[go: up one dir, main page]

JPH07329893A - Aircraft monitoring device - Google Patents

Aircraft monitoring device

Info

Publication number
JPH07329893A
JPH07329893A JP12629494A JP12629494A JPH07329893A JP H07329893 A JPH07329893 A JP H07329893A JP 12629494 A JP12629494 A JP 12629494A JP 12629494 A JP12629494 A JP 12629494A JP H07329893 A JPH07329893 A JP H07329893A
Authority
JP
Japan
Prior art keywords
calculator
load
output
computer
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12629494A
Other languages
Japanese (ja)
Inventor
Gen Tanaka
玄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12629494A priority Critical patent/JPH07329893A/en
Publication of JPH07329893A publication Critical patent/JPH07329893A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To provide an aircraft monitoring device capable of estimating an inspection timing from an actual flight load. CONSTITUTION:A load meter 1 mounted on an aircraft, a load frequency computer 2 to compute load frequency during flight by receiving output of the load meter 1, a stress computer 3 to compute stress of a specified part by receiving output of the load frequency computer 2, a breakage computer 4 to compute a degree of breakage of a specified part by receiving the output of the load frequency computer 2 and the breakage computer 4, an inspection timing computer 5 to compute an inspection timing of a specified part by receiving the output of the load frequency computer 2 and the breakage computer 4 and an indicator 6 to indicate an inspection timing of a specified part by receiving the outputs of the inspection timing computer 5 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空機の構造健全性を保
つための航空機モニタ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aircraft monitor device for maintaining the structural integrity of an aircraft.

【0002】[0002]

【従来の技術】航空機の構造健全性を保つために、従来
は次のような手順で解析し、点検、修理していた。 重要でかつ損傷が発生する可能性のある部位を定め
る。 機体の基本飛行パターンを定める(図3、(a)参
照)。 上記各部位の構造の応力解析を実施する。 各部位の応力スペクトルを求める(図3、(b)参
照)。 各部位につきS−N曲線から寿命解析(部材にき裂
が発生する時期、発生したき裂の進展速度の算出)を実
施する(図2、(c)参照)。 の結果から点検開始時期及び点検間隔を定める
(図2、(d)参照))。 に則って実機で点検作業を実施して、所要の処置
を施していく。 を実施している。
2. Description of the Related Art Conventionally, in order to maintain the structural integrity of an aircraft, analysis, inspection and repair have been performed in the following procedure. Define areas of importance and potential damage. Determine the basic flight pattern of the aircraft (see Figure 3, (a)). A stress analysis of the structure of each of the above parts is performed. The stress spectrum of each part is obtained (see FIG. 3, (b)). Life analysis (calculation of the time when a crack is generated in a member and the growth rate of the generated crack) is performed for each part from the SN curve (see FIG. 2, (c)). The inspection start timing and the inspection interval are determined from the result of (see FIG. 2, (d)). In accordance with the above, the inspection work will be performed on the actual machine and the required measures will be taken. Is being carried out.

【0003】[0003]

【発明が解決しようとする課題】上記従来の航空機構造
健全性確保方法に於いては、一般的な機体の運用形態を
定めて、基本フライトパターンを定義している。この基
本フライトパターンにより、機体構造の寿命が定まると
いう統計的な考え方を適用している。機体の実運用に於
いては、飛行時間、飛行速度、機体運動、機体の重量等
により、各飛行毎に機体への負荷は異なっている。
In the above conventional aircraft structural soundness assurance method, the basic flight pattern is defined by defining the operation mode of a general aircraft. The statistical idea that the life of the airframe structure is determined by this basic flight pattern is applied. In the actual operation of the airframe, the load on the airframe is different for each flight due to the flight time, the flight speed, the airframe motion, the weight of the airframe, and the like.

【0004】従来の方法では、個々の機体の飛行状況を
飛行毎に固別に把握し、その結果から寿命解析を実施し
ているものではない。
In the conventional method, the flight status of each aircraft is individually grasped for each flight, and the life analysis is not performed from the result.

【0005】基本フライトパターンを用いた統計的処理
による健全性確保では、一般的に安全側の点検を指示す
ることになり、機体の整備費用の増大、運航効率の低下
を招くことになった。
In order to ensure soundness by statistical processing using the basic flight pattern, inspection on the safety side is generally instructed, which leads to an increase in maintenance cost of the aircraft and a decrease in operating efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention takes the following means in order to solve the above problems.

【0007】すなわち、航空機モニタ装置として、航空
機に搭載された荷重計と、同荷重計の出力を受け飛行中
の荷重頻度を算出する荷重頻度演算器と、同荷重頻度演
算器の出力を受け所定部の応力を算出する応力演算器
と、上記荷重頻度演算器および応力演算器の出力を受け
上記所定部の損傷度合を算出する損傷度演算器と、上記
荷重頻度演算器および損傷度演算器の出力を受け上記所
定部の検査時期を算出する検査時期演算器と、同検査時
期演算器の出力を受け上記所定部の検査時期を表示する
表示器とを設ける。
That is, as an aircraft monitor device, a load cell mounted on the aircraft, a load frequency calculator for calculating the load frequency during flight by receiving the output of the load cell, and a predetermined output for receiving the output of the load frequency calculator Of the stress calculator for calculating the stress of the portion, the load frequency calculator and the damage degree calculator for calculating the damage degree of the predetermined portion by receiving the output of the stress calculator, and the load frequency calculator and the damage degree calculator An inspection time calculator for receiving the output and calculating the inspection time of the predetermined portion, and a display for receiving the output of the inspection time calculator and displaying the inspection time of the predetermined portion are provided.

【0008】[0008]

【作用】上記手段において、荷重計は飛行中の荷重を出
力する。荷重頻度演算器は荷重計の出力を受け飛行中の
荷重頻度を演算出力する。応力演算器は荷重頻度演算器
の出力を受け、予め定められた機体の所定部、すなわち
構造重要個所について応力算出を行う。損傷度演算器は
応力演算器の出力および荷重頻度演算器の出力を受け、
所定部の損傷度合を算出する。検査時期演算器は損傷度
演算器および荷重頻度演算器の出力を受け、所定部に損
傷が生ずると推定されるまでの残飛行時間を算出して、
検査時期を出力する。表示器は検査時期演算器の出力を
受け、各所定部の検査時期を表示する。
In the above means, the load cell outputs the load during flight. The load frequency calculator receives the output of the load cell and calculates and outputs the load frequency during flight. The stress calculator receives the output of the load frequency calculator and calculates the stress for a predetermined portion of the machine body, that is, a structure important point. The damage degree calculator receives the output of the stress calculator and the output of the load frequency calculator,
The degree of damage to the predetermined part is calculated. The inspection timing calculator receives the outputs of the damage degree calculator and the load frequency calculator, and calculates the remaining flight time until it is estimated that the predetermined part will be damaged,
Output the inspection time. The display receives the output of the inspection time calculator and displays the inspection time of each predetermined part.

【0009】このようにして、実荷重にもとずいて、重
要個所の要検査時期が推定出力される。従って運行者
は、飛行毎に重要個所の要点検時期を知ることができる
ので、不要な検査が防止でき、機体の運航効率を高める
ことができる。
In this way, the required inspection time of the important portion is estimated and output based on the actual load. Therefore, the operator can know the time when the important parts need to be inspected for each flight, so that unnecessary inspections can be prevented and the operation efficiency of the aircraft can be improved.

【0010】[0010]

【実施例】前記記載の本発明の一実施例を図1〜図3に
より説明する。図1にて、航空機に荷重計1が搭載され
る。その出力は荷重頻度演算器2へ送られる。荷重頻度
演算器2の出力は応力演算器3、損傷度演算器4および
検査時期演算器5へ送られる。応力演算器3の出力は損
傷度演算器4を経て検査時期演算器5へ送られる。検査
時期演算器5の出力は表示器へ送られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention described above will be described with reference to FIGS. In FIG. 1, a load cell 1 is mounted on an aircraft. The output is sent to the load frequency calculator 2. The output of the load frequency calculator 2 is sent to the stress calculator 3, the damage degree calculator 4, and the inspection time calculator 5. The output of the stress calculator 3 is sent to the inspection timing calculator 5 via the damage degree calculator 4. The output of the inspection time calculator 5 is sent to the display.

【0011】以上において、機体の荷重計1は飛行中の
荷重を計測して出力する(図2、参照)。荷重頻度演
算器2は荷重計1からの荷重データを処理して現在(飛
行中)FLTの1FLT Hr当りの荷重頻度を算出
する(図2、、図3、参照)。応力演算器3は荷重
頻度演算器2の出力を受け、予め定められた構造重要個
所(航空機の健全性に影響を及ぼす個所)について既に
計算あるいは試験等により解析されている荷重対応力カ
ーブ(図2、、図3、)の予め入力されているデー
タを用いて、各部位の応力を算出する。損傷度演算器4
は応力演算器3の出力および荷重頻度演算器2の出力を
受け、予め入力されている材料S/Nカーブ(図2、
)のデータを用いて、各部位の損傷度合を算出する。
検査時期演算器5は損傷度演算器4および荷重頻度演算
器2の出力を受け、各部位に損傷が生ずると推定される
までの残飛行時間を算出して、検査時期を出力する(図
2、、図3、)。表示器6は検査時期演算器5の出
力を受け、各部位の検査時期を表示する(図2、、図
3、)。
In the above, the load cell 1 of the airframe measures and outputs the load during flight (see FIG. 2). The load frequency calculator 2 processes the load data from the load cell 1 to calculate the load frequency per 1 FLT Hr of the current (in flight) FLT (see FIGS. 2 and 3). The stress calculator 3 receives the output of the load frequency calculator 2, and the load response curve that has already been calculated or analyzed by a test or the like for a predetermined structural important point (a point that affects the soundness of the aircraft) (Fig. (2, FIG. 3) is used to calculate the stress of each part. Damage degree calculator 4
Receives the output of the stress calculator 3 and the output of the load frequency calculator 2, and inputs the material S / N curve (FIG. 2,
) Is used to calculate the degree of damage at each site.
The inspection time calculator 5 receives the outputs of the damage degree calculator 4 and the load frequency calculator 2 and calculates the remaining flight time until it is estimated that damage will occur in each part, and outputs the inspection time (FIG. 2). , Fig. 3,). The display 6 receives the output of the inspection time calculator 5 and displays the inspection time of each part (FIGS. 2, 3,).

【0012】このようにして、機体個々の運航状況(飛
行速度、機体運動、機体重量等)により異なる飛行荷重
を飛行毎に算出して、機体構造の損傷状況を推定し、機
体各部位について必要な検査時期が表示される。従って
不要な検査が防止でき、適切な予防整備の実施が可能と
なり、機体の運航効率を高めることが出来る。
In this way, the flight load that differs depending on the operating conditions (flight speed, airframe motion, airframe weight, etc.) of each airframe is calculated for each flight, the damage state of the airframe structure is estimated, and it is necessary for each part of the airframe. The appropriate inspection time is displayed. Therefore, unnecessary inspections can be prevented, appropriate preventive maintenance can be performed, and the operating efficiency of the aircraft can be improved.

【0013】又、設計の段階からこの採用を考慮すれ
ば、実運航による機体の個別疲労管理が可能となり構造
の軽量化が図れる。
Further, if this adoption is taken into consideration from the design stage, it is possible to manage the individual fatigue of the airframe during actual operation, and the weight of the structure can be reduced.

【0014】[0014]

【発明の効果】以上に説明したように、本発明によれ
ば、飛行中の実荷重にもとずいて、所定の重要個所の要
検査時期が推定出力される。従って運行者は、飛行毎に
重要個所の要点検時期を知ることができるので、不要な
検査が防止でき、機体の運航効率を高めることができ
る。
As described above, according to the present invention, the required inspection time of a predetermined important point is estimated and output based on the actual load during flight. Therefore, the operator can know the time when the important parts need to be inspected for each flight, so that unnecessary inspections can be prevented and the operation efficiency of the aircraft can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一実施例の構成ブロック図で
ある。
FIG. 1 is a configuration block diagram of an embodiment of the present invention.

【図2】図2は同実施例の作用説明図である。FIG. 2 is an operation explanatory view of the same embodiment.

【図3】図3は同実施例の作用説明図である。FIG. 3 is an operation explanatory view of the same embodiment.

【図4】図4は従来例の説明図である。FIG. 4 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 荷重計 2 荷重頻度演算器 3 応力演算器 4 損傷度演算器 5 検査時期演算器 6 表示器 1 load meter 2 load frequency calculator 3 stress calculator 4 damage degree calculator 5 inspection timing calculator 6 indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 航空機に搭載された荷重計と、同荷重計
の出力を受け飛行中の荷重頻度を算出する荷重頻度演算
器と、同荷重頻度演算器の出力を受け所定部の応力を算
出する応力演算器と、上記荷重頻度演算器および応力演
算器の出力を受け上記所定部の損傷度合を算出する損傷
度演算器と、上記荷重頻度演算器および損傷度演算器の
出力を受け上記所定部の検査時期を算出する検査時期演
算器と、同検査時期演算器の出力を受け上記所定部の検
査時期を表示する表示器とを備えてなることを特徴とす
る航空機モニタ装置。
1. A load cell mounted on an aircraft, a load frequency calculator that calculates the load frequency during flight by receiving the output of the load meter, and calculates the stress of a predetermined part by receiving the output of the load frequency calculator. And a damage degree calculator for calculating the degree of damage of the predetermined portion by receiving the outputs of the load frequency calculator and the stress calculator, and the predetermined degree of receiving the outputs of the load frequency calculator and the damage degree calculator. An aircraft monitor device comprising: an inspection time calculator for calculating an inspection time of a part; and a display device for receiving the output of the inspection time calculator and displaying the inspection time of the predetermined part.
JP12629494A 1994-06-08 1994-06-08 Aircraft monitoring device Withdrawn JPH07329893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12629494A JPH07329893A (en) 1994-06-08 1994-06-08 Aircraft monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12629494A JPH07329893A (en) 1994-06-08 1994-06-08 Aircraft monitoring device

Publications (1)

Publication Number Publication Date
JPH07329893A true JPH07329893A (en) 1995-12-19

Family

ID=14931651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12629494A Withdrawn JPH07329893A (en) 1994-06-08 1994-06-08 Aircraft monitoring device

Country Status (1)

Country Link
JP (1) JPH07329893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274588A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Aircraft soundness diagnostic device, method, and program
JP6374609B1 (en) * 2016-09-28 2018-08-15 株式会社Subaru Flight restriction setting system, flight restriction setting method, and flight restriction setting program
WO2018155529A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Aircraft management device, method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274588A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Aircraft soundness diagnostic device, method, and program
JP6374609B1 (en) * 2016-09-28 2018-08-15 株式会社Subaru Flight restriction setting system, flight restriction setting method, and flight restriction setting program
US10684628B2 (en) 2016-09-28 2020-06-16 Subaru Corporation Flight restriction setup system, flight restriction setup method, and flight restriction setup program
WO2018155529A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Aircraft management device, method, and program
JP2018142106A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Aircraft management device and method, and program
US11325725B2 (en) 2017-02-27 2022-05-10 Mitsubishi Heavy Industries, Ltd. Aircraft management device, method, and program

Similar Documents

Publication Publication Date Title
EP0961918B1 (en) System for predictive diagnosis of moving machine parts
US6480792B1 (en) Fatigue monitoring systems and methods incorporating neural networks
US8818683B2 (en) Method and apparatus for operating a gas turbine engine
CN105173111B (en) A kind of portable helicopter vibration monitoring and maintenance system
CN108689271A (en) A kind of online elevator multiplies fortune quality detecting system and method
EP1348296B1 (en) Control embedded machine condition monitor
CN115979111A (en) High-strength bolt fastening maintenance system and method
JPH07329893A (en) Aircraft monitoring device
JP3568939B2 (en) Method and apparatus for diagnosing state of rotating machine by analyzing shaft vibration
JPH07105285A (en) Manufacturing line operation status monitoring system
CN108240896A (en) Method and device for measuring fatigue strength
CN118343569A (en) Elevator operation safety performance detection system based on information acquisition and analysis
JP2003044114A (en) Inspection system
JPS5973737A (en) Speaker system inspecting apparatus
JPH0961434A (en) Analyzing device
JP2022013082A (en) Damage diagnosis system and damage diagnosis method for rotary electric machines
JPH02136713A (en) Diagnostic system for plant facility
JPH0911083A (en) Automatic testing device for power tool
JPH0514854B2 (en)
JP5355116B2 (en) Plant maintenance support method and plant maintenance support system
CN107976329A (en) A kind of nuclear power station structure damage monitoring system based on vibration
JPS6054256A (en) Method for diagnosing abnormality of continuous casting machine
JPS6198926A (en) Automatic inspector for gas turbine
BANOV et al. Monitoring the state of the blades of gas turbine engines by the acoustic emission method(Kontrol' sostoianiia lopatok gazoturbinnykh dvigatelei metodom akusticheskoi emissii)
TWM627935U (en) Turning tool collapse detection system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904