[go: up one dir, main page]

JPH07318397A - Ultrasonic liquid gage - Google Patents

Ultrasonic liquid gage

Info

Publication number
JPH07318397A
JPH07318397A JP6137971A JP13797194A JPH07318397A JP H07318397 A JPH07318397 A JP H07318397A JP 6137971 A JP6137971 A JP 6137971A JP 13797194 A JP13797194 A JP 13797194A JP H07318397 A JPH07318397 A JP H07318397A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
temperature
bottom wall
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6137971A
Other languages
Japanese (ja)
Inventor
Fusatarou Tsuri
房太郎 釣
Takeshi Ikeuchi
武司 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6137971A priority Critical patent/JPH07318397A/en
Publication of JPH07318397A publication Critical patent/JPH07318397A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To measure a liquid level independent of temperature change of liquid by calculating ultrasonic wave propagation speed on the basis of a signal from an ultrasonic wave measurer connected to an ultrasonic wave transciever mounted on the bottom wall face of a liquid housing part, finding temperature of the bottom wall, and calculating a liquid level from the temperature and a measured signal. CONSTITUTION:An ultrasonic wave transceiver 3 is mounted on the bottom wall face of piping 1, and an ultrasonic wave measurer 5 is connected thereto. An ultrasonic wave is propagated and transmitted in the bottom wall of the piping 1 and in liquid on the basis of a signal from the transceiver 3, the measurer 5 measured a time t1 up to receiving of an echo wave reflected on a liquid surface 2, and time t2 up to receiving of the cho wave in the bottom wall from transmission of the ultrasonic wave. A liquid level is found from a time interval of the echo wave and an ultrasonic wave propagation speed in the liquid found by the measurer 5, at that time, the propagation speed is calculated by a temperature operation device 8 on the basis of the time t2 and bottom wall thickness, and the bottom wall temperature, namely, temperature of the liquid is found. In response to the temperature signal a correction of the propagation speed in accordance with the time t1 is performed by an operation processor 6 and the liquid level is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて容器
(配管等を含む。)の内部の液体の液位を計測するため
の液位計に関し、特に上記液体の温度変化の範囲が広い
場合に用いて好適の超音波液位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid level meter for measuring the liquid level of a liquid inside a container (including piping etc.) using ultrasonic waves, and more particularly to a liquid level meter for measuring the liquid temperature range. The present invention relates to an ultrasonic liquid level meter suitable for wide use.

【0002】[0002]

【従来の技術】図7は従来の超音波液位計の一例を示す
縦断面図であって、この例では、容器110の内部の液体1
12について液面114の液位を計測するために、同容器110
の底壁下面に超音波送受信器(超音波トランスデュー
サ)120が装着されている。超音波送受信器120は、シリ
コン膜123を有する振動子122がクッション部124を介し
て基台126に取付けられたものであり、その振動子122は
容器110の底壁下面に圧接されている。
2. Description of the Related Art FIG. 7 is a longitudinal sectional view showing an example of a conventional ultrasonic liquid level meter. In this example, the liquid 1 inside a container 110 is
In order to measure the liquid level of the liquid level 114 with respect to 12, the same container 110
An ultrasonic transmitter / receiver (ultrasonic transducer) 120 is mounted on the lower surface of the bottom wall of the. In the ultrasonic transmitter / receiver 120, a vibrator 122 having a silicon film 123 is attached to a base 126 via a cushion part 124, and the vibrator 122 is pressed against the bottom surface of the bottom wall of the container 110.

【0003】液位の測定に際しては、超音波送受信器12
0から容器110の液体112の液面114へ向かって超音波が送
信される。そして、液面114で反射したエコー波130は、
超音波送受信器120にて受信される。ここで発信から受
信までに要した時間を計測すれば、液位を測定すること
ができる。このようにして測定された液位は、アナログ
表示型またはデジタル表示型の指示計器(図示せず)に
より表示される。
The ultrasonic transmitter / receiver 12 is used for measuring the liquid level.
Ultrasonic waves are transmitted from 0 toward the liquid surface 114 of the liquid 112 in the container 110. Then, the echo wave 130 reflected on the liquid surface 114 is
It is received by the ultrasonic transmitter / receiver 120. The liquid level can be measured by measuring the time required from transmission to reception. The liquid level thus measured is displayed by an analog display type or digital display type indicating instrument (not shown).

【0004】一方、従来の超音波液位計として図6(縦
断面図)に示すようなものがあり、この例では配管1の
内部を通る液体の温度変化の範囲が広い場合に、液体の
温度を考慮して、その液面2の液位が計測されるように
なっている。ところで、配管1の内部の液体の温度変化
によって、配管1自体の温度も変化し、長い時間におい
ては、配管1の温度と液体の温度とは同一の温度になっ
てくるので、サーミスタ等の温度測定センサ11は配管1
の外周に装着されている。
On the other hand, there is a conventional ultrasonic liquid level meter as shown in FIG. 6 (longitudinal sectional view). In this example, when the temperature change range of the liquid passing through the inside of the pipe 1 is wide, The liquid level of the liquid surface 2 is measured in consideration of the temperature. By the way, the temperature of the pipe 1 itself changes due to the temperature change of the liquid inside the pipe 1, and the temperature of the pipe 1 and the temperature of the liquid become the same temperature for a long time. Measurement sensor 11 is pipe 1
It is attached to the outer periphery of.

【0005】そして、配管1の底壁下面に装着された超
音波送受信器3を用いて配管1内の液体の液位を測定す
る際には、液体の温度によって超音波の伝播速度が変化
するため、超音波が液面2へ到達する時間と液面から反
射して超音波送受信器3に戻ってくる時間との和の1/
2に、センサ11からの温度信号に基づき補正された超音
波伝播速度を演算処理装置14で掛け合わせて正しい液位
の算出が行なわれる。
When the liquid level of the liquid in the pipe 1 is measured using the ultrasonic transmitter / receiver 3 mounted on the lower surface of the bottom wall of the pipe 1, the ultrasonic wave propagation speed changes depending on the temperature of the liquid. Therefore, 1 / the sum of the time when the ultrasonic wave reaches the liquid surface 2 and the time when the ultrasonic wave is reflected from the liquid surface and returns to the ultrasonic wave transmitter / receiver 3.
2 is multiplied by the ultrasonic wave propagation velocity corrected based on the temperature signal from the sensor 11 in the arithmetic processing unit 14 to calculate the correct liquid level.

【0006】なお、図6における表示装置7は演算処理
装置14で算出された液位を表示するものであり、超音波
液位計測器12は超音波送受信器3からの信号を処理して
演算処理装置14へ送るためのものであり、温度測定器13
は温度測定センサ11からの信号を処理して演算処理装置
14へ送るためのものである。
The display device 7 in FIG. 6 displays the liquid level calculated by the arithmetic processing unit 14, and the ultrasonic liquid level measuring device 12 processes the signal from the ultrasonic wave transmitter / receiver 3 for calculation. The temperature measuring device 13 is for sending to the processing device 14.
Is a processing unit that processes the signal from the temperature measurement sensor 11
It is for sending to 14.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述のよう
な従来の超音波液位計では、容器における液体の温度が
変化する場合、図6に示す温度測定センサ11を必要と
し、縦横に走る配管の各部について多数の液位計測定点
を設ける場合は温度測定センサの所要数も莫大になり同
センサの取付スペースについての配慮が必要となるとい
う問題点がある。本発明は上述の問題点の解消をはかろ
うとするもので、容器内の液体の温度が変化する場合で
も、従来のような温度測定センサを必要とせずに、液位
の計測を正確に行なえるようにした超音波液位計を提供
することを目的とする。
By the way, in the conventional ultrasonic liquid level meter as described above, when the temperature of the liquid in the container changes, the temperature measuring sensor 11 shown in FIG. If a large number of liquid level gauge measurement points are provided for each part, the number of temperature measurement sensors required will be enormous, and it will be necessary to consider the mounting space of the sensors. The present invention is intended to solve the above-mentioned problems, and even when the temperature of the liquid in the container changes, the liquid level can be accurately measured without the need for a conventional temperature measurement sensor. It is an object of the present invention to provide an ultrasonic liquid level meter adapted to do so.

【0008】[0008]

【課題を解決するための手段】前述の目的を達成するた
め本発明の超音波液位計は、液体収容部における液体の
液位を計測すべく、同液体収容部の底壁下面に装着され
た超音波送受信器と、同超音波送受信器に接続された超
音波測定器と、同超音波測定器からの信号に基づき上記
底壁中における超音波伝播速度を演算して同底壁の温度
を求める温度演算器と、上記の超音波測定器と温度演算
器とからの信号に基づき上記液体の液位を演算する演算
処理装置とをそなえて構成されたことを特徴としてい
る。
In order to achieve the above-mentioned object, an ultrasonic liquid level meter of the present invention is mounted on the lower surface of the bottom wall of a liquid containing portion in order to measure the liquid level of the liquid in the liquid containing portion. The ultrasonic transmitter / receiver, the ultrasonic measuring device connected to the ultrasonic transmitter / receiver, and the ultrasonic propagation velocity in the bottom wall are calculated based on the signal from the ultrasonic measuring device to calculate the temperature of the bottom wall. And a processor for calculating the liquid level of the liquid based on signals from the ultrasonic measuring device and the temperature calculator.

【0009】また、本発明の超音波液位計は、液体収容
部における液体の液位を計測すべく、同液体収容部の底
壁下面に装着された超音波送受信器と、同超音波送受信
器から上記液体収容部の底壁中および液体中を経由して
液面へ向け伝播させた超音波の送信から同超音波の液面
で反射したエコー波の受信までの第1の時間を計測する
とともに、上記超音波の送信から上記底壁中におけるエ
コー波の受信までの第2の時間を計測する超音波測定器
と、同超音波測定器からの信号を受けて上記第2の時間
に基づき上記底壁における超音波の伝播速度を演算して
同底壁の温度を求める温度演算器と、同温度演算器から
の温度信号を受けて同温度信号に対応するように求めた
上記液体中での超音波伝播速度と、上記超音波測定器か
ら受信した上記第1の時間と上記第2の時間との差とに
基づき上記液体の液位を演算する演算処理装置とをそな
えて構成されたことを特徴としている。
Further, the ultrasonic liquid level meter of the present invention is designed to measure the liquid level of the liquid in the liquid containing portion and the ultrasonic transmitter / receiver mounted on the lower surface of the bottom wall of the liquid containing portion. Measures the first time from the transmission of the ultrasonic wave propagated from the container to the liquid surface through the bottom wall of the liquid container and the liquid and the reception of the echo wave reflected by the liquid surface of the ultrasonic wave. At the same time, the ultrasonic measuring device measures the second time from the transmission of the ultrasonic wave to the reception of the echo wave in the bottom wall, and the second time after receiving the signal from the ultrasonic measuring device. Based on the temperature calculator that calculates the propagation velocity of the ultrasonic wave in the bottom wall based on the temperature to obtain the temperature of the bottom wall, and in the liquid obtained by receiving the temperature signal from the temperature calculator and corresponding to the temperature signal Ultrasonic velocity at the It is characterized in that the configured time and an arithmetic processing unit for calculating a liquid level of the liquid based on the difference between the second time.

【0010】[0010]

【作用】上述の本発明の超音波液位計では、超音波送受
信器からの検出信号に基づき、超音波測定器で容器内の
液体中における超音波伝播のエコー波や容器底壁中にお
ける超音波伝播のエコー波についての時間間隔が求めら
れる。
In the ultrasonic liquid level meter of the present invention described above, based on the detection signal from the ultrasonic transmitter / receiver, an ultrasonic wave is used to detect the ultrasonic wave in the liquid in the container and the ultrasonic wave in the bottom wall of the container. The time interval for the echo wave of the sound wave propagation is determined.

【0011】そして、超音波測定器で求められた液体中
における超音波のエコー波の時間間隔と、液体中の超音
波伝播速度とから液位が求められるが、その際、超音波
測定器で求められた液体収容部の底壁中における超音波
伝播のエコー波についての時間間隔と既知の底壁厚さと
に基づき温度演算器で底壁の温度ひいては液体の温度が
求められ、その温度信号により上記演算処理装置で液体
中における超音波伝播速度の補正が行なわれるので、上
記液位の演算が正確に行なわれるようになる。
Then, the liquid level is obtained from the time interval of the echo waves of the ultrasonic waves in the liquid obtained by the ultrasonic measuring device and the ultrasonic wave propagation velocity in the liquid. Based on the time interval for the echo wave of the ultrasonic wave propagation in the bottom wall of the liquid containing portion obtained and the known bottom wall thickness, the temperature of the bottom wall and thus the temperature of the liquid is obtained by the temperature calculator, and by the temperature signal Since the ultrasonic wave propagation velocity in the liquid is corrected by the arithmetic processing unit, the liquid level can be accurately calculated.

【0012】[0012]

【実施例】以下図面により本発明の一実施例としての超
音波液位計について説明すると、図1はその配置構成を
模式的に示す説明図、図2はその超音波送受信器からの
超音波送信時の多重エコーを模式的に示す説明図、図3
はその超音波送受信器への超音波受信時の多重エコーを
模式的に示す説明図、図4は上記超音波送受信器で受信
されたエコー波のエコーレベルを示すグラフ、図5は超
音波伝播速度の温度特性図である。
BEST MODE FOR CARRYING OUT THE INVENTION An ultrasonic level gauge as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing the arrangement of the ultrasonic level gauge, and FIG. Explanatory diagram schematically showing multiple echoes at the time of transmission, FIG.
Is an explanatory view schematically showing multiple echoes when ultrasonic waves are received by the ultrasonic transmitter / receiver, FIG. 4 is a graph showing echo levels of echo waves received by the ultrasonic transmitter / receiver, and FIG. 5 is ultrasonic wave propagation. It is a temperature characteristic figure of speed.

【0013】図1に示すように、液体収容部としてのス
テンレス鋼製配管1の底壁下面に、超音波送受信器3が
装着されており、同超音波送受信器3には超音波測定器
5が接続されている。そして超音波測定器5では、超音
波送受信器3からの信号に基づき、配管1の底壁中およ
び液体中を経由して液面2へ向け伝播させた超音波の送
信から同超音波の液面2で反射したエコー波の受信まで
の第1の時間t1を計測するとともに、上記超音波の送
信から上記底壁中におけるエコー波の受信までの第2の
時間t2を計測する作用が行なわれるようになってい
る。
As shown in FIG. 1, an ultrasonic transmitter / receiver 3 is mounted on the lower surface of the bottom wall of a stainless steel pipe 1 serving as a liquid container, and the ultrasonic transmitter / receiver 3 has an ultrasonic measuring device 5 attached thereto. Are connected. Then, in the ultrasonic measuring device 5, based on the signal from the ultrasonic transmitter / receiver 3, from the transmission of the ultrasonic wave propagated toward the liquid surface 2 through the bottom wall of the pipe 1 and the liquid, the liquid of the ultrasonic wave is transmitted. The function of measuring the first time t 1 until the reception of the echo wave reflected on the surface 2 and the second time t 2 from the transmission of the ultrasonic wave to the reception of the echo wave in the bottom wall is performed. It is supposed to be done.

【0014】すなわち、超音波送受信器3からの送信時
には図2に示すような配管底壁中における多重エコーが
生じ、また超音波送受信器3への受信時には図3に示す
ような多重エコーを生じて、これらのエコーについての
計時作用が超音波測定器5で図4に示すように行なわ
れ、前述の第1の時間t1および第2の時間t2が求めら
れるようになる。
That is, when the ultrasonic transmitter / receiver 3 transmits, multiple echoes occur in the bottom wall of the pipe as shown in FIG. 2, and when the ultrasonic transmitter / receiver 3 receives the multiple echoes as shown in FIG. Then, the time measuring action for these echoes is performed by the ultrasonic measuring device 5 as shown in FIG. 4, and the above-mentioned first time t 1 and second time t 2 are obtained.

【0015】また、超音波測定器5に接続された温度演
算器8では、上記第2の時間t2と既知の底壁厚さdと
から底壁における超音波の伝播速度v1が次式[数1]
により求められる。
Further, in the temperature calculator 8 connected to the ultrasonic measuring device 5, the ultrasonic wave propagation velocity v 1 on the bottom wall is calculated by the following equation from the second time t 2 and the known bottom wall thickness d. [Equation 1]
Required by.

【数1】v1=2d/t2 したがって、図5に示す温度特性図に基づき、底壁の温
度T1が温度演算器8で求められる。そして、この温度
1は液体の温度として推定されるので、液体中での音
速の温度特性図から液体中における超音波伝播速度v01
が求められ、その演算は温度演算器8に接続された演算
処理装置6において行なわれる。
V 1 = 2d / t 2 Therefore, the temperature T 1 of the bottom wall is obtained by the temperature calculator 8 based on the temperature characteristic diagram shown in FIG. Since this temperature T 1 is estimated as the temperature of the liquid, the ultrasonic wave propagation velocity v 01 in the liquid is obtained from the temperature characteristic diagram of the sound velocity in the liquid.
Is calculated, and the calculation is performed in the arithmetic processing unit 6 connected to the temperature calculator 8.

【0016】このようにして、演算処理装置6では、超
音波測定器5からの第1の時間t1および第2の時間t2
と前述の超音波伝播速度v01とから、液位Lを次の関係
式[数2]から求めることができる。
In this way, in the arithmetic processing unit 6, the first time t 1 and the second time t 2 from the ultrasonic measuring device 5 are obtained.
And the ultrasonic propagation velocity v 01 described above, the liquid level L can be obtained from the following relational expression [Equation 2].

【数2】2L=v01×(t1−t2) このようにして求められた液位Lは、演算処理装置6に
接続された表示装置7で表示される。
2 L = v 01 × (t 1 −t 2 ) The liquid level L thus obtained is displayed on the display device 7 connected to the arithmetic processing device 6.

【0017】なお、図5に示すように、温度がT1から
2に変化した場合は、配管1の底壁中の超音波の伝播
速度もv1からv2に変化するため、超音波測定器5で計
測される多重エコーも図4に破線で示すように変化す
る。そして、この場合も、液位Lは次の関係式[数3]
で前述と同様に求められる。
As shown in FIG. 5, when the temperature changes from T 1 to T 2 , the propagation velocity of the ultrasonic wave in the bottom wall of the pipe 1 also changes from v 1 to v 2 , so that the ultrasonic wave The multiple echo measured by the measuring instrument 5 also changes as shown by the broken line in FIG. Also in this case, the liquid level L is calculated by the following relational expression [Equation 3].
Is obtained in the same manner as described above.

【数3】2L=v02×(t1′−t2′)## EQU3 ## 2L = v 02 × (t 1 ′ −t 2 ′)

【0018】[0018]

【発明の効果】以上詳述したように、本発明の超音波液
位計によれば、次のような効果が得られる。 (1) 配管や容器等の液体収容部における液体の温度が大
幅に変化する場合でも、温度を計測するサーミスタ等の
温度計測用センサを省くことができ、しかも高い精度で
液位の計測を行なうことができる。 (2) 温度計測用センサが不要になるので、配管等への超
音波液位計の取付スペースを小さくすることができる。 (3) 信号の処理回路も、温度計測用センサが不要になる
ため超音波についての処理回路に統一できることにな
り、処理回路の構成を大幅に簡素化できるようになる。
As described in detail above, according to the ultrasonic liquid level meter of the present invention, the following effects can be obtained. (1) Even when the temperature of the liquid in the liquid storage part such as the pipe or container changes significantly, the temperature measurement sensor such as the thermistor that measures the temperature can be omitted, and the liquid level can be measured with high accuracy. be able to. (2) Since the temperature measuring sensor is not needed, the installation space of the ultrasonic liquid level gauge on the pipe etc. can be reduced. (3) Since the signal processing circuit does not require a temperature measuring sensor, it can be unified into a processing circuit for ultrasonic waves, and the configuration of the processing circuit can be greatly simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての超音波液位計の配置
構成を模式的に示す説明図である。
FIG. 1 is an explanatory diagram schematically showing an arrangement configuration of an ultrasonic liquid level gauge as one embodiment of the present invention.

【図2】図1の超音波液位計における超音波送受信器か
らの超音波送信時の多重エコーを模式的に示す説明図で
ある。
FIG. 2 is an explanatory diagram schematically showing multiple echoes at the time of transmitting ultrasonic waves from an ultrasonic transceiver in the ultrasonic liquid level meter of FIG.

【図3】図1の超音波液位計における超音波送受信器へ
の超音波受信時の多重エコーを模式的に示す説明図であ
る。
FIG. 3 is an explanatory diagram schematically showing multiple echoes when ultrasonic waves are received by an ultrasonic wave transceiver in the ultrasonic liquid level meter of FIG.

【図4】上記超音波送受信器で受信されたエコー波のエ
コーレベルを示すグラフである。
FIG. 4 is a graph showing echo levels of echo waves received by the ultrasonic transceiver.

【図5】器壁中および液体中における超音波伝播速度の
温度特性図である。
FIG. 5 is a temperature characteristic diagram of ultrasonic wave propagation velocity in a vessel wall and in a liquid.

【図6】従来の超音波液位計の一例を示す模式図であ
る。
FIG. 6 is a schematic view showing an example of a conventional ultrasonic liquid level meter.

【図7】従来の超音波液位計の他の例を示す模式図であ
る。
FIG. 7 is a schematic diagram showing another example of a conventional ultrasonic liquid level meter.

【符号の説明】 1 液体収容部としての配管 2 液面 3 超音波送受信器 4 液中を伝播する超音波 5 超音波測定器 6 演算処理装置 7 表示装置 8 温度演算器[Explanation of Codes] 1 Piping as a Liquid Storage Section 2 Liquid Level 3 Ultrasonic Transceiver 4 Ultrasonic Wave Propagating in Liquid 5 Ultrasonic Measuring Device 6 Calculation Processing Device 7 Display Device 8 Temperature Calculation Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体収容部における液体の液位を計測す
べく、同液体収容部の底壁下面に装着された超音波送受
信器と、同超音波送受信器に接続された超音波測定器
と、同超音波測定器からの信号に基づき上記底壁中にお
ける超音波伝播速度を演算して同底壁の温度を求める温
度演算器と、上記の超音波測定器と温度演算器とからの
信号に基づき上記液体の液位を演算する演算処理装置と
をそなえて構成されたことを特徴とする、超音波液位
計。
1. An ultrasonic transmitter / receiver mounted on a lower surface of a bottom wall of the liquid containing portion for measuring a liquid level of the liquid containing portion, and an ultrasonic measuring device connected to the ultrasonic transmitter / receiver. , A signal from the ultrasonic measuring device and the temperature calculating device, which calculates the ultrasonic propagation velocity in the bottom wall based on the signal from the ultrasonic measuring device to obtain the temperature of the bottom wall An ultrasonic liquid level meter, comprising: an arithmetic processing unit that calculates the liquid level of the liquid based on the above.
【請求項2】 液体収容部における液体の液位を計測す
べく、同液体収容部の底壁下面に装着された超音波送受
信器と、同超音波送受信器から上記液体収容部の底壁中
および液体中を経由して液面へ向け伝播させた超音波の
送信から同超音波の液面で反射したエコー波の受信まで
の第1の時間を計測するとともに、上記超音波の送信か
ら上記底壁中におけるエコー波の受信までの第2の時間
を計測する超音波測定器と、同超音波測定器からの信号
を受けて上記第2の時間に基づき上記底壁における超音
波の伝播速度を演算して同底壁の温度を求める温度演算
器と、同温度演算器からの温度信号を受けて同温度信号
に対応するように求めた上記液体中での超音波伝播速度
と、上記超音波測定器から受信した上記第1の時間と上
記第2の時間との差とに基づき上記液体の液位を演算す
る演算処理装置とをそなえて構成されたことを特徴とす
る、超音波液位計。
2. An ultrasonic transmitter / receiver mounted on a lower surface of a bottom wall of the liquid containing portion for measuring the liquid level of the liquid in the liquid containing portion, and the ultrasonic transmitter / receiver in the bottom wall of the liquid containing portion. And measuring the first time from the transmission of the ultrasonic wave propagated toward the liquid surface via the liquid to the reception of the echo wave reflected by the liquid surface of the ultrasonic wave, and from the transmission of the ultrasonic wave to the above. An ultrasonic measuring device for measuring a second time until the reception of the echo wave in the bottom wall, and a propagation velocity of the ultrasonic wave in the bottom wall based on the second time when receiving a signal from the ultrasonic measuring device. And a temperature calculator for calculating the temperature of the bottom wall, and an ultrasonic wave propagation velocity in the liquid obtained by receiving a temperature signal from the temperature calculator and corresponding to the temperature signal, Difference between the first time and the second time received from the sound wave measuring device An ultrasonic liquid level meter, comprising: an arithmetic processing unit that calculates the liquid level of the liquid based on the above.
JP6137971A 1994-05-27 1994-05-27 Ultrasonic liquid gage Withdrawn JPH07318397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6137971A JPH07318397A (en) 1994-05-27 1994-05-27 Ultrasonic liquid gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6137971A JPH07318397A (en) 1994-05-27 1994-05-27 Ultrasonic liquid gage

Publications (1)

Publication Number Publication Date
JPH07318397A true JPH07318397A (en) 1995-12-08

Family

ID=15211028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6137971A Withdrawn JPH07318397A (en) 1994-05-27 1994-05-27 Ultrasonic liquid gage

Country Status (1)

Country Link
JP (1) JPH07318397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295909A (en) * 2014-09-29 2015-01-21 常州大学 Novel wet gas conveying pipeline accumulated liquid detection device
KR101983817B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus for monitoring water level using ultrasonic wave and method for calculating water level considering temperature thereof
KR101983816B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus and method for constantly monitoring and controling water level using ultrasonic wave at high temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295909A (en) * 2014-09-29 2015-01-21 常州大学 Novel wet gas conveying pipeline accumulated liquid detection device
KR101983817B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus for monitoring water level using ultrasonic wave and method for calculating water level considering temperature thereof
KR101983816B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus and method for constantly monitoring and controling water level using ultrasonic wave at high temperature

Similar Documents

Publication Publication Date Title
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
US6606905B2 (en) Liquid level and weight sensor
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH0447770B2 (en)
JPH08219854A (en) Ultrasonic liquid level meter
JPH07318397A (en) Ultrasonic liquid gage
JP4535065B2 (en) Doppler ultrasonic flow meter
JPH1090028A (en) Ultrasonic wave mass flowmeter
JP2012058186A (en) Ultrasonic flowmeter
JP3117372B2 (en) Ultrasonic distance measuring device
JP2003215112A (en) Ultrasonic densitometer
JP3036172B2 (en) Liquid level detector in pressure vessel
JP2944187B2 (en) Ultrasonic inclinometer
JPS6365899B2 (en)
JP3038871B2 (en) Gas leak detector
JPH0666620A (en) Ultrasonic level indicator
JPH08334321A (en) Ultrasonic distance-measuring apparatus
CN211452527U (en) Ultrasonic liquid level meter
JP2632200B2 (en) Method and apparatus for measuring temperature distribution by ultrasonic wave
JPH0791996A (en) Ultrasonic flowmeter
JPH02116745A (en) Ultrasonic solution density measuring apparatus
JP2001133319A (en) Acoustic velocity measuring device
JPH05240719A (en) Ultrasonic remote water temperature measuring device
JP2001133310A (en) Level gauge
JPH0720100A (en) Ultrasonic liquid measuring apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731