すなわち 図1は、変形速度と強度との関
係に及ぼす軟鋼と高張力鋼との影響を示すものである。
この図に明らかなように、軟鋼板における変形速度10-3
〜10 -2(s-1) の静的強度と、10〜104 (s-1) の動的強度
は軟鋼板の静的強度ほどには高い値を示さないことが判
る。このことは、自動車用高張力鋼板の板厚を静的強度
値に基づいて薄肉化した場合には、動的強度, 即ち、耐
衝撃強度の方は不足するという結果になることを意味し
ている。そして、このことはまた、静的強度値だけを基
準にして高張力鋼板の薄肉化を図ってきた従来の考え方
は見直さなければならないことを示唆している。本発明
の目的は、上述した従来技術が抱えている問題点を克服
することにあり、とくに薄鋼板における静的強度値に対
する動的強度の値が、軟鋼板のそれと同等以上に高いた
めに優れた耐衝撃性を示すこととなる自動車用薄鋼板を
提供することにある。
That is, FIG. 1 shows the relationship between deformation rate and strength.
It shows the effect of mild steel and high-strength steel on the engagement.
As is clear from this figure, the deformation rate of mild steel sheet is 10-3
~Ten -2(s-1) Static strength and 10 to 10Four(s-1) Dynamic strength
Is not as high as the static strength of mild steel.
It This means that the strength of high-strength steel sheets for automobiles is
When the wall thickness is reduced based on the value, the dynamic strength, that is, the resistance
It means that the impact strength will be insufficient.
ing. And this is also based only on static strength values.
Conventional way of thinking that has attempted to reduce the thickness of high-strength steel sheets
Suggests that it must be reviewed. The present invention
Aims to overcome the problems with the above-mentioned conventional technology
In particular, the static strength of thin steel sheets
The value of dynamic strength is higher than that of mild steel plate.
The thin steel sheet for automobiles that exhibits excellent impact resistance
To provide.

【0006】[0006]

【課題を解決するための手段】上述した課題に対してそ
の解決を目指して鋭意研究した結果、軟鋼のように低歪
速度下における強度のみならず、高歪速度下における強
度、即ち、耐衝撃強度にも優れた薄鋼板とするには、単
に静的強度だけが高い値を示すものでは不十分であるこ
とが判った。このことはまた、単に高歪速度下における
強度、即ち動的強度だけが高い値を示すものを開発する
こと(不経済である)で足りることを意味しておらず、
いわゆる、静的強度と動的強度とがうまく釣り合ってい
ることが必要であるということが判った。すなわち、プ
レス成形性に優れかつ高歪速度下での耐衝撃強度にも優
れた鋼板は、 静動比=(歪速度 102(s-1) での降伏応力)/ (歪速度10
-3(s-1) での降伏応力) で定義される、静動比が 1.6以上の薄鋼板であれば、自
動車用部品として用いられた場合に、高歪速度下でも軟
鋼板と同等以上の高い強度の歪速度依存性が得られるの
で、自動車車体の安全性向上を軽量化の実現にあわせて
達成することができることが判った。
[Means for Solving the Problems] As a result of intensive research aimed at solving the above-mentioned problems, as a result, not only the strength under a low strain rate such as mild steel but also the strength under a high strain rate, that is, the impact resistance It has been found that merely a static strength having a high value is not sufficient for forming a thin steel sheet having excellent strength. This does not mean that it is sufficient to simply develop a material having a high strength under a high strain rate, that is, a material having a high dynamic strength (which is uneconomical),
It has been found that it is necessary for the so-called static strength and dynamic strength to be well balanced. In other words, a steel sheet with excellent press formability and impact strength at high strain rate has a static-dynamic ratio = (yield stress at strain rate 10 2 (s -1 )) / (strain rate 10
-3 (s -1 ) .The yield stress at (s -1 ), if the steel plate has a static-dynamic ratio of 1.6 or more, it is equivalent to a mild steel plate even under high strain rate when used as an automobile part. Since it is possible to obtain high strain rate dependence of strength, it has been found that the improvement in safety of the automobile body can be achieved along with the realization of weight reduction.

【0007】このような知見に基づき発明者らはさら
に、上記静動比におよぼす化学組成,組織ならびに製造
条件の影響を詳細に検討し、以下に述べるような要旨構
成からなる薄鋼板とその製造方法を開発した。すなわ
ち、本発明は、 (1) C:0.01〜0.10wt%、 Si:1.5 wt%以下、Mn:3.
0 wt%以下、 P:1.00wt%以下、S:0.10wt%以
下、 Al:0.10wt%以下、N:0.0050wt%以下を含
み、残部がFeおよび不可避的不純物からなり、かつ任意
の断面におけるフェライト結晶粒径Fd(μm)が10〜
50μmの大きさであって、1個のフェライト結晶粒内に
存在するセメンタイト数Cn(個)とセメンタイト1個
当たりの面積Ca(μm2)およびFdとの関係が、下記
式を満足する組織よりなることを特徴とする耐衝撃性に
優れる薄鋼板。 (Cn×Ca)/Fd=0.10〜2.00 (2) C:0.01〜0.10wt%、 Si:1.5 wt%以下、Mn:3.
0 wt%以下、 P:1.00wt%以下、S:0.10wt%以
下、 Al:0.10wt%以下、N:0.0050wt%以下を含
み、残部がFeおよび不可避的不純物からなる鋼スラブ
を、1250℃以下の温度に加熱して熱間粗圧延を施し、次
いで、 950〜1100℃の温度域に保持して曲げならびに曲
げ戻しの処理を行った後、熱間仕上圧延を施し、その
後、10℃/ 秒以上の冷却速度にて冷却し、 300〜500 ℃
の温度域に1分以上滞留させることにより熱延鋼帯とす
ることを特徴とする耐衝撃性に優れる薄鋼板の製造方
法。 (3) C:0.01〜0.10wt%、 Si:1.5 wt%以下、Mn:3.
0 wt%以下、 P:1.00wt%以下、S:0.10wt%以
下、 Al:0.10wt%以下、N:0.0050wt%以下を含
み、残部がFeおよび不可避的不純物からなる鋼スラブ
を、1250℃以下の温度に加熱して熱間粗圧延を施し、次
いで 950〜1100℃の温度域に保持して曲げならびに曲げ
戻しの処理を行った後、熱間仕上圧延を施し、冷間圧延
を施してから再結晶温度〜Ac3変態点の温度域に30秒以
上加熱して、10〜1000℃/秒の冷却速度にて冷却し、そ
の後 300〜500 ℃の温度域に20秒〜10分間滞留させる連
続焼鈍を施して冷延鋼帯とすることを特徴とする耐衝撃
性に優れる薄鋼板の製造方法、である。
Based on such knowledge, the inventors further studied in detail the influence of the chemical composition, the structure and the manufacturing conditions on the above-mentioned static-dynamic ratio, and made a thin steel plate having the following constitution and its manufacturing. Developed a method. That is, the present invention is: (1) C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.
0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: 0.0050 wt% or less, the balance being Fe and unavoidable impurities, and in any cross section Ferrite crystal grain size Fd (μm) is 10 ~
The relationship between the cementite number Cn (pieces) having a size of 50 μm and existing in one ferrite crystal grain and the area Ca (μm 2 ) per cementite and Fd satisfies the following formula: A thin steel sheet with excellent impact resistance. (Cn × Ca) /Fd=0.10 to 2.00 (2) C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.
A steel slab containing 0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: 0.0050 wt% or less, and the balance of Fe and inevitable impurities at 1250 ° C. After performing hot rough rolling by heating to the following temperatures, and then performing bending and unbending treatment by holding in the temperature range of 950 to 1100 ° C, hot finish rolling is performed, and then 10 ° C / Cool at a cooling rate of more than 2 seconds, 300 to 500 ℃
A method for producing a thin steel sheet having excellent impact resistance, which comprises forming a hot-rolled steel strip by staying in the temperature range of 1 minute or more. (3) C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.
A steel slab containing 0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: 0.0050 wt% or less, and the balance of Fe and inevitable impurities at 1250 ° C. After performing hot rough rolling by heating to the following temperature, and then performing bending and unbending treatment by holding it in the temperature range of 950 to 1100 ° C, hot finish rolling and cold rolling are performed. From the recrystallization temperature to the Ac 3 transformation point in the temperature range of 30 seconds or more, and cooled at a cooling rate of 10 to 1000 ° C / sec, and then retained in the temperature range of 300 to 500 ° C for 20 seconds to 10 minutes. A method for producing a thin steel sheet having excellent impact resistance, which comprises subjecting a cold rolled steel strip to continuous annealing.

【0008】[0008]

【作用】発明者らは、上述した薄鋼板の成形性や製造特
性を阻害することなく、その静動比を向上させるべく、
まず、Si, Mn, NおよびPを含有させた高強度低炭素鋼
をベースに、静動比に及ぼす冶金学的要因の影響、とく
に化学組成, 組織および製造条件について検討を重ね
た。その結果、まず、化学組成については、鋼中の固
溶Cと固溶Nをできるだけ減少させられるような合金設
計とすること、また、組織については、フェライト結
晶粒径とセメンタイト数の制御、そして製造条件につ
いては、スラブ加熱温度, 中間加工, 冷却, 焼鈍の各条
件についての吟味が必要であることが判った。
The inventors of the present invention have made it possible to improve the static-dynamic ratio without impairing the formability and manufacturing characteristics of the thin steel sheet described above.
First, based on a high-strength low-carbon steel containing Si, Mn, N, and P, the influence of metallurgical factors on the static-dynamic ratio, particularly the chemical composition, structure, and manufacturing conditions were investigated. As a result, first, regarding the chemical composition, the alloy design should be such that the solute C and solute N in the steel can be reduced as much as possible, and regarding the structure, the ferrite crystal grain size and the cementite number should be controlled, and Regarding the manufacturing conditions, it was found that it was necessary to examine the slab heating temperature, intermediate processing, cooling, and annealing conditions.

【0009】とくに、自動車用高張力薄鋼板における上
記の静動比が、軟鋼板相当の静動比: 1.6以上を示すよ
うになるには、上記成分組成, 組織ならびに製造条件を
適切なものとすれば、固溶C, 固溶Nを効果的に析出さ
せることができるから、高・低両歪速度下での各強度の
向上に対してとりわけ有効に作用することも判った。以
下に、望ましい上記条件について説明する。
In particular, in order for the above-mentioned static-dynamic ratio in the high-strength thin steel sheet for automobiles to show a static-dynamic ratio equivalent to that of mild steel sheet: 1.6 or more, if the above component composition, structure and manufacturing conditions are made appropriate. It was also found that since solid solution C and solid solution N can be effectively precipitated, they have a particularly effective effect on the improvement of each strength under both high and low strain rates. The desirable conditions will be described below.

【0010】さて、本発明薄鋼板を構成する各化学成分
とその含有量は、静動比と同時に成形性向上などのため
に、次のような理由によって限定される。 C:0.01〜0.10wt% C量は、プレス成形性と静動比の両方に優れた鋼板を得
る上で微妙な制御が必要である。その含有量が0.01wt%
未満では、連続焼鈍時に急冷を行っても固溶Cの必要な
過飽和度が得られず、そのため過時効処理を施してもフ
ェライト結晶粒内にセメンタイトが析出せず、静動比の
向上が期待できなくなる。一方、0.10wt%超ではプレス
成形性の指標である伸び、r値の低下を招く他、フェラ
イト結晶粒が微細化するとともに、固溶Cが結晶粒内で
はなく、粒界に析出しやすくなるので、0.01wt%未満の
場合と同様に必要な過飽和度が得られず、固溶C量が多
くなって静動比が向上しない。よって、本発明において
は、C量を0.01〜0.10wt%の範囲内に限定した。
The chemical components and their contents constituting the thin steel sheet of the present invention are limited for the following reasons in order to improve the formability as well as the static-dynamic ratio. C: 0.01 to 0.10 wt% The amount of C requires delicate control in order to obtain a steel sheet excellent in both press formability and static-dynamic ratio. Its content is 0.01wt%
At less than 1, the supersaturation degree required for solid solution C cannot be obtained even when rapid cooling is performed during continuous annealing. Therefore, even if overaging treatment is performed, cementite does not precipitate in ferrite crystal grains and an improvement in static-dynamic ratio is expected. become unable. On the other hand, if it exceeds 0.10 wt%, elongation and r value, which are indicators of press formability, are reduced, and ferrite crystal grains become finer, and solute C easily precipitates at grain boundaries instead of within the crystal grains. Therefore, as in the case of less than 0.01 wt%, the required supersaturation degree cannot be obtained, and the amount of solid solution C increases and the static-dynamic ratio cannot be improved. Therefore, in the present invention, the amount of C is limited to the range of 0.01 to 0.10 wt%.

【0011】Si:1.5 wt%以下 Siは、固溶強化元素であり、高強度鋼板を製造するのに
有効な元素であることから、0.005 wt%以上の添加が望
ましい。しかしながら、1.5 wt%超の含有は中心偏析が
多くなりすぎてプレス成形性を劣化させてしまうことか
ら、Si含有量の上限は 1.5wt%に限定した。
Si: 1.5 wt% or less Si is a solid solution strengthening element and is an element effective for producing a high strength steel sheet. Therefore, 0.005 wt% or more is preferably added. However, if the content exceeds 1.5 wt%, the center segregation becomes excessive and the press formability deteriorates, so the upper limit of the Si content was limited to 1.5 wt%.

【0012】Mn:3.0 wt%以下 Mnは、赤熱脆性の原因になるSをMnSとして固定し、ま
たSiと同様に固溶強化元素であるので、高強度鋼板を製
造するには有効な元素であることから、0.05wt%以上の
添加が望ましい。しかしながら、3.0 wt%超の含有はコ
スト高になる上、中心偏析が多くなりすぎプレス成形性
を劣化させてしまうことから、Mn含有量の上限は3.0 wt
%に限定した。
Mn: 3.0 wt% or less Mn fixes S that causes red hot embrittlement as MnS, and is a solid solution strengthening element similar to Si. Therefore, Mn is an effective element for producing high strength steel sheet. Therefore, addition of 0.05 wt% or more is desirable. However, if the content exceeds 3.0 wt%, the cost will increase and the center segregation will increase excessively, degrading the press formability. Therefore, the upper limit of the Mn content is 3.0 wt%.
Limited to%.

【0013】P:1.00wt%以下 Pは、高強度鋼板を製造する上で有効な元素であること
から、0.005 wt%以上の添加が望ましい。しかしなが
ら、1.0 wt%超の含有は耐2次加工脆性を劣化させてし
まうことから、P含有量の上限は1.0 wt%に限定した。
P: 1.00 wt% or less P is an element effective in producing a high strength steel sheet, so 0.005 wt% or more is preferably added. However, since the content of more than 1.0 wt% deteriorates the secondary work embrittlement resistance, the upper limit of the P content is limited to 1.0 wt%.

【0014】S:0.10wt%以下 Sは、化成処理性を向上させる有効な元素であり、それ
故に0.005 wt%以上の添加が望ましい。しかしながら、
0.10wt%超の含有はプレス成形性を劣化させてしまうこ
とから、Sの上限は0.10wt%に限定した。
S: 0.10 wt% or less S is an effective element for improving chemical conversion treatability, and therefore 0.005 wt% or more is preferably added. However,
Since the content of more than 0.10 wt% deteriorates the press formability, the upper limit of S is limited to 0.10 wt%.

【0015】Al:0.10wt%以下 Alは、製鋼段階で脱酸剤として添加され、かつプレス成
形性、耐時効性を劣化させてしまう固溶NをAlNとして
固定するのに有効な元素であることから、少なくとも0.
010 wt%の添加が望ましい。しかしながら、0.10wt%超
の添加はコスト高になることから、Alの上限は0.10wt%
に限定した。
Al: 0.10 wt% or less Al is an element that is added as a deoxidizing agent in the steelmaking stage and is effective for fixing solid solution N as AlN that deteriorates press formability and aging resistance. Therefore, at least 0.
Addition of 010 wt% is desirable. However, the addition of more than 0.10 wt% will increase the cost, so the upper limit of Al is 0.10 wt%.
Limited to.

【0016】N:0.0050wt%以下 Nは、侵入型固溶元素であり、Nが鋼中に固溶した状態
ではプレス成形性、耐時効性の劣化ならびに静動比の向
上が望めないので極力低減する必要がある。また、固溶
Nを固定するために高価なAlを多量に添加する必要があ
るので、本発明ではNの上限を0.0050wt%に限定した。
N: 0.0050 wt% or less N is an interstitial solid solution element, and when N is a solid solution in steel, deterioration of press formability, aging resistance and improvement of static-dynamic ratio cannot be expected, so N is as much as possible. Need to reduce. Further, since it is necessary to add a large amount of expensive Al for fixing the solid solution N, the upper limit of N is limited to 0.0050 wt% in the present invention.

【0017】本発明にかかる薄鋼板は、少なくとも上述
した成分組成の鋼であることが必要であり、その上でさ
らに、以下のような組織を有するものにすることが必要
である。 フェライト結晶粒径(Fd):10〜50(μm) 鋼中のフェライト結晶粒径が10〜50μmでなければなら
ない理由は、10μm未満では微細なセメンタイトが結晶
粒内に析出しにくくなり、静動比が向上しなくなるから
である。また、このフェライト結晶粒径が50μm超の粗
大な結晶粒径では、プレス加工時、鋼板表面に肌荒れが
生じてしまうからである。 1個の結晶粒内のセメンタイト数(Cn)とセメン
タイト1個当たりの平均面積(Ca)およびFdとの関
係, Cn×Ca/Fd:0.10〜2.00 Cn×Ca/Fdが0.10未満では、固溶C量が多いので
静動比の向上がなく、また、2.00超ではセメンタイトが
過剰に析出しすぎるためプレス成形性が劣化することか
ら、本発明では0.10〜2.00の範囲とした。
The thin steel sheet according to the present invention is required to be at least a steel having the above-described composition, and further, it is necessary to have a structure as described below. Ferrite crystal grain size (Fd): 10 to 50 (μm) The reason why the ferrite crystal grain size in steel must be 10 to 50 μm is that if it is less than 10 μm, fine cementite is hard to precipitate in the crystal grains, and it is statically moving. This is because the ratio will not improve. Further, if the ferrite crystal grain size is larger than 50 μm, the surface of the steel sheet will be roughened during press working. Relationship between the number of cementites (Cn) in one crystal grain and the average area (Ca) per cementite and Fd, Cn × Ca / Fd: 0.10 to 2.00 When Cn × Ca / Fd is less than 0.10. Since the content of C is large and the static-dynamic ratio is not improved, and if it exceeds 2.00, the press formability is deteriorated due to excessive precipitation of cementite, so in the present invention, the range is set to 0.10 to 2.00.

【0018】本発明にかかる薄鋼板は、上述した成分組
成と鋼組織を有するものである。このような薄鋼板の製
造に当たっては、少なくとも次のような製造条件の選択
が必要である。 スラブ加熱温度:1250℃以下 スラブ加熱温度を1250℃以下にする理由は、低温でスラ
ブを加熱することにより、連続鋳造後の冷却時に析出し
たAlNの再固溶が抑制され、最終的に冷延焼鈍板内の固
溶Nが減少させるのに必要であるからである。
The thin steel sheet according to the present invention has the above-described composition and steel structure. In manufacturing such a thin steel sheet, it is necessary to select at least the following manufacturing conditions. Slab heating temperature: 1250 ° C or less The reason for setting the slab heating temperature to 1250 ° C or less is that by heating the slab at a low temperature, re-dissolution of AlN precipitated during cooling after continuous casting is suppressed, and finally cold rolling is performed. This is because it is necessary to reduce the solid solution N in the annealed plate.

【0019】 熱間仕上圧延前のシートバーの高温保
持ならびに曲げ・曲げ戻し処理:本発明にかかる製造方
法においては、熱間仕上圧延前に、シートバーを 950〜
1100℃の高温域に保持し、この温度域において該シート
バーを曲げ, 曲げ戻し処理を行うことが必要である。こ
のような処理を行うことによって析出物が析出しやすく
なり、所定の組織の鋼を得ることができるのである。な
お、この曲げ・曲げ戻し処理における曲げの大きさは、
曲率半径にして、200 〜1000mmが好ましい。また、高温
保持の時間は、操業上、温度低下の問題から10分以内が
望ましい。
High-temperature holding and bending / bending back treatment of the sheet bar before hot finish rolling: In the manufacturing method according to the present invention, the sheet bar is heated to 950 to before hot finish rolling.
It is necessary to keep the sheet bar at a high temperature of 1100 ° C and bend the sheet bar in this temperature range to perform the bending back treatment. By carrying out such a treatment, precipitates are likely to be precipitated and a steel having a predetermined structure can be obtained. In addition, the size of the bending in this bending / bending process is
The radius of curvature is preferably 200 to 1000 mm. In addition, it is desirable to keep the temperature at a high temperature within 10 minutes in view of the problem of temperature drop during operation.

【0020】 仕上圧延後の冷却、巻取条件 最終製品が熱延鋼板の場合、仕上圧延後、10℃/秒の冷
却速度で300 〜500 ℃の温度域に冷却する。この理由
は、10℃/秒以上で冷却することにより、鋼中の固溶C
を過飽和状態にすることができ、かつ 300〜500 ℃に1
分以上滞留させることでセメンタイトが結晶粒内に析出
しやすくするからである。一方、最終製品が冷延鋼板の
場合には、とくに規制はないが、冷間圧延, 焼鈍後の材
質、とくに静動比を向上させるためには、 600℃以上の
巻取り温度とすることが望ましく、とくに熱延板の段階
においてAlNを十分に析出させておくことが望ましい。
Cooling and Winding Conditions after Finish Rolling When the final product is a hot rolled steel sheet, after finishing rolling, it is cooled to a temperature range of 300 to 500 ° C. at a cooling rate of 10 ° C./sec. The reason for this is that by cooling at 10 ° C / sec or more, solid solution C in steel
Can be supersaturated, and 1 to 300-500 ℃
This is because cementite is likely to precipitate in the crystal grains by allowing the cementite to stay for more than a minute. On the other hand, if the final product is a cold rolled steel sheet, there are no particular restrictions, but in order to improve the material after cold rolling and annealing, especially the static-dynamic ratio, a coiling temperature of 600 ° C or higher may be used. Desirably, it is particularly desirable to sufficiently precipitate AlN at the stage of hot rolling.

【0021】 冷延鋼板を製造する場合の連続焼鈍条
件:この連続焼鈍は、再結晶温度〜Ac3変態点の温度域
に加熱して行う。この理由は、再結晶温度未満では圧延
組織のためプレス加工を行うのが不可能であり、一方、
Ac3変態点超では集合組織がランダム化し、プレス加工
性が著しく劣化するからである。この処理において、加
熱後の冷却は、300 〜500 ℃の温度域まで10〜1000℃/
sec の速度で行い、そしてこの温度に20秒以上滞留させ
る。また、保持時間は20秒〜10分間である。このように
限定する理由は、10℃/sec 以上で冷却することにより
鋼中の固溶Cを過飽和状態にすることができ、また 300
〜500 ℃に保持することでセメンタイトが結晶粒内に析
出しやすくすることができるからである。すなわち、30
0 ℃未満あるいは 500℃超の温度域ではセメンタイトの
析出が起こりにくく、また1000℃/sec 超の冷却速度お
よび10分超の保持時間は設備的に不可能だからである。
なお、保持時間を20秒以上とする理由は、セメンタイト
が結晶粒内に析出し、固溶C量を減少させることができ
るからである。
Continuous annealing conditions for producing a cold-rolled steel sheet: This continuous annealing is performed by heating in the temperature range from the recrystallization temperature to the Ac 3 transformation point. The reason for this is that it is impossible to perform press working due to the rolling structure below the recrystallization temperature, while,
This is because when the Ac 3 transformation point is exceeded, the texture becomes random and the press workability is significantly deteriorated. In this process, the cooling after heating is 10-1000 ℃ / up to the temperature range of 300-500 ℃.
Perform at a rate of sec and let it stay at this temperature for more than 20 seconds. The holding time is 20 seconds to 10 minutes. The reason for this limitation is that the solid solution C in the steel can be made into a supersaturated state by cooling at 10 ° C / sec or more.
This is because by maintaining the temperature at ˜500 ° C., cementite can be easily precipitated in the crystal grains. Ie, 30
This is because precipitation of cementite is less likely to occur in a temperature range of less than 0 ° C or more than 500 ° C, and a cooling rate of more than 1000 ° C / sec and a holding time of more than 10 minutes are not possible in terms of equipment.
The reason why the holding time is 20 seconds or more is that cementite precipitates in the crystal grains and the amount of solute C can be reduced.

【0022】[0022]

【実施例】【Example】

実施例(1) :熱延鋼板の例 表1に示した成分組成の連続鋳造スラブを、表2に示す
製造条件で処理することにより、熱延鋼帯を製造した。
すなわち、連鋳スラブを1300℃以下で再加熱し、3パス
の粗圧延を行った後、仕上圧延の前にコイルボックスを
利用してシートバーの前後を反転させて熱間圧延を行
い、板厚 2.5mmの熱延板とし、その後冷却速度を変化さ
せて 250〜470 ℃の温度域で巻取ることにより、結晶粒
径およびその結晶粒内のセメンタイトの形態を変化させ
た。これらの熱延板からサンプルを採取し、JIS 5号引
張試験片に加工後、静的引張試験(歪速度:10-3) と動
的引張試験(歪速度:102)を行い、それぞれの降伏強さ
(YP)を測定し、各鋼板の静動比(動的引張試験での
YP/静的引張試験でのYP)を求めた。その結果を表
3に示す。この表に示すとおり、本発明の鋼組成および
組織条件を満足する薄鋼板( No1〜3,8〜11) はいず
れも静動比が大きく、耐衝撃性に優れていることが判明
した。
Example (1): Example of hot-rolled steel sheet A hot-rolled steel strip was produced by treating a continuously cast slab having the composition shown in Table 1 under the production conditions shown in Table 2.
That is, the continuous cast slab is reheated at 1300 ° C. or lower, and after three-pass rough rolling, before and after finish rolling, the coil box is used to reverse the front and rear of the sheet bar to perform hot rolling, The grain size and the morphology of cementite in the grain were changed by forming a hot rolled sheet with a thickness of 2.5 mm and then winding it in the temperature range of 250 to 470 ℃ by changing the cooling rate. Samples were taken from these hot-rolled sheets, processed into JIS No. 5 tensile test pieces, and then subjected to static tensile test (strain rate: 10 -3 ) and dynamic tensile test (strain rate: 10 2 ). The yield strength (YP) was measured, and the static-dynamic ratio (YP in the dynamic tensile test / YP in the static tensile test) of each steel plate was obtained. The results are shown in Table 3. As shown in this table, it was found that all of the thin steel sheets (No. 1 to 3, 8 to 11) satisfying the steel composition and microstructure conditions of the present invention had a large static-dynamic ratio and excellent impact resistance.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】実施例(2) :冷延鋼板の例 表4に示した成分組成の連続鋳造スラブを、表5に示す
製造条件で処理することにより、冷延鋼帯を製造した。
すなわち、まず連鋳スラブを、1300℃以下の温度で再加
熱し、3パスで粗圧延を行った後、仕上圧延の前にコイ
ルボックスを利用してシートバーの前後を反転させて熱
間圧延を行い、板厚3.2 mmの熱延板として 550〜650 ℃
の温度域で巻き取った。この熱延板はその後酸洗してか
ら冷間圧延を施し、板厚0.8 mmの冷延板とした。次い
で、表5に示したような連続焼鈍条件により再結晶焼鈍
を行い、結晶粒径およびその結晶粒内のセメンタイトの
形態を変化させた。圧下率1.0 %の調質圧延を施した
後、JIS 5号引張試験片に加工し、静的引張試験(歪速
度:10-3) と動的引張試験(歪速度:102)を行い、それ
ぞれの降伏強さ(YP)を測定し、各鋼板の静動比(動
的引張試験でのYP/静的引張試験でのYP)を求め、
表6に示した。その結果、本発明の鋼組成および組織条
件を満足する薄鋼板はいずれも静動比が大きく、耐衝撃
性に優れていることが判明した。
Example (2): Example of Cold Rolled Steel Sheet A cold rolled steel strip was produced by treating a continuously cast slab having the composition shown in Table 4 under the production conditions shown in Table 5.
That is, first, the continuous cast slab is reheated at a temperature of 1300 ° C. or lower, rough-rolled in three passes, and then, before finish rolling, a coil box is used to reverse the front and rear of the sheet bar to perform hot rolling. As a hot-rolled sheet with a thickness of 3.2 mm, 550 to 650 ℃
It was wound in the temperature range of. This hot-rolled sheet was then pickled and cold-rolled to give a cold-rolled sheet having a plate thickness of 0.8 mm. Then, recrystallization annealing was performed under the continuous annealing conditions as shown in Table 5 to change the crystal grain size and the morphology of cementite in the crystal grains. After temper rolling with a rolling reduction of 1.0%, it was processed into JIS No. 5 tensile test pieces and subjected to a static tensile test (strain rate: 10 -3 ) and a dynamic tensile test (strain rate: 10 2 ). Each yield strength (YP) was measured, and the static-dynamic ratio (YP in the dynamic tensile test / YP in the static tensile test) of each steel plate was calculated.
The results are shown in Table 6. As a result, it was found that all of the thin steel sheets satisfying the steel composition and microstructure conditions of the present invention have a large static-dynamic ratio and excellent impact resistance.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【発明の効果】以上説明したようにこの発明によれば、
成形性に優れると共に、静動比で表わされる耐衝撃特性
に優れた高強度自動車用薄鋼板を得ることができる。
As described above, according to the present invention,
It is possible to obtain a high-strength thin steel sheet for automobiles which has excellent formability and excellent impact resistance represented by a static-dynamic ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】変形速度と強度との関係に及ぼす軟鋼と高張力
鋼との影響を示す説明図。
FIG. 1 is an explanatory diagram showing the effect of mild steel and high-strength steel on the relationship between deformation rate and strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 和哉 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 今中 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Miura 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd. Technical Research Division (72) Inventor Makoto Imanaka 1 Kawasaki-cho, Chuo-ku, Chiba-shi Address Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters (72) Inventor Toshiyuki Kato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.01〜0.10wt%、 Si:1.5 wt%以
下、 Mn:3.0 wt%以下、 P:1.00wt%以下、 S:0.10wt%以下、 Al:0.10wt%以下、 N:0.0050wt%以下を含み、残部がFeおよび不可避的不
純物からなり、かつ任意の断面におけるフェライト結晶
粒径Fd(μm)が10〜50μmの大きさであって、1個
のフェライト結晶粒内に存在するセメンタイト数Cn
(個)とセメンタイト1個当たりの面積Ca(μm2)お
よびFdとの関係が、下記式を満足する組織よりなるこ
とを特徴とする耐衝撃性に優れる薄鋼板。 (Cn×Ca)/Fd=0.10〜2.00
1. C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: The content is 0.0050 wt% or less, the balance is Fe and unavoidable impurities, and the ferrite crystal grain size Fd (μm) in an arbitrary cross section is 10 to 50 μm and exists in one ferrite crystal grain. Cn of cementite
A thin steel sheet having excellent impact resistance, characterized in that the relationship between (pieces) and the area Ca (μm 2 ) per cementite and Fd is composed of a structure satisfying the following formula. (Cn × Ca) /Fd=0.10 to 2.00
【請求項2】C:0.01〜0.10wt%、 Si:1.5 wt%以
下、 Mn:3.0 wt%以下、 P:1.00wt%以下、 S:0.10wt%以下、 Al:0.10wt%以下、 N:0.0050wt%以下を含み、残部がFeおよび不可避的不
純物からなる鋼スラブを、1250℃以下の温度に加熱して
熱間粗圧延を施し、次いで、 950〜1100℃の温度域に保
持して曲げならびに曲げ戻しの処理を行った後、熱間仕
上圧延を施し、その後、10℃/ 秒以上の冷却速度にて冷
却し、 300〜500 ℃の温度域に1分以上滞留させること
により熱延鋼帯とすることを特徴とする耐衝撃性に優れ
る薄鋼板の製造方法。
2. C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: A steel slab containing 0.0050wt% or less and the balance of Fe and unavoidable impurities is heated to a temperature of 1250 ° C or less to perform hot rough rolling, and then kept in the temperature range of 950 to 1100 ° C and bent. In addition, after performing the bending back treatment, hot finish rolling is performed, and thereafter, it is cooled at a cooling rate of 10 ° C / sec or more and retained in the temperature range of 300 to 500 ° C for 1 minute or more, so that hot rolled steel A method for producing a thin steel sheet having excellent impact resistance, which is characterized by using a belt.
【請求項3】C:0.01〜0.10wt%、 Si:1.5 wt%以
下、 Mn:3.0 wt%以下、 P:1.00wt%以下、 S:0.10wt%以下、 Al:0.10wt%以下、 N:0.0050wt%以下を含み、残部がFeおよび不可避的不
純物からなる鋼スラブを、1250℃以下の温度に加熱して
熱間粗圧延を施し、次いで 950〜1100℃の温度域に保持
して曲げならびに曲げ戻しの処理を行った後、熱間仕上
圧延を施し、冷間圧延を施してから再結晶温度〜Ac3
態点の温度域に30秒以上加熱して、10〜1000℃/秒の冷
却速度にて冷却し、その後 300〜500 ℃の温度域に20秒
〜10分間滞留させる連続焼鈍を施して冷延鋼帯とするこ
とを特徴とする耐衝撃性に優れる薄鋼板の製造方法。
3. C: 0.01 to 0.10 wt%, Si: 1.5 wt% or less, Mn: 3.0 wt% or less, P: 1.00 wt% or less, S: 0.10 wt% or less, Al: 0.10 wt% or less, N: A steel slab containing 0.0050 wt% or less and the balance of Fe and unavoidable impurities is heated to a temperature of 1250 ° C or less to perform hot rough rolling, and then is held in the temperature range of 950 to 1100 ° C for bending and bending. After the bending back treatment, hot finishing rolling is performed, cold rolling is performed, and then the recrystallization temperature to the Ac 3 transformation point temperature range is heated for 30 seconds or more, and cooled to 10 to 1000 ° C / second. A method for producing a thin steel sheet having excellent impact resistance, which comprises cooling at a speed and then subjecting it to a cold-rolled steel strip by continuous annealing in which it is retained in a temperature range of 300 to 500 ° C for 20 seconds to 10 minutes.
JP15074493A 1993-06-22 1993-06-22 Thin steel sheet excellent in impact resistance and method for producing the same Expired - Lifetime JP3288483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15074493A JP3288483B2 (en) 1993-06-22 1993-06-22 Thin steel sheet excellent in impact resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15074493A JP3288483B2 (en) 1993-06-22 1993-06-22 Thin steel sheet excellent in impact resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH073381A true JPH073381A (en) 1995-01-06
JP3288483B2 JP3288483B2 (en) 2002-06-04

Family

ID=15503474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15074493A Expired - Lifetime JP3288483B2 (en) 1993-06-22 1993-06-22 Thin steel sheet excellent in impact resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3288483B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138752A1 (en) 2006-06-01 2007-12-06 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
WO2024128611A1 (en) * 2022-12-16 2024-06-20 주식회사 포스코 Steel sheet and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590389B1 (en) 1998-08-07 2003-07-08 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic sensor, magnetic sensor apparatus, semiconductor magnetic resistance apparatus, and production method thereof
CN103316915B (en) * 2013-06-24 2015-05-13 东北大学 Method for preparing wide magnesium alloy sheet
CN105543648A (en) * 2015-12-15 2016-05-04 安徽楚江特钢有限公司 Production process of high-strength micro-steel alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138752A1 (en) 2006-06-01 2007-12-06 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
US8177924B2 (en) 2006-06-01 2012-05-15 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
WO2024128611A1 (en) * 2022-12-16 2024-06-20 주식회사 포스코 Steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP3288483B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
US11193189B2 (en) Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor
JP3424619B2 (en) High tensile cold rolled steel sheet and method for producing the same
JPH04289120A (en) Production of ultrahigh strength cold rolled steel sheet excellent in formability and strip shape
US4325751A (en) Method for producing a steel strip composed of a dual-phase steel
JP2004027249A (en) High-strength hot-rolled steel sheet and manufacturing method thereof
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP3288483B2 (en) Thin steel sheet excellent in impact resistance and method for producing the same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JP3288484B2 (en) Thin steel sheet excellent in ductility and impact resistance and method for producing the same
JPH0665685A (en) Cold rolled sheet of ultrahigh tensile strength steel and its production
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3508162B2 (en) Manufacturing method of thin steel sheet with excellent bake hardenability and impact resistance
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JPH0931534A (en) Method for manufacturing high strength hot rolled steel sheet with excellent workability and fatigue characteristics
JP3435737B2 (en) Thin steel sheet excellent in impact resistance and method for producing the same
JPS63179046A (en) High-strength thin steel sheet with excellent workability and cracking resistance and its manufacturing method
JP3425296B2 (en) Manufacturing method of thin hot rolled steel sheet with excellent workability
JPH10237551A (en) Production of hot rolled steel sheet excellent in fatigue characteristic and stretch-flanging property
JP2790018B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JP2020029620A (en) Manufacturing method of cold rolled steel sheet and cold rolled steel sheet
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JPH06158175A (en) Production of cold rolled steel sheet for ultradeep drawing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11