JPH0733805B2 - Acceleration / deceleration determination device for internal combustion engine - Google Patents
Acceleration / deceleration determination device for internal combustion engineInfo
- Publication number
- JPH0733805B2 JPH0733805B2 JP62000582A JP58287A JPH0733805B2 JP H0733805 B2 JPH0733805 B2 JP H0733805B2 JP 62000582 A JP62000582 A JP 62000582A JP 58287 A JP58287 A JP 58287A JP H0733805 B2 JPH0733805 B2 JP H0733805B2
- Authority
- JP
- Japan
- Prior art keywords
- acceleration
- deceleration
- deceleration operation
- opening
- started
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001133 acceleration Effects 0.000 title claims description 85
- 238000002485 combustion reaction Methods 0.000 title claims description 5
- 230000008859 change Effects 0.000 claims description 36
- 238000001514 detection method Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 31
- 239000007924 injection Substances 0.000 description 31
- 239000000446 fuel Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 239000000498 cooling water Substances 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 本発明は燃料噴射制御等に使用される内燃機関の加・減
速判定装置に関する。TECHNICAL FIELD The present invention relates to an acceleration / deceleration determination device for an internal combustion engine used for fuel injection control and the like.
〈従来の技術〉 加・減速判定装置が使用される内燃機関の電子制御燃料
噴射装置の従来例として以下のようなものがある(実開
昭60−066558号参照)。<Prior Art> The following is a conventional example of an electronically controlled fuel injection device for an internal combustion engine in which an acceleration / deceleration determination device is used (see Japanese Utility Model Laid-Open No. 60-066558).
すなわち、エアフロメータ等により検出された吸入空気
流量Qと機関回転速度Nとから基本噴射量Tp=K×Q/N
(Kは定数)を演算すると共に、主として水温に応じた
各種補正係数COEFと空燃比フィードバック補正係数αと
バッテリ電圧による補正係数Tsとを演算した後、定常運
転時における燃料噴射量Ti=Tp×COEF×α+Tsを演算す
る。That is, the basic injection amount Tp = K × Q / N from the intake air flow rate Q detected by the air flow meter and the engine rotation speed N.
(K is a constant) and at the same time, after calculating various correction coefficients COEF mainly according to the water temperature, the air-fuel ratio feedback correction coefficient α and the correction coefficient Ts based on the battery voltage, the fuel injection amount Ti = Tp × during steady operation Calculate COEF x α + Ts.
そして、例えばシングルポイントインジェクションシス
テム(以下SPI方式)では、機関の1/2回転毎に点火信号
等に同期して燃料噴射弁に対し前記燃料噴射量Tiに対応
するパルス巾の噴射パルス信号を出力し機関に燃料を供
給する。Then, for example, in a single point injection system (hereinafter referred to as SPI method), an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti is output to the fuel injection valve in synchronization with an ignition signal or the like every 1/2 revolution of the engine. Supply fuel to the engine.
さらに吸気絞弁開度の変化率から加速判定を一定時間
(例えば10msec)毎に行って加速時増量噴射量を算出し
該増量噴射量を前記燃料噴射量Tiに加算することによ
り、燃料の加速時増量を図り機関出力を増大させる。Further, the acceleration judgment is performed at regular intervals (for example, 10 msec) from the rate of change of the intake throttle opening to calculate the increased injection amount during acceleration, and the increased injection amount is added to the fuel injection amount Ti to accelerate the fuel. The engine output is increased by increasing the time.
また、加速時増量は通常の噴射パルス信号の間に加速時
の噴射パルスを割り込ませて行う割込み噴射によっても
行われる。Further, the acceleration increase is also performed by interrupt injection that is performed by interrupting the injection pulse during acceleration between the normal injection pulse signals.
また、減速運転時にも前記変化率から減速判定を行って
減速減量を図るようにしている。Also, during deceleration operation, deceleration determination is performed based on the rate of change to achieve deceleration reduction.
〈発明が解決しようとする問題点〉 ところで、吸気絞弁開度センサにより検出された吸気絞
弁開度の変化率から加速判定を一定時間毎に行っている
ので、以下の不具合があった。<Problems to be Solved by the Invention> By the way, since the acceleration determination is performed at regular intervals based on the change rate of the intake throttle opening detected by the intake throttle opening sensor, the following problems occur.
すなわち、前記吸気絞弁開度センサは吸気絞弁開度が前
記一定時間内に約1゜変化する付近までは摺動ノイズが
発生するので、検出分離能力が低く前記一定時間内に1
゜以下変化するような緩加・減速運転では、前記摺動ノ
イズの影響により加・減速運転状態を正確に検出するこ
とができないため、従来においては前記一定時間すなわ
ち10msecの間に吸気絞り弁開度が、1゜より大きな値、
例えば1.6゜以上変化したときに加・減速運転状態であ
ると判定するようにして、前記摺動ノイズによる誤判定
を防止して、確実に機関の加・減速運転状態を検出でき
るようにしていた。That is, since the intake throttle valve opening sensor generates a sliding noise until the intake throttle valve opening changes by about 1 ° within the fixed time, the detection / separation capability is low and the detection / separation capability is low within the fixed time.
In slow acceleration / deceleration operation that changes by ≤ °, it is not possible to accurately detect the acceleration / deceleration operation state due to the effect of the sliding noise. Therefore, in the past, the intake throttle valve was opened during the fixed time, that is, 10 msec. Degree is greater than 1 °,
For example, when the acceleration / deceleration operation state is changed by 1.6 ° or more, it is determined that the engine is in the acceleration / deceleration operation state, the erroneous determination due to the sliding noise is prevented, and the acceleration / deceleration operation state of the engine is surely detected. .
しかしながら、吸気絞弁開度センサの出力が瞬断する
と、この瞬断により前記一定時間内に吸気絞弁開度が前
記1.6゜以上変化し、定常運転時にも拘わらず、例えば
減速判定がなされて減速減量が行われ、運転性能を悪化
させるという不具合があった。However, if the output of the intake throttle valve opening sensor is momentarily cut off, the instantaneous change causes the intake throttle valve opening degree to change by 1.6 ° or more within the fixed time, and for example, deceleration determination is made even during steady operation. There was a problem that the deceleration amount was reduced and the driving performance deteriorated.
本発明は、このような実状に鑑みてなされたもので、吸
気絞弁開度センサ等の負荷検出手段の出力が瞬断しても
加・減速運転の誤判定の頻度を低減できる内燃機関の加
・減速判定装置を提供することを目的とする。The present invention has been made in view of such circumstances, and an internal combustion engine that can reduce the frequency of erroneous determination of acceleration / deceleration operation even if the output of load detection means such as an intake throttle valve opening sensor is momentarily cut off An object is to provide an acceleration / deceleration determination device.
〈問題点を解決するための手段〉 このため、本発明は、第1図に示すように、機関負荷を
検出する負荷検出手段Aと、前記検出信号を入力して所
定のサンプリング期間毎の負荷変化量を演算する負荷変
化量演算手段Bと、前記演算された負荷変化量が、少な
くとも1回第1基準値より大であることに基づいて加・
減速運転が開始されたと判定する第1加・減速運転開始
判定手段Cと、前記演算された負荷変化量が、少なくと
も2回連続して前記第1基準値より小さな第2基準値よ
り大であることに基づいて加・減速運転が開始されたと
判定する第2加・減速運転開始判定手段Dと、を含んで
構成する。<Means for Solving Problems> Therefore, according to the present invention, as shown in FIG. 1, the load detection means A for detecting the engine load, and the load for each predetermined sampling period by inputting the detection signal. The load change amount calculation means B for calculating the change amount and the load change amount calculated above are added at least once based on the fact that the load change amount is larger than the first reference value.
The first acceleration / deceleration operation start determination means C that determines that the deceleration operation has started, and the calculated load change amount is greater than a second reference value that is smaller than the first reference value at least twice consecutively. The second acceleration / deceleration operation start determination means D for determining that the acceleration / deceleration operation is started based on the above.
〈作用〉 このようにして、第1加・減速運転開始判定手段Cによ
り、前記演算された負荷変化量が少なくとも1回第1基
準値より大であることが検出されると、直ちに急加・減
速運転が開始されたと判定する一方で、第2加・減速運
転開始判定手段Dにより前記演算された負荷変化量が、
少なくとも2回連続して前記第1基準値より小さな第2
基準値より大であることが検出されて初めて、加・減速
運転が開始されたと判定する。これより、急加・減速時
における急加・減速性を損なうことなく、定常運転状態
における瞬断による加・減速誤判定の発生頻度を抑制す
る。<Operation> As described above, when the first acceleration / deceleration operation start determination means C detects that the calculated load change amount is larger than the first reference value at least once, the rapid acceleration / deceleration operation is immediately performed. While it is determined that the deceleration operation has started, the load change amount calculated by the second acceleration / deceleration operation start determination means D is
A second value smaller than the first reference value at least twice consecutively.
Only when it is detected that the value is larger than the reference value, it is determined that the acceleration / deceleration operation is started. As a result, the frequency of erroneous acceleration / deceleration determination due to momentary interruption in the steady operation state is suppressed without impairing the rapid acceleration / deceleration property during rapid acceleration / deceleration.
〈実施例〉 以下に、本発明の一実施例を第2図〜第5図に基づいて
説明する。尚、本実施例は燃料噴射制御を例にとり説明
する。<Embodiment> An embodiment of the present invention will be described below with reference to FIGS. The present embodiment will be described by taking the fuel injection control as an example.
第2図において、例えばマイクロコンピュータからなる
制御装置1には、点火コイル2から出力される点火信号
(回転速度信号),エアフローメータ3から出力される
吸入空気流量信号,水温センサ4から出力される冷却水
温度信号,負荷検出手段としての吸気絞弁開度センサ5
から出力される吸気絞弁開度信号と、が入力されてい
る。制御装置1は第3図〜第5図に示すフローチャート
に従って作動し、燃料噴射弁6の駆動回路7に噴射パル
ス信号及び割込噴射パルス信号を出力する。In FIG. 2, for example, a control device 1 including a microcomputer outputs an ignition signal (rotation speed signal) output from an ignition coil 2, an intake air flow rate signal output from an air flow meter 3, and a water temperature sensor 4. Intake throttle valve opening sensor 5 as cooling water temperature signal and load detection means
And an intake throttle valve opening signal output from. The control device 1 operates according to the flowcharts shown in FIGS. 3 to 5, and outputs the injection pulse signal and the interrupt injection pulse signal to the drive circuit 7 of the fuel injection valve 6.
ここでは、制御装置1が負荷変化量演算手段と、第1加
・減速運転開始判定手段と、第2加・減速運転開始判定
手段と、を構成する。Here, the control device 1 constitutes a load change amount calculation means, a first acceleration / deceleration operation start determination means, and a second acceleration / deceleration operation start determination means.
次に、作用を第3図〜第5図のフローチャートに従って
説明する。Next, the operation will be described with reference to the flowcharts of FIGS.
かかるフローチャートは10msec毎に起動信号が入力され
て起動する。なお、本実施例の加・減速判定(フローチ
ャート)においては、瞬断が2回連続して(或いは長時
間連続して)起こり難いことを利用して、瞬断と加・減
速運転開始状態とを判別する。すなわち、加・減速運転
状態を示す比較的小さな開度変化率Δα(後述する第2
基準値)が2回連続して検出されて初めて、加・減速開
始運転状態であると判断する。This flow chart is started when a start signal is input every 10 msec. In addition, in the acceleration / deceleration determination (flow chart) of the present embodiment, the instantaneous interruption and the acceleration / deceleration operation start state are used by utilizing the fact that the instantaneous interruption is unlikely to occur twice consecutively (or continuously for a long time). To determine. That is, a relatively small opening change rate Δα indicating the acceleration / deceleration operation state (second
The acceleration / deceleration start operation state is determined only when the reference value) is detected twice consecutively.
その一方で、急加・減速運転開始時においては、上記の
ように2回連続して検出されるのを待っていたのでは、
加・減速制御への移行遅れに伴う運転性の悪化が顕著に
なるため、急加・減速運転状態を示す比較的大きな開度
変化率Δα(後述する第1基準値)が検出されると直ち
に急加・減速運転開始と判断して加・減速制御への移行
を速やかに行なって、運転性の悪化を防止するようにな
っている。On the other hand, at the start of the sudden acceleration / deceleration operation, waiting for two consecutive detections as described above,
The deterioration of drivability due to the delay in shifting to the acceleration / deceleration control becomes noticeable, and as soon as a relatively large opening change rate Δα (a first reference value described later) indicating the rapid acceleration / deceleration operation state is detected, It determines that sudden acceleration / deceleration operation has started, and makes a quick transition to acceleration / deceleration control to prevent deterioration of drivability.
S1では、吸気絞弁開度センサ5により検出された吸気絞
弁開度を読込む。In S1, the intake throttle valve opening detected by the intake throttle valve opening sensor 5 is read.
S2では今回と前回とに検出された吸気絞弁開度に基づい
てサンプリング期間(例えば10msec)における吸気絞弁
の開度変化率Δαを演算する。In S2, the opening change rate Δα of the intake throttle valve during the sampling period (for example, 10 msec) is calculated based on the intake throttle valve opening detected this time and the previous time.
S3では、演算された開度変化率Δαと第2基準値(前述
した摺動ノイズを吸収するための基準値)としての第2
基準開度1.6゜とを比較し、Δα>1.6゜のときには、瞬
断発生か加速運転開始かを直ちに判別することができな
いのでS4に進む。一方、Δα≦1.6゜のときには減速運
転における判定のためにS5に進む。At S3, the calculated opening change rate Δα and the second reference value (the second reference value (the reference value for absorbing the sliding noise) described above)
Compared with the standard opening of 1.6 °, and if Δα> 1.6 °, it is not possible to immediately determine whether an instantaneous interruption has occurred or the start of acceleration operation, so proceed to S4. On the other hand, when Δα ≦ 1.6 °, the process proceeds to S5 for determination in deceleration operation.
S4では、加速運転開始後初回の加速判定か否かを判定
し、YESのときには急加速運転開始か否かを判定するた
めにS6に進む。一方、NOのときには2回連続して(長時
間連続して)瞬断は発生し難いことから、機関は確実に
加速運転開始状態にあると判断して、加速運転制御に移
行すべくS7に進む。In S4, it is determined whether or not it is the first acceleration determination after the start of the acceleration operation, and if YES, the process proceeds to S6 to determine whether or not the rapid acceleration operation is started. On the other hand, in the case of NO, since it is unlikely that the instantaneous interruption will occur twice in succession (continuously for a long time), it is judged that the engine is definitely in the acceleration operation start state, and the process proceeds to S7 to shift to the acceleration operation control. move on.
S6では、演算された開度変化率Δαと第1基準値(急加
・減速運転開始か否かを判定するための基準値)として
の第1基準開度2.4゜とを比較し、Δα>2.4゜のときに
は、急加速運転開始であると判断して直ちに加速運転制
御に移行すべくS7に進む。一方、Δα≦2.4゜のときに
は、瞬断であるか加速運転開始であるかの判定を直ちに
下すことを避け、S8に進む。つまり、急加速以外の加速
状態では、加速判定を1回遅らせても運転性に大きな影
響を与えることがないため、確実に前述の誤判定を防止
すべく、次回におけるS3,S4により、瞬断と加速状態と
を判別するようになっている。In S6, the calculated opening change rate Δα is compared with the first reference value 2.4 ° as the first reference value (reference value for determining whether or not the sudden acceleration / deceleration operation is started), and Δα> When it is 2.4 °, it is judged that the rapid acceleration operation is started, and the process immediately proceeds to S7 to shift to the acceleration operation control. On the other hand, when Δα ≦ 2.4 °, it is avoided to immediately judge whether it is an instantaneous interruption or the start of acceleration operation, and the process proceeds to S8. In other words, in acceleration states other than sudden acceleration, even if the acceleration determination is delayed once, it does not significantly affect the drivability. Therefore, in order to reliably prevent the above-mentioned erroneous determination, S3 and S4 will cause a momentary interruption. And the acceleration state are discriminated.
S7では、加速増量フラッグFACCを1に設定し、加速運転
状態であることをRAMに記憶させる。In S7, the acceleration increase flag F ACC is set to 1 and the fact that the vehicle is in the acceleration operation state is stored in the RAM.
S8では、加速増量フラッグFACCを0に設定し、定常運転
状態であることをRAMに記憶させる。In S8, the acceleration increase flag F ACC is set to 0, and the fact that the engine is in a steady operation state is stored in the RAM.
一方、S5では、演算された開度変化率Δαと第2基準開
度1.6゜の負の値とを比較し、Δα<−1.6゜のときに
は、瞬断発生か減速運転開始かを直ちに判別することが
できないのでS9に進む。そして、Δα≧−1.6゜のとき
には、定常運転状態であると判定して、S10に進み加速
増量フラッグFACCと減速減量フラッグFDECとを共に0に
設定する。On the other hand, in S5, the calculated opening change rate Δα is compared with the negative value of the second reference opening of 1.6 °, and when Δα <−1.6 °, it is immediately determined whether the instantaneous interruption or the deceleration operation is started. I can't, so I proceed to S9. When Δα ≧ −1.6 °, it is determined that the engine is in a steady operation state, and the process proceeds to S10, in which both the acceleration increase flag F ACC and the deceleration decrease flag F DEC are set to zero.
S9では、減速運転開始後初回の減速判定か否かを判定
し、YESのときには急減速運転開始か否かを判定するた
めにS11に進む。一方、NOのときには2回連続して(長
時間連続して)瞬断は発生し難いことから、機関は確実
に減速運転開始状態にあると判断して、減速運転制御に
移行すべくS12に進む。In S9, it is determined whether or not it is the first deceleration determination after the start of the deceleration operation, and if YES, the process proceeds to S11 to determine whether or not the rapid deceleration operation is started. On the other hand, in the case of NO, it is unlikely that the instantaneous interruption will occur twice consecutively (continuously for a long time), so it is judged that the engine is in the deceleration operation start state, and the process proceeds to S12 to shift to the deceleration operation control. move on.
S11では、演算された開度変化率Δαと第1基準開度2.4
゜とを比較し、Δα<−2.4゜のときには、急減速運転
開始であると判断して直ちに減速運転制御に移行すべく
S12に進む。一方、Δα≦−2.4゜のときには、瞬断であ
るか減速運転であるかの判定を直ちに下すことを避け、
S13に進む。つまり、急減速以外の減速状態では、減速
判定を1回遅らせても運転性に大きな影響を与えること
がないため、確実に誤判定の防止すべく、次回における
S5,S9により、瞬断と減速状態とを判別するようになっ
ている。In S11, the calculated opening change rate Δα and the first reference opening 2.4
When Δα <-2.4 °, it is judged that the sudden deceleration operation has started and the deceleration operation control should be immediately started.
Go to S12. On the other hand, when Δα ≤ -2.4 °, avoid immediately determining whether it is an instantaneous interruption or deceleration operation,
Proceed to S13. In other words, in a deceleration state other than the sudden deceleration, even if the deceleration determination is delayed once, it does not significantly affect the drivability.
The instantaneous interruption and the deceleration state are discriminated by S5 and S9.
S12では、減速減量フラッグFDECを1に設定し、減速運
転状態であることをRAMに記憶させる。In S12, the deceleration reduction flag F DEC is set to 1 and the deceleration operation state is stored in the RAM.
S13では、減速減量フラッグFDECを0に設定し、定常運
転状態であることをRAMに記憶させる。In S13, the deceleration reduction flag F DEC is set to 0, and the fact that the vehicle is in a steady operation state is stored in the RAM.
このようにすると、加・減速運転開始後の初回の加速判
定時には、演算された開度変化率Δαと比較的大きな第
1基準開度2.4゜若しくは、その負の値とに基づいて急
加・減速判定がなされる。そして、2回連続して瞬断が
発生する可能性が少ないことを利用して、2回連続して
開度変化率Δαが比較的小さな第2基準開度1.6゜より
大、若しくはその負の値より小である場合には、瞬断で
はなく、加・減速運転状態であるとの判定がなされる。With this configuration, when the acceleration is determined for the first time after the acceleration / deceleration operation is started, the rapid acceleration / deceleration is performed based on the calculated opening change rate Δα and the relatively large first reference opening 2.4 ° or the negative value thereof. Deceleration judgment is made. Then, by taking advantage of the fact that there is little possibility of instantaneous interruption occurring twice, the opening change rate Δα is larger than the second reference opening of 1.6 ° which is relatively small twice or the negative of the second reference opening. When it is smaller than the value, it is determined that the acceleration / deceleration operation state is not the instantaneous interruption.
このため、定常運転状態にも拘わらず吸気絞弁開度セン
サ5の出力が瞬断することにより演算された開度変化率
Δαが瞬間的に第2基準開度1.6゜を上回った場合或い
はその負の値を下回った場合でも第1基準開度2.4゜若
しくはその負の値を超えないかぎり初回の加・減速判定
がなされないので、誤加・減速判定の頻度を低減でき運
転性能を良好に維持できる。一方、開度変化率Δαが前
記第1基準開度2.4゜若しくはその負の値を越える場合
には、直ちに急加・減速状態であると判定して、加・減
速制御に移行させるようになしたので、急加・減速時に
おける運転性の悪化を防止することができる。For this reason, when the output of the intake throttle valve opening sensor 5 is momentarily cut off regardless of the steady operation state, the opening change rate Δα instantaneously exceeds the second reference opening of 1.6 ° or Even if the value falls below a negative value, the first acceleration / deceleration judgment is not made unless the first reference opening of 2.4 ° or its negative value is exceeded, so the frequency of erroneous acceleration / deceleration judgment can be reduced and driving performance improved. Can be maintained. On the other hand, if the opening change rate Δα exceeds the first reference opening of 2.4 ° or a negative value thereof, it is immediately determined that the acceleration / deceleration state is in effect, and the acceleration / deceleration control is performed. Therefore, it is possible to prevent deterioration of drivability during rapid acceleration / deceleration.
また、2回連続して開度変化率Δαが、従来例と同様に
設定された第2基準開度1.6゜若しくはその負の値を越
える場合には加・減速判定がなされるのであるから、瞬
断と加・減速開始状態とを完全に区別しつつ、開度変化
率Δαが小さな状態から加・減速判定を行なうことがで
きる。Further, if the opening change rate Δα exceeds the second reference opening 1.6 ° set in the same manner as the conventional example or the negative value thereof twice in succession, the acceleration / deceleration determination is made. Acceleration / deceleration determination can be performed from a state in which the opening change rate Δα is small while completely distinguishing between the instantaneous interruption and the acceleration / deceleration start state.
次に、加速増量制御ルーチンを第4図のフローチャート
に従って説明する。Next, the acceleration increase control routine will be described with reference to the flowchart of FIG.
S21では、加速増量フラッグFACCが1か0かを判定し、F
ACC=1のときには加速運転状態であると判定しS22に進
みFACC=0のときにはルーチンを終了させる。In S21, it is determined whether the acceleration increase flag F ACC is 1 or 0, and F
When ACC = 1, it is determined that the vehicle is in the acceleration operation state, and the process proceeds to S22, and when FACC = 0, the routine is ended.
S22では、前記演算された開度変化率Δαに基づいて開
度変化率依存増量係数Aをマップから検索する。この増
量係数Aは前記変化率Δαが増大するに従って大きくな
るように設定されている。In S22, the map is searched for the opening change rate dependent increase coefficient A based on the calculated opening change rate Δα. The increase coefficient A is set to increase as the change rate Δα increases.
S23では、検出された機関の冷却水温度に基づいて水温
依存増量係数Bをマップから検索する。この増量係数B
は冷却水温度が高くなるに従って小さくなるように設定
されている。In S23, the water temperature dependent increase coefficient B is searched from the map based on the detected cooling water temperature of the engine. This increase coefficient B
Is set to decrease as the cooling water temperature increases.
S24では、検出された回転速度に基づいて回転依存増量
係数Ncをマップから検索する。この増量係数Ncは回転速
度が増加するに伴って大きくなるように設定されてい
る。In S24, the rotation-dependent increase coefficient Nc is searched from the map based on the detected rotation speed. This increase coefficient Nc is set to increase as the rotation speed increases.
S25では、割込み噴射量TRを次式により演算する。In S25, the interrupt injection amount T R is calculated by the following equation.
TR=A×B×Nc×KQ2 尚、KQ2は負荷(例えば吸入空気流量,基本噴射量)に
依存する係数である。T R = A × B × Nc × KQ 2 Note that KQ 2 is a coefficient that depends on the load (for example, intake air flow rate, basic injection amount).
このようにして得られた割込み噴射量TRに対応する割込
噴射パルス信号を駆動回路7を介して燃料噴射弁6に出
力し割込み噴射を行わせ加速増量を図る。The interrupt injection pulse signal corresponding to the interrupt injection amount T R thus obtained is output to the fuel injection valve 6 via the drive circuit 7 to perform interrupt injection to increase the acceleration.
次に減速減量制御ルーチンを第5図のフローチャートに
従って説明する。Next, the deceleration reduction control routine will be described with reference to the flowchart of FIG.
S31では、減速装置フラッグFDECが1か0かを判定し、F
DEC=1のときには減速運転状態であると判定しS32に進
み、FDEC=0のときにはルーチンを終了させる。In S31, it is determined whether the speed reducer flag F DEC is 1 or 0, and F
When DEC = 1, it is determined that the vehicle is in the decelerating operation state and the routine proceeds to S32. When FDEC = 0, the routine is ended.
S32では、検出された機関の冷却水温度に基づいて、水
温依存減速減量係数BDをマップから検索する。この減量
係数BDは冷却水温度が高くなるに従って小さくなるよう
に設定されている。尚、この減量係数BDは前記増量係数
Bと同様であってもよい。In S32, the water temperature dependent deceleration reduction coefficient BD is searched from the map based on the detected cooling water temperature of the engine. This reduction coefficient BD is set to decrease as the cooling water temperature increases. The reduction coefficient BD may be the same as the increase coefficient B.
S33では、検出された回転速度に基づいて回転依存減速
減量係数NDをマップから検索する。In S33, the rotation-dependent deceleration reduction coefficient ND is searched from the map based on the detected rotation speed.
S34では、減速装置燃料係数KDCを次式により演算する。In S34, the reduction gear fuel coefficient KDC is calculated by the following equation.
KDC=BD×ND×KQ2 このようにして得られた減速減量燃料係数KDCは通常噴
射時の燃料噴射量Tiを演算するときに以下の式を用いて
使用する。KDC = BD × ND × KQ 2 The deceleration reduction fuel coefficient KDC thus obtained is used by the following formula when calculating the fuel injection amount Ti during normal injection.
Ti=Tp×α×(1+Kmr+KTW+…+KAS−KDC)+Ts 尚、Kmrは空燃比補正係数、KTWは水温増量補正係数、K
ASは始動及び始動後増量補正係数である。Ti = Tp x α x (1 + Kmr + K TW + ... + K AS -KDC) + Ts where Kmr is the air-fuel ratio correction coefficient, K TW is the water temperature increase correction coefficient, and K is
AS is the start and post-start increase amount correction coefficient.
このようにして、演算された燃料噴射量Tiに対応する噴
射パルス信号を駆動回路7を介して燃料噴射弁6に出力
し、燃料噴射を行なう。In this way, an injection pulse signal corresponding to the calculated fuel injection amount Ti is output to the fuel injection valve 6 via the drive circuit 7 to perform fuel injection.
尚、本実施例では、加・減速運転開始後の初回の加・減
速判定時のみ第1基準開度2.4゜と比較するようにした
が、例えば初回と第2回目の加・減速判定時に第1基準
開度2.4゜と比較するようにしてもよく、また2回連続
して第2基準開度1.6゜を越えたときに初めて加・減速
判定するようになしたが、2回に限定されるものではな
く、本願発明の目的が達成されればそれ以上であって構
わない。なお、前記第1基準開度及び第2基準開度とし
て示した具体的な数値はこれに限定されるものではな
い。また、負荷としては吸入空気流量,吸気負圧,トル
ク等があげられる。In the present embodiment, the comparison with the first reference opening of 2.4 ° is made only at the first acceleration / deceleration determination after the start of acceleration / deceleration operation. It may be compared with 1 standard opening of 2.4 °, and acceleration / deceleration is judged only when the second standard opening of 1.6 ° is exceeded twice, but it is limited to 2 times. However, the number is not limited as long as the object of the present invention is achieved. The specific numerical values shown as the first reference opening and the second reference opening are not limited to these. In addition, the load includes the intake air flow rate, intake negative pressure, torque, and the like.
〈発明の効果〉 本発明は、以上説明したように、前記演算された負荷変
化量が少なくとも1回第1基準値より大であることが検
出されると、直ちに急加・減速運転が開始されたと判定
する一方で、前記演算された負荷変化量が、少なくとも
2回連続して前記第1基準値より小さな第2基準値より
大であることが検出されて初めて、加・減速運転が開始
されたと判定するようになしたので、急加・減速時にお
ける急加・減速性を損なうことなく、定常運転状態にお
ける瞬断による加・減速誤判定の発生頻度を大幅に低減
しつつ開度変化率Δαが小さな状態から加・減速判定を
行なうことができ、以って機関運転性を良好に維持する
ことができる。<Effect of the Invention> As described above, according to the present invention, when it is detected that the calculated load change amount is larger than the first reference value at least once, the rapid acceleration / deceleration operation is immediately started. On the other hand, the acceleration / deceleration operation is started only when it is detected that the calculated load change amount is larger than the second reference value smaller than the first reference value at least twice consecutively. Since it is determined that the acceleration / deceleration during sudden acceleration / deceleration is not impaired, the rate of change in opening can be greatly reduced while significantly reducing the frequency of false acceleration / deceleration determination due to momentary interruptions in steady operation. Acceleration / deceleration determination can be performed from a state in which Δα is small, and thus engine operability can be favorably maintained.
第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図〜第5図は同上のフローチ
ャートである。 1……制御装置、2……点火コイル、5……吸気絞弁開
度センサ、6……燃料噴射弁FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIGS. 3 to 5 are flowcharts of the same. 1 ... Control device, 2 ... Ignition coil, 5 ... Intake throttle valve opening sensor, 6 ... Fuel injection valve
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−279756(JP,A) 特開 昭56−132467(JP,A) 特開 昭59−90769(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-279756 (JP, A) JP-A-56-132467 (JP, A) JP-A-59-90769 (JP, A)
Claims (1)
荷変化量を演算する負荷変化量演算手段と、 前記演算された負荷変化量が、少なくとも1回第1基準
値より大であることに基づいて加・減速運転が開始され
たことを判定する第1加・減速運転開始判定手段と、 前記演算された負荷変化量が、少なくとも2回連続して
前記第1基準値より小さな第2基準値より大であること
に基づいて加・減速運転が開始されたことを判定する第
2加・減速運転開始判定手段と、 を含んで構成したことを特徴とする内燃期間の加・減速
判定装置。1. A load detecting means for detecting an engine load, a load change amount calculating means for inputting the detection signal to calculate a load change amount for each predetermined sampling period, and the calculated load change amount, A first acceleration / deceleration operation start determination means for determining that the acceleration / deceleration operation has started at least once based on the value being larger than the first reference value; and the calculated load change amount at least twice. Second acceleration / deceleration operation start determination means for determining that the acceleration / deceleration operation has started based on the fact that the acceleration / deceleration operation is continuously started and is larger than the second reference value that is smaller than the first reference value. An acceleration / deceleration determination device for an internal combustion period, which is characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000582A JPH0733805B2 (en) | 1987-01-07 | 1987-01-07 | Acceleration / deceleration determination device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000582A JPH0733805B2 (en) | 1987-01-07 | 1987-01-07 | Acceleration / deceleration determination device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63170543A JPS63170543A (en) | 1988-07-14 |
JPH0733805B2 true JPH0733805B2 (en) | 1995-04-12 |
Family
ID=11477708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62000582A Expired - Lifetime JPH0733805B2 (en) | 1987-01-07 | 1987-01-07 | Acceleration / deceleration determination device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0733805B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02104929A (en) * | 1988-10-14 | 1990-04-17 | Hitachi Ltd | Electronically controlled fuel injection device |
JP2530366B2 (en) * | 1989-02-20 | 1996-09-04 | 三菱電機株式会社 | Fuel control device for internal combustion engine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE427766B (en) * | 1980-02-11 | 1983-05-02 | Saab Scania Ab | PROCEDURE FOR REGULATING THE SIGNAL LEVEL FROM AN INCORPORATOR ENGINE CONNECTOR AND DEVICE FOR EXTENDING THE PROCEDURE |
JPS5990769A (en) * | 1982-11-16 | 1984-05-25 | Fujitsu Ten Ltd | Timing detecting circuit |
JPS61279756A (en) * | 1985-06-04 | 1986-12-10 | Mazda Motor Corp | Engine operating range detecting device |
-
1987
- 1987-01-07 JP JP62000582A patent/JPH0733805B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63170543A (en) | 1988-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4492112A (en) | Optimum shift position indicating device of vehicle | |
EP0687809B1 (en) | An output torque control apparatus and method for an internal combustion engine | |
US4371050A (en) | Fuel-cut control apparatus | |
US4604703A (en) | Apparatus for controlling the operating state of an internal combustion engine | |
KR920016709A (en) | Transmission gear control device and method for automatic transmission of automobile | |
JP2518314B2 (en) | Engine air-fuel ratio control device | |
JPH0138012B2 (en) | ||
EP0096869B1 (en) | Method and apparatus of ignition timing control | |
US4395984A (en) | Electronic fuel supply control system for internal combustion engines | |
JPH0733805B2 (en) | Acceleration / deceleration determination device for internal combustion engine | |
US4599981A (en) | Method of controlling air-fuel ratio of an engine | |
JP2759957B2 (en) | Engine control method | |
JP2712468B2 (en) | Engine control device | |
EP0962640A2 (en) | Control apparatus for controlling internal combustion engine | |
JPH04159438A (en) | Misfire detection method for internal combustion engine | |
JP3650180B2 (en) | Control device for automatic transmission | |
JP3006637B2 (en) | Throttle control device for internal combustion engine | |
JP2905936B2 (en) | Engine control device | |
JPH0419377B2 (en) | ||
JPS6254975B2 (en) | ||
JP2930256B2 (en) | Engine throttle valve controller | |
JPS6166825A (en) | Acceleration judging device of internal-combustion engine | |
JPS6245950A (en) | Electronic control fuel injection device for car internal combustion engine | |
JPH01125567A (en) | Controller for engine | |
JP2582617B2 (en) | Internal combustion engine deceleration control device |