[go: up one dir, main page]

JPS61279756A - Engine operating range detecting device - Google Patents

Engine operating range detecting device

Info

Publication number
JPS61279756A
JPS61279756A JP12110685A JP12110685A JPS61279756A JP S61279756 A JPS61279756 A JP S61279756A JP 12110685 A JP12110685 A JP 12110685A JP 12110685 A JP12110685 A JP 12110685A JP S61279756 A JPS61279756 A JP S61279756A
Authority
JP
Japan
Prior art keywords
engine
deceleration operation
deceleration
boundary line
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12110685A
Other languages
Japanese (ja)
Inventor
Hiroshi Ebino
弘 海老野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP12110685A priority Critical patent/JPS61279756A/en
Publication of JPS61279756A publication Critical patent/JPS61279756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enhance the accuracy of detection of the operation of an engine, by setting a first deceleration boundary in accordance with the volume of intake- air, and a second deceleration boundary in accordance with the opening degree of a throttle valve, and by detecting the deceleration of the engine in accordance with these boundaries. CONSTITUTION:There is provided a memory means 23 in which are stored a first deceleration boundary set in accordance with the volume of intake-air and the rotational speed of an engine and a secondary deceleration boundary set in accordance with the opening degree of a throttle valve and the engine rotational speed in the vicinity of the intake-air volume decreasing side of the afore-mentioned first deceleration boundary. Further, there are provided first and second deceleration detecting means 24, 25 for detecting the deceleration of the engine in view of the first and second deceleration boundaries and in accordance with the outputs of an intake-air volume detecting means 20 and an engine rotational speed detecting means 21, and the outputs of a throttle valve opening degree detecting means 22 and the engine rotational speed detecting means 21, respectively. An output means 26 issues a detection signal in accordance with the outputs of the detecting means 24, 25.

Description

【発明の詳細な説明】 1: 〔産業上の利用分野〕(: ′″(7)Q q cat 、“7′yoilti:*
l&m”94    ;するものである・      
                )、〔従来技術) 
                       II
車両用エンジンでは、その減速時において燃料    
  I;1 を供給するようにすると高い吸気管負圧に起因し   
   1゜て失火が発生しやすく、燃費、排気ガス浄化
の面      1で好ましくないことから、例えば特
開昭57−1265       ’、□32号公報に
示されるように、減速運転域を検出し      ・′
jて燃料供給をカットすることが行なわれているが、 
    、:叱場合燃料イ共給”y)(7)制御精度2
向−1″″; −+ 6       ’、iためには
減速運転域を正確に検出することが要求      、
:i: 8″−4・                  1′
1そしてこのような運転域検出装置の1例として、  
    ′従来、例えば特開昭60−47830号公報
に示されるものがあり、これは減速運転域を判別するた
めのスロットル開度の値を第1の減速運転境界線として
設定するとともに、減速運転域を判別するための吸気負
圧を第2の減速運転境界線として第1の減速運転境界線
の直下に設定し、スロットル開度センサ又は負圧センサ
の出力が第1又は第2の減速運転境界線に達した時に減
速運転時と判別するようにしたものである。この運転域
検出装置では、スロットル開度センサ又は負圧センサの
少なくとも一方の出力が減速運転境界線に達した時点で
減速運転時を検出していることから、スロットル開度セ
ンサの検出性能によって急減速運転時の減速運転域検出
の応答性を確保でき、又負圧センサに基づいた検出によ
ってエンジン個体差やスロットル開度センサの取付誤差
に起因する検出精度低下の問題は、上記第1の減速運転
境界線の下側ではこれを解消できるという利点がある。
[Detailed description of the invention] 1: [Industrial application field] (: ′″(7)Q q cat, “7′yoilti:*
l&m”94 ;
), [prior art]
II
In a vehicle engine, fuel is consumed during deceleration.
If I;1 is supplied, it will be caused by high intake pipe negative pressure.
Since misfires are likely to occur at 1°, which is unfavorable in terms of fuel efficiency and exhaust gas purification, the deceleration operating range is detected as shown in, for example, Japanese Patent Application Laid-open No. 57-1265', □32.
Although efforts are being made to cut fuel supplies,
, :In case of fuel co-supply"y) (7) Control accuracy 2
-1'';-+6', it is necessary to accurately detect the deceleration driving range.
:i: 8″-4・1′
1. As an example of such a driving range detection device,
' Conventionally, for example, there is a method disclosed in Japanese Patent Application Laid-Open No. 60-47830, in which the value of the throttle opening for determining the deceleration operation area is set as the first deceleration operation boundary line, and the value of the throttle opening for determining the deceleration operation area is set as the first deceleration operation boundary line The intake negative pressure for determining the second deceleration operation boundary line is set directly below the first deceleration operation boundary line, and the output of the throttle opening sensor or negative pressure sensor is set as the second deceleration operation boundary line. When the line is reached, it is determined that deceleration operation is in progress. This operating range detection device detects deceleration operation when the output of at least one of the throttle opening sensor or the negative pressure sensor reaches the deceleration operation boundary line. The responsiveness of deceleration range detection during deceleration operation can be ensured, and detection based on the negative pressure sensor eliminates the problem of decreased detection accuracy due to engine individual differences and installation errors of the throttle opening sensor. There is an advantage that this problem can be resolved below the driving boundary line.

しかるに上記従来公報記載の装置では、上記第1の減速
運転境界線より上側でのエンジン個体差やスロットル開
度センサの取付誤差に起因する検出精度の低下の問題は
解消されてなく、また負圧センサーを用いているため、
この負圧センサは微小な吸気負圧の変化を正確に検出す
るのが難しいことから、負圧センサによる検出誤差に起
因する減速運転域の検出精度低下の問題が依然として懸
念されるものである。
However, with the device described in the above-mentioned conventional publication, the problem of reduced detection accuracy due to engine individual differences and installation errors of the throttle opening sensor above the first deceleration operation boundary line has not been solved, and the problem of reduced detection accuracy due to negative pressure Because it uses a sensor,
Since it is difficult for this negative pressure sensor to accurately detect minute changes in the intake negative pressure, there is still concern that detection accuracy in the deceleration operation range may deteriorate due to detection errors by the negative pressure sensor.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、減速時における検出
精度を保証できるエンジンの運転域検出装置を提供せん
とするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an engine operating range detection device that can guarantee detection accuracy during deceleration.

〔発明の構成〕[Structure of the invention]

上述の従来の運転域検出装置においては、減速時におけ
る検出精度を保証する方法としては、スロットル開度セ
ンサに代え、微小な吸気量を比較的精度よく検出できる
吸気量センサを用いることが考えられるが、この吸気量
センサでは急減速時において減速運転域の検出に遅れが
生じることから、検出精度を確実に保証する方法として
は十分でない。                  
       i、・9そこでまず、吸入空気量又はス
ロットル開度に応じて減速運転時を検出する場合におけ
る検出応答性及び検出精度について考察すると、吸入空
気量によって減速運転の領域判定を行なう場合、吸入空
気量の変化がエンジンの要求特性と合い、検出方法とし
ては理想的であるが、検出手段としてエアフローメータ
等の吸気量センサを用いる必要があり、過渡応答性の面
で問題がある。一方、スロットル開度を検出して領域判
定を行なう場合は、スロットル開度センサの検出動作が
メカニカル動作であることから、過渡応答性はよいが、
エンジンの個体差やセンサの取付誤差に起因して検出誤
差が大きい。
In the conventional driving range detection device described above, one possible way to ensure detection accuracy during deceleration is to use an intake air amount sensor that can detect minute intake air amounts with relatively high accuracy in place of the throttle opening sensor. However, with this intake air amount sensor, there is a delay in detecting the deceleration operating range during sudden deceleration, so it is not sufficient as a method to reliably guarantee detection accuracy.
i,・9 First, we will consider the detection responsiveness and detection accuracy when detecting deceleration operation according to the intake air amount or throttle opening. This is an ideal detection method because the change in amount matches the required characteristics of the engine, but it requires the use of an intake air amount sensor such as an air flow meter as a detection means, which poses a problem in terms of transient response. On the other hand, when detecting the throttle opening and performing region determination, the detection operation of the throttle opening sensor is a mechanical operation, so the transient response is good, but
Detection errors are large due to individual engine differences and sensor installation errors.

そして上述の吸気量センサではその検出動作が空気を介
しての検出であるために、その過渡応答性を改善するこ
とは難しく、一方エンジンの個体差やスロットル開度セ
ンサの取付誤差は実際の製造上、これを零にすることが
難しい。
Furthermore, since the above-mentioned intake air amount sensor detects air through the air, it is difficult to improve its transient response.On the other hand, individual engine differences and throttle opening sensor installation errors may occur due to the actual manufacturing process. Above, it is difficult to reduce this to zero.

従って吸気量センサに基づいて領域判定を行なって検出
精度を確保し、又急減速時における吸気量センサの検出
遅れについてはスロットル開度セフ″!)4.:基″″
′4域判定2°′″−7解消す61痕°1      
;れば、緩減速時及び急減速時のいずれにおいても検出
精度及び検出応答性を確保できるものと期待     
  :される。
Therefore, area determination is performed based on the intake air amount sensor to ensure detection accuracy, and the detection delay of the intake air amount sensor during sudden deceleration can be avoided by adjusting the throttle opening.
'4 area judgment 2°'''-7 resolved 61 marks °1
; it is expected that detection accuracy and detection responsiveness can be ensured both during slow deceleration and sudden deceleration.
: To be done.

そこでこの発明は、吸入空気量に応じて第1の減速運転
境界線を設定し、この第1の減速運転境界線の直下にス
ロットル開度に応じて第2の減速運転境界線を設定し、
吸気量センサの出力が第1の減速運転境界線に達するか
、又はスロットル開度センサの出力が第2の減速運転境
界線に達した時に減速運転時と判定するようにしたもの
である。
Therefore, the present invention sets a first deceleration operation boundary line according to the intake air amount, and sets a second deceleration operation boundary line directly below this first deceleration operation boundary line according to the throttle opening,
When the output of the intake air amount sensor reaches the first deceleration operation boundary line or the output of the throttle opening sensor reaches the second deceleration operation boundary line, it is determined that deceleration operation is occurring.

即ち、この発明は、第1図の機能ブロック図に示される
ように、吸気量検出手段20.スロットル開度検出手段
22及び回転数検出手段21を設ける一方、記憶手段2
3に吸入空気量とエンジン回転数とに応じて予め設定さ
れた第1の減速運転境界線、並びに該境界線の吸入空気
量減少方向側に近接してスロットル開度とエンジン回転
数とに応じて設定された第2の減速運転境界線を記憶さ
せでおき、第1の減速運転検出手段24で吸気量検出手
段20及び回転数検出手段21の両出力並びに記憶手段
23の第1の減速運転境界線に基づいてエンジンの減速
運転時を検出し、文集2の減速運転検出手段25でスロ
ットル開度検出手段22及び回転数検出手段21の両出
力並びに記憶手段23の第2の減速運転境界線に基づい
てエンジンの減速運転時を検出し、減速運転検出信号出
力手段26が、第1.第2の減速運転検出手段24゜2
5の少なくとも一方がエンジンの減速運転時を検出した
時に減速運転検出信号を出力するようにしたものである
That is, the present invention, as shown in the functional block diagram of FIG. While the throttle opening detection means 22 and the rotation speed detection means 21 are provided, the storage means 2
3, a first deceleration operation boundary line preset according to the intake air amount and engine speed, and a first deceleration operation boundary line set in advance according to the intake air amount and engine speed, and a first deceleration operation boundary line that is set in advance in accordance with the intake air amount decreasing direction of the boundary line, and a first deceleration operation boundary line that is set in advance according to the intake air amount and engine speed. The second deceleration operation boundary line set in advance is stored, and the first deceleration operation detection means 24 detects both the outputs of the intake air amount detection means 20 and the rotation speed detection means 21 and the first deceleration operation boundary line of the storage means 23. The time of deceleration operation of the engine is detected based on the boundary line, and the deceleration operation detection means 25 of Collection 2 detects both the outputs of the throttle opening detection means 22 and the rotation speed detection means 21 and the second deceleration operation boundary line of the storage means 23. The deceleration operation detection signal output means 26 detects the deceleration operation of the engine based on the first. Second deceleration operation detection means 24゜2
5 outputs a deceleration detection signal when at least one of the engines detects that the engine is decelerating.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図ないし第4図は本発明の一実施例によるエンジン
の運転域検出装置を示し、これは燃料噴射式エンジンの
燃料噴射制御装置に通用した例である。図において、1
はエンジンで、該エンジン1の吸気通路2の途中にはス
ロットル弁3が配設され、スロットル弁3の上流側吸気
通路2には吸入空気量を検出するエアフローメータ(吸
気量検出手段)4が設けられ、吸気通路2の上流端はエ
アクリーナ5に至っており、一方スロットル弁3の下流
側吸気通路2には燃料噴射弁6が配設されている。
2 to 4 show an engine operating range detection device according to an embodiment of the present invention, which is an example commonly used in a fuel injection control device for a fuel injection type engine. In the figure, 1
is an engine, a throttle valve 3 is disposed in the middle of an intake passage 2 of the engine 1, and an air flow meter (intake air quantity detection means) 4 is provided in the intake passage 2 on the upstream side of the throttle valve 3. The upstream end of the intake passage 2 reaches an air cleaner 5, while a fuel injection valve 6 is disposed in the intake passage 2 on the downstream side of the throttle valve 3.

また図中、7はスロットル弁3の開度を検出するスロッ
トル開度センサ(スロットル開度検出手段)、8はエン
ジン回転数を検出する回転数センサ(回転数検出手段)
、9は燃料噴射弁6の燃料噴射量を制御する制御ユニッ
ト、10−18は制御ユニット9の機能をハード的に示
したもので、10は吸入空気量とエンジン回転数とに応
じて燃料噴射パルスを作成し、それを燃料噴射弁6に加
える制御回路、11は制御回路lOと燃料噴射弁6との
間を接断するスイッチング回路、12は第1〜第3の減
速運転境界線a、b、cのマツプ(第4図参照)を記憶
している記憶回路、13は吸入空気量、エンジン回転数
及び記憶回路12内の第1の減速運転境界線aからエン
ジンの減速運転時を検出する第1の減速運転検出回路、
14.15はスロットル開度、エンジン回転数及び記憶
回路12内の第2又は第3の減速運転境界線す、  c
からエンジンの減速運転時を検出する第2.第3の減速
運転検出回路、16は第1.第2の減速運転検出回路1
3.14の出力を2人力とするOR回路、17は回転数
センサ8の出力と設定回転数、例えば1100rpn+
とを比較する比較回路、18はOR回路16の出力、第
3の減速運転検出回路15の出力及び比較回路17の出
力を3人力とし、スイッチング回路11を制御するAN
D回路である。
In addition, in the figure, 7 is a throttle opening sensor (throttle opening detection means) that detects the opening of the throttle valve 3, and 8 is a rotation speed sensor (rotation speed detection means) that detects the engine rotation speed.
, 9 is a control unit that controls the fuel injection amount of the fuel injection valve 6, 10-18 is a hardware representation of the functions of the control unit 9, and 10 is a control unit that controls fuel injection according to the intake air amount and engine speed. A control circuit that creates a pulse and applies it to the fuel injection valve 6; 11 is a switching circuit that connects and disconnects the control circuit IO and the fuel injection valve 6; 12 is a first to third deceleration operation boundary line a; A memory circuit 13 stores maps b and c (see Fig. 4), and a memory circuit 13 detects the deceleration operation of the engine from the intake air amount, the engine rotation speed, and the first deceleration operation boundary line a in the memory circuit 12. a first deceleration operation detection circuit,
14.15 is the throttle opening, engine speed, and the second or third deceleration operation boundary line in the memory circuit 12, c
2nd to detect when the engine is running at deceleration. The third deceleration operation detection circuit, 16, is the first. Second deceleration operation detection circuit 1
3. An OR circuit that makes the output of 14 a two-man power, 17 is the output of the rotation speed sensor 8 and the set rotation speed, for example, 1100 rpm+
A comparison circuit 18 is an AN that controls the switching circuit 11 by using the output of the OR circuit 16, the output of the third deceleration operation detection circuit 15, and the output of the comparison circuit 17.
This is the D circuit.

なお以上のような構成において、上記制御ユニット9が
第1図に示す記憶手段23.第1.第2の減速運転検出
手段24.25及び減速運転検出信号出力手段26の各
機能を実現するものとなっている。
Note that in the above configuration, the control unit 9 has the storage means 23. as shown in FIG. 1st. The functions of the second deceleration operation detection means 24, 25 and the deceleration operation detection signal output means 26 are realized.

次に第3図及び第4図を用いて動作について説明する。Next, the operation will be explained using FIGS. 3 and 4.

ここで第3図は制御ユニット9の演算処理のフローチャ
ートを、第4図は第1〜第3の減速運転境界線a、b、
cのマツプを示す。第1の減速運転境界線aは1回転当
たりの吸入空気量とエンジン回転数とをパラメータとし
て設定され、第2.第3の減速運転境界線す、  cは
第1の減速運転境界線aの吸入空気量減少方向及び増量
方向に近接してスロットル開度とエンジン回転数とをパ
ラメータとして設定されており、いずれもエンジンの低
回転域ではスロットル開度が大きくなるにしたがってエ
ンジン回転数が増加し、エンジン      (の中、
高回転域ではスロットル開度は一定となっている。なお
第2.第3の減速運転境界線す、c       J・
はスロットル開度センサの取付誤差(第4図のbl、b
2参照)を考慮して、第2の減速運転境界      
1−線の上限b1又は第3の減速運転境界線の下限が 
     :第1の減速運転境界線aの上側又は下側に
位置しないように設定する必要がある。       
       ・、。
Here, FIG. 3 shows a flowchart of the arithmetic processing of the control unit 9, and FIG. 4 shows the first to third deceleration operation boundary lines a, b,
The map of c is shown. The first deceleration operation boundary line a is set using the intake air amount per rotation and the engine rotation speed as parameters, and the second deceleration operation boundary line a is set using the intake air amount per rotation and the engine rotation speed as parameters. The third deceleration operation boundary lines (a) and (c) are set close to the intake air amount decreasing direction and intake air amount increasing direction of the first deceleration operation boundary line (a) using the throttle opening degree and engine rotational speed as parameters, and both of them are In the low engine speed range, the engine speed increases as the throttle opening increases, and the engine speed increases as the throttle opening increases.
The throttle opening remains constant in the high rotation range. In addition, the second. Third deceleration operation boundary line S, c J.
is the installation error of the throttle opening sensor (bl, b in Fig. 4)
2)), the second deceleration operation boundary
The upper limit b1 of the 1-line or the lower limit of the third deceleration operation boundary line is
: It is necessary to set it so that it is not located above or below the first deceleration operation boundary line a.
・、.

エンジンが作動すると、エアフローメータ4.    
   ・−;、1 スロットル開度センサ7及び回転数センサ8の出j、1
力が制御ユニット9に入力され(ステップ30〜   
  1.1: 32)、この制御ユニット9においては制御回路   
   ::10で吸入空気量とエンジン回転数とに応じ
て燃      ′1料噴射パルスが演算作成され、こ
れが所定のタイ      l:□′ミングで出力され
る(ステップ36)。その際、第1の減速運転検出回路
13では吸入空気量及びエンジン回転数と記憶回路12
内の第1の減速運転境界線aとに基づいてエンジンが非
減速運転時か否かが判定され(ステップ33)、文集2
の減速運転検出回路14ではスロットル開度及びエンジ
ン回転数と記憶回路12内の第2の減速運転境界線すと
に基づいてエンジンが非減速運転時か否かが判定され(
ステップ34.35)、文集3の減速運転検出回路15
ではスロットル開度及びエンジン回転数と記憶回路12
内の第3の減速運転境界線Cとに基づいてエンジンが減
速運転時か否かが判定されている(ステップ37.38
)。そしてエンジンの非減速状態時には、第1の減速運
転検出回路13の出力が“0”であることから、スイッ
チング回路11には減速運転検出信号は加えられておら
ず、制御回路10の燃料噴射パルスは所定のタイミング
で燃料噴射弁6に加えられ、エンジンへの燃料供給が行
なわれる(ステップ33〜36)。
When the engine is running, the air flow meter 4.
・-;, 1 Output j of throttle opening sensor 7 and rotation speed sensor 8, 1
The force is input to the control unit 9 (steps 30-
1.1: 32), in this control unit 9, the control circuit
::10, a fuel injection pulse is calculated and created according to the intake air amount and engine speed, and this is output at a predetermined timing l:□' (step 36). At that time, the first deceleration operation detection circuit 13 detects the intake air amount and the engine rotation speed and the memory circuit 12
It is determined whether the engine is in non-deceleration operation based on the first deceleration operation boundary line a in (step 33), and
The deceleration operation detection circuit 14 determines whether or not the engine is in non-deceleration operation based on the throttle opening, the engine speed, and the second deceleration operation boundary line in the memory circuit 12 (
Steps 34 and 35), deceleration operation detection circuit 15 of Collection 3
Now, throttle opening, engine speed and memory circuit 12
It is determined whether or not the engine is in deceleration operation based on the third deceleration operation boundary line C (steps 37 and 38).
). When the engine is in a non-deceleration state, the output of the first deceleration detection circuit 13 is "0", so no deceleration detection signal is applied to the switching circuit 11, and the fuel injection pulse of the control circuit 10 is is added to the fuel injection valve 6 at a predetermined timing, and fuel is supplied to the engine (steps 33 to 36).

このような非減速状態からエンジンが緩減速され、吸入
空気量が第1の減速運転境界IK aに達すると、第1
の減速運転検出回路13の出力が“1”となり、又スロ
ットル開度が第3の減速運転境界線Cに達して第3の減
速運転検出回路15の出力が′″1″になってAND回
路1日を開いており、第1の減速運転検出回路13の“
1”信号は減速運転検出信号としてOR回路16及びA
ND回路18を経てスイッチング回路11に加えられ、
これにより燃料供給のカットが行なわれる(ステップ3
3,37〜39)。
When the engine is slowly decelerated from such a non-deceleration state and the intake air amount reaches the first deceleration operation boundary IKa, the first
The output of the deceleration operation detection circuit 13 becomes "1", and the throttle opening reaches the third deceleration operation boundary line C, and the output of the third deceleration operation detection circuit 15 becomes ``1'', so that the AND circuit 1 day, and the first deceleration operation detection circuit 13 “
1” signal is used as a deceleration operation detection signal by OR circuit 16 and A.
is added to the switching circuit 11 via the ND circuit 18,
This cuts the fuel supply (step 3).
3, 37-39).

また、エンジンが非減速状態から急減速された場合、エ
アフローメータ4の検出遅れに起因して減速運転時の検
出に遅れが生ずることとなるが、この場合、エンジンが
減速運転時になるとエアフローメータ4による第1の減
速運転境界線aの検出より速(スロットル開度が第2の
減速運転境界線すに達し、第2の減速運転検出回路14
の信号が“1”′″“す・、=h″′<減速運転検出信
号′!″67     10R回路16及びAND回路
18を経てスイッチング回路11に加えられ、これによ
り燃料供給のカットが行なわれることとなる(ステップ
33〜35.39)。
Furthermore, when the engine is suddenly decelerated from a non-decelerating state, there will be a delay in detection during deceleration operation due to the detection delay of the air flow meter 4. In this case, when the engine is in deceleration operation, the air flow meter 4 (The throttle opening reaches the second deceleration operation boundary line a, and the second deceleration operation detection circuit 14
The signal "1"'""su・,=h"'<deceleration operation detection signal'!"67 is applied to the switching circuit 11 via the 10R circuit 16 and the AND circuit 18, thereby cutting off the fuel supply. (Steps 33 to 35.39).

一方、このような減速運転状態からエンジンが緩加速さ
れ、吸入空気量が第1の減速運転境界線aを越えると、
第1の減速運転検出回路の出力が“0”となり、スイッ
チング回路11への減速運転検出信号の印加は停止され
、これにより上述の燃料供給状態に戻る(ステップ33
〜36)。
On the other hand, when the engine is slowly accelerated from such a deceleration operation state and the intake air amount exceeds the first deceleration operation boundary line a,
The output of the first deceleration operation detection circuit becomes "0", and the application of the deceleration operation detection signal to the switching circuit 11 is stopped, thereby returning to the above-mentioned fuel supply state (step 33
~36).

また減速運転状態からエンジンが急加速された場合には
、エアフローメータ4の検出遅れに起因して非減速運転
時の検出に遅れが生じることとなるが、この場合、エン
ジンが非減速運転状態になると、スロットル開度が第3
の減速運転境界線Cに達し、第3の減速運転検出回路1
5の出力が“0”になり、AND回路18を直ちに閉じ
ることから、減速運転検出信号の出力は停止され、燃料
供給は遅れなく開始されることとなる(ステップ33.
37.38.36)。
Furthermore, if the engine is suddenly accelerated from a decelerating state, there will be a delay in detection during non-decelerating operation due to the detection delay of the air flow meter 4. Then, the throttle opening becomes 3rd.
reaches the deceleration operation boundary line C, and the third deceleration operation detection circuit 1
Since the output of step 5 becomes "0" and the AND circuit 18 is immediately closed, the output of the deceleration operation detection signal is stopped and fuel supply is started without delay (step 33.
37.38.36).

なおエンジン回転数が設定回転数以下の時には比較回路
17の出力が“0”となり、AND回路18が閉じられ
、燃料カットはこれを行なわないようにしている。これ
は、減速運転状態であってもエンジンが低回転の場合に
は燃料を供給してエンストの発生を防止する必要がある
からである、。
Note that when the engine speed is below the set speed, the output of the comparison circuit 17 becomes "0", the AND circuit 18 is closed, and the fuel cut is not performed. This is because even if the engine is in a deceleration operating state, it is necessary to supply fuel when the engine is rotating at low speeds to prevent the engine from stalling.

以上のような本実施例の装置では、吸入空気量の変化に
基づいて減速判定を行なうようにしたので、エンジンの
緩減速時、m加速時において減速運転域、非減速運転域
を高精度に検出でき、その結果燃料カットあるいは燃料
供給開始の制御精度を向上でき、良好な燃費性能及び減
速フィー・リン      (グあるいは加速性が確保
される。
In the device of this embodiment as described above, deceleration is determined based on changes in the amount of intake air, so the deceleration operating range and non-decelerating operating range can be determined with high precision during slow deceleration and m acceleration of the engine. As a result, the control accuracy of fuel cut or start of fuel supply can be improved, and good fuel efficiency and deceleration feeling or acceleration can be ensured.

またこのように吸入空気量に基づいて減速判定を行なう
ようにした場合、急減速時あるいは急加速時にはエアフ
ローメータ特育の検出遅れによって減速運転あるいは非
減速運転域の検出に遅れが生じることとなるが、この場
合本装置ではスロットル開度センサの出力に基づいて減
速判定を行なうようにしたので、急減速時における減速
運転域、      :あるいは急加速時における非減
速運転域を遅れなく検出でき、燃料カットあるいは燃料
供給開始の良好な制御精度を保証できる。
Additionally, if deceleration is determined based on the amount of intake air, there will be a delay in detecting deceleration or non-deceleration operation due to the air flow meter's detection delay during sudden deceleration or sudden acceleration. However, in this case, this device determines deceleration based on the output of the throttle opening sensor, so it can detect the deceleration operation range during sudden deceleration, or the non-deceleration operation range during sudden acceleration without delay, and the fuel Good control accuracy for cutting or starting fuel supply can be guaranteed.

また本装置では、エアフローメータ及びスロットル開度
センサの2種類のセンサで減速判定を行なうようにした
ので、一方のセンサが故障あるいは破損した場合にも残
りのセンサに基づいてエンジンの減速判定を行なうこと
ができ、装置のフェールセーフ化を実現できる。
In addition, this device uses two types of sensors, the air flow meter and the throttle opening sensor, to determine deceleration, so even if one sensor fails or is damaged, engine deceleration can be determined based on the remaining sensor. This makes it possible to make the device fail-safe.

なお上記実施例ではエンジンの運転域検出装置を燃料噴
射式エンジンの燃料噴射制御装置に装備した場合につい
て説明したが、これは勿論これ以外のものにも通用でき
るものである。また第3の減速運転境界線Cは必ずしも
設ける必要はない。
In the above embodiment, a case has been described in which the engine operating range detection device is installed in a fuel injection control device of a fuel injection type engine, but this can of course be applied to other devices. Further, the third deceleration operation boundary line C does not necessarily need to be provided.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係るエンジンの運転域検出装置
によれば、吸入空気量に応じて第1の減速運転境界線を
設定し、この第1の減速運転境界線の直下にスロットル
開度に応じて第2の減速運転境界線を設定し、吸気量セ
ンサの出力が第1の減速運転境界線に達するか、又はス
ロットル開度センサの出力が第2の減速運転境界線に達
した時に減速運転時と判定するようにしたので、緩減速
時及び急減速時における検出精度及び検出応答性を保証
できる効果がある。
As described above, according to the engine operating range detection device according to the present invention, the first deceleration operation boundary line is set according to the intake air amount, and the throttle opening is set directly below the first deceleration operation boundary line. A second deceleration operation boundary line is set according to the following, and when the output of the intake air amount sensor reaches the first deceleration operation boundary line or the output of the throttle opening sensor reaches the second deceleration operation boundary line. Since it is determined that the vehicle is in deceleration operation, there is an effect that detection accuracy and detection responsiveness can be guaranteed during slow deceleration and sudden deceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例によるエンジンの運転域検出装置の概
略構成図、第3図は上記装置における制御ユニット9の
演算処理のフローチャートを示す図、第4図は上記装置
における第1〜第3の減速運転境界線a −cを示す図
である。 ′20・・・吸気量検出手段、21・・・回転数検出手
段、22・・・スロットル開度検出手段、23・・・記
憶手段、24.25・・・第1.第2の減速運転検出手
段、26・・・減速運転検出信号出力手段、4・・・エ
アフローメータ、7・・・スロットル開度センサ、8・
・・回転数センサ、9・・・制御ユニット。 特 許 出 願 人 マツダ株式会社 代理人   弁理士 早 瀬 憲 − 第1図 第3図
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a schematic configuration diagram of an engine operating range detection device according to an embodiment of the present invention, and FIG. 3 is a functional block diagram showing the operation processing of the control unit 9 in the above device. FIG. 4, which is a diagram showing a flowchart, is a diagram showing first to third deceleration operation boundary lines a-c in the above device. '20...Intake air amount detection means, 21...Rotational speed detection means, 22...Throttle opening detection means, 23...Storage means, 24.25...First. Second deceleration operation detection means, 26...Deceleration operation detection signal output means, 4...Air flow meter, 7...Throttle opening sensor, 8.
...Rotation speed sensor, 9...Control unit. Patent applicant: Mazda Motor Corporation agent, patent attorney Ken Hayase - Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの吸入空気量を検出する吸気量検出手段
と、吸気通路に配設されたスロットル弁の開度を検出す
るスロットル開度検出手段と、エンジン回転数を検出す
る回転数検出手段と、エンジン吸入空気量とエンジン回
転数とに応じて予め設定された第1の減速運転境界線、
並びに該境界線の吸入空気量減少方向側に近接してスロ
ットル開度とエンジン回転数とに応じて予め設定された
第2の減速運転境界線を記憶している記憶手段と、上記
吸気量検出手段及び回転数検出手段の両出力、並びに上
記記憶手段の第1の減速運転境界線に基づいてエンジン
の減速運転時を検出する第1の減速運転検出手段と、上
記スロットル開度検出手段及び回転数検出手段の両出力
並びに上記記憶手段の第2の減速運転境界線に基づいて
エンジンの減速運転時を検出する第2の減速運転検出手
段と、上記第1、第2の減速運転検出手段の少なくとも
一方がエンジンの減速運転時を検出した時減速運転検出
信号を出力する減速運転検出信号出力手段とを備えたこ
とを特徴とするエンジンの運転域検出装置。
(1) An intake air amount detection means for detecting the intake air amount of the engine, a throttle opening detection means for detecting the opening of a throttle valve disposed in the intake passage, and a rotation speed detection means for detecting the engine rotation speed. , a first deceleration operation boundary line preset according to the engine intake air amount and the engine rotation speed;
and a storage means for storing a second deceleration operation boundary line which is set in advance in accordance with the throttle opening degree and the engine rotational speed in proximity to the intake air amount decreasing direction side of the boundary line, and the intake air amount detection device. a first decelerating operation detecting means for detecting when the engine is decelerating based on both outputs of the means and the rotation speed detecting means and a first decelerating operation boundary line of the storage means; a second deceleration operation detection means for detecting when the engine is decelerating based on both outputs of the number detection means and a second deceleration operation boundary line of the storage means; and the first and second deceleration operation detection means. 1. An engine operating range detection device comprising: deceleration operation detection signal output means for outputting a deceleration operation detection signal when at least one of the devices detects that the engine is in deceleration operation.
JP12110685A 1985-06-04 1985-06-04 Engine operating range detecting device Pending JPS61279756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12110685A JPS61279756A (en) 1985-06-04 1985-06-04 Engine operating range detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12110685A JPS61279756A (en) 1985-06-04 1985-06-04 Engine operating range detecting device

Publications (1)

Publication Number Publication Date
JPS61279756A true JPS61279756A (en) 1986-12-10

Family

ID=14803026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12110685A Pending JPS61279756A (en) 1985-06-04 1985-06-04 Engine operating range detecting device

Country Status (1)

Country Link
JP (1) JPS61279756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170543A (en) * 1987-01-07 1988-07-14 Japan Electronic Control Syst Co Ltd Acceleration/deceleration determination device for internal combustion engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294817A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Preparation of al alloy sheet having strength, toughness and ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294817A (en) * 1976-02-06 1977-08-09 Mitsubishi Metal Corp Preparation of al alloy sheet having strength, toughness and ductility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170543A (en) * 1987-01-07 1988-07-14 Japan Electronic Control Syst Co Ltd Acceleration/deceleration determination device for internal combustion engines

Similar Documents

Publication Publication Date Title
JP3365197B2 (en) EGR control device for internal combustion engine
JPH01273876A (en) Ignition timing controller for internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
US20060089779A1 (en) Method and device for monitoring a control unit of an internal combustion engine
US6640791B2 (en) EGR valve control apparatus
JPS61279756A (en) Engine operating range detecting device
JPS58101234A (en) Fuel injection control device of multi-cylinder engine
JPS5911736B2 (en) fuel control device
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP3509361B2 (en) Intake air flow control device for internal combustion engine
JP2929883B2 (en) Fail safe device for auxiliary air control device
JPH0318022B2 (en)
JPH03490B2 (en)
JPH1182132A (en) Control device for internal combustion engine
JPH04342857A (en) Electronic control device of internal combustion engine
JP2583116Y2 (en) Fuel supply stop device for vehicle engine
JPH10196437A (en) Engine controller
JPH0526939B2 (en)
JPH08312391A (en) Accelerator opening sensor trouble diagnosing method
JPH01216051A (en) Fail safe device for internal combustion engine for vehicle
JP2009156218A (en) Intake system malfunction detecting device
JPH02241945A (en) Combustion control method and device for an internal combustion engine, and engine control device equipped with this device
JPS6189941A (en) Controller for throttle valve of engine
JPS627945A (en) Operation region control device for engine
JPS6181533A (en) Internal combustion engine deceleration state determination device and air-fuel ratio control device during deceleration using the same