[go: up one dir, main page]

JPH07310588A - Piston for internal combustion engine and its manufacture - Google Patents

Piston for internal combustion engine and its manufacture

Info

Publication number
JPH07310588A
JPH07310588A JP10581694A JP10581694A JPH07310588A JP H07310588 A JPH07310588 A JP H07310588A JP 10581694 A JP10581694 A JP 10581694A JP 10581694 A JP10581694 A JP 10581694A JP H07310588 A JPH07310588 A JP H07310588A
Authority
JP
Japan
Prior art keywords
piston
ring
wear
ring groove
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10581694A
Other languages
Japanese (ja)
Other versions
JP3280516B2 (en
Inventor
Masato Sasaki
正登 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP10581694A priority Critical patent/JP3280516B2/en
Priority to DE1995118552 priority patent/DE19518552C2/en
Priority to GB9510270A priority patent/GB2290598B/en
Publication of JPH07310588A publication Critical patent/JPH07310588A/en
Application granted granted Critical
Publication of JP3280516B2 publication Critical patent/JP3280516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/10Making specific metal objects by operations not covered by a single other subclass or a group in this subclass pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/04Forging of engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To improve abrasion resistance and adhesion resistance on a piston ring groove surface while lowering production costs. CONSTITUTION:Plural piston ring grooves 4 are formed in the outer circumference of a piston main body 1 made of an aluminum alloy. In the piston ring groove 4, at least in a position corresponding to a top ring groove 4, an abrasion resistant ring 11, which is made of an aluminum alloy material 11b containing silicon carbide (SiC) particles 11a, is inserted, while an alumite processed layer 20 processed by anodizing is formed on the surface of the ring groove formed of the abrasion resistant ring 11, and the SiC particles 20a depositing from the abrasion resistant ring 11 are included in the inside of the alumite processed layer 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関の
ピストンの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in pistons for internal combustion engines such as automobiles.

【0002】[0002]

【従来の技術】周知のように、近時、自動車用内燃機関
のピストンにあっては、高出力化高性能化の要請に伴い
軽量化を図るべくその材質を鋳鉄に代えてアルミニウム
合金で形成され、シリンダボアの内壁面と対向する外周
面に、ピストンリングが装着される複数のピストンリン
グ溝が形成されている。また、このピストンリング溝の
うち燃焼室に最も近いトップリング溝は、特に高温に晒
され、かつ燃焼圧力を直接受けるため、ピストンリング
(トップリング)との摩耗が激しい。このため、トップ
リング溝とトップリングとの間には、アルミ凝着が発生
し易くなる。
2. Description of the Related Art As is well known, in recent years, pistons for internal combustion engines for automobiles are formed of aluminum alloy instead of cast iron in order to reduce weight in response to demand for higher output and higher performance. A plurality of piston ring grooves, in which the piston rings are mounted, are formed on the outer peripheral surface facing the inner wall surface of the cylinder bore. Further, among the piston ring grooves, the top ring groove closest to the combustion chamber is particularly exposed to a high temperature and directly receives the combustion pressure, so that the piston ring (top ring) is greatly worn. Therefore, aluminum adhesion easily occurs between the top ring groove and the top ring.

【0003】そこで、斯かるアルミ凝着を防止する種々
の技術が開発されており、例えば(1)トップリング溝
の表面部に無機繊維集合体を複合させて強化するもの
(特開昭59−201953号公報)や、(2)In−
SituプロセスによるハイブリッドMMC(金属基複
合材料)をピストンへ応用するもの(自動車技術198
9−5.NO891056)、(3)トップリング溝の
表面部にニッケル多孔体を複合させて強化するもの(特
公平3−30708号公報)などがある。また、(4)
トップリング溝の表面部をアルマイト処理層により強化
したり(特開平1−190951号公報)、(5)トッ
プリング溝の表面部に銅などを電子ビームで溶融拡散さ
せることにより合金層を形成するもの(三菱自動車19
88,NO1「テクニカルレビュー」)があり、更に
は、(6)トップリング溝部分にニレジスト鋳鉄をアル
フィン処理してアルミニウム合金に鋳ぐるんでリング支
持部材とするもの、また(7)低Siのアルミニウム−
マグネシウム系合金部材を鋳ぐるみ、アルマイト処理を
施すもの(特開平1−190951号公報)など多くの
改良技術が提案されている。
Therefore, various techniques for preventing such aluminum adhesion have been developed. For example, (1) a method in which an inorganic fiber aggregate is compounded on the surface portion of the top ring groove to strengthen it (Japanese Patent Laid-Open No. 59-59-59). (201953), and (2) In-
Application of hybrid MMC (metal matrix composite material) by Situ process to piston (Automotive Technology 198)
9-5. No. 891056), and (3) a porous nickel body is compounded on the surface portion of the top ring groove to strengthen it (Japanese Patent Publication No. 30708/1990). Also, (4)
The surface portion of the top ring groove is strengthened by an alumite treatment layer (JP-A-1-190951), or (5) an alloy layer is formed on the surface portion of the top ring groove by melting and diffusing copper or the like with an electron beam. Things (Mitsubishi Motors 19
88, NO1 "Technical Review"), and (6) Niresist cast iron in the top ring groove is subjected to Alfin treatment and cast around aluminum alloy to form a ring support member, and (7) Low Si aluminum. −
Many improved techniques have been proposed, such as casting a magnesium-based alloy member and subjecting it to alumite treatment (JP-A-1-190951).

【0004】[0004]

【発明が解決しようとする課題】然し乍ら、前記各従来
例には、以下のような欠点がある。即ち、(1),
(2),(3)の従来例にあっては、無機繊維材等の材
料上の点からその成形法として高圧凝固法を用いなけれ
ばならない。したがって、製造コストの上昇が余儀なく
されるばかりか、ピストンの形状が制約されてしまう。
However, each of the conventional examples described above has the following drawbacks. That is, (1),
In the conventional examples of (2) and (3), the high pressure solidification method must be used as the forming method in view of the material such as the inorganic fiber material. Therefore, not only is the manufacturing cost increased, but the shape of the piston is restricted.

【0005】また、(4)の従来例にあっては、アルマ
イト処理層によりピストンリングとの耐凝着性は向上す
るものの、単なるアルマイト処理層を形成するだけであ
るから、耐摩耗性が不十分になる。更に、(5)の従来
例は、逆に耐凝着性が不足する惧れがある。
Further, in the conventional example of (4), although the alumite-treated layer improves the adhesion resistance to the piston ring, it merely forms the alumite-treated layer, so that the wear resistance is unsatisfactory. Will be enough. Further, in the conventional example of (5), on the contrary, the adhesion resistance may be insufficient.

【0006】また、(6)の従来例は、最も古くから行
われている技術であり、耐摩耗性や耐凝着性は確保でき
るものの、鋳鉄製であるため、重量の増加が余儀なくさ
れる。
Further, the conventional example of (6) is the technology that has been used for the longest time, and although it is possible to secure wear resistance and adhesion resistance, since it is made of cast iron, the weight must be increased. .

【0007】更に、(7)の従来例は、アルミニウム−
マグネシウム系合金展伸材を用いているため、この場合
も耐摩耗性及び耐凝着性が不十分になる。
Further, the conventional example of (7) is aluminum-
Since a magnesium alloy wrought material is used, wear resistance and adhesion resistance are insufficient in this case as well.

【0008】[0008]

【課題を解決するための手段】本発明は、前記各従来例
における実情に鑑みて案出されたもので、炭化珪素(S
iC)粒子を含有したアルミニウム合金の耐摩環をアル
ミ合金製ピストンのトップリング溝に対応する位置に鋳
ぐるむと共に、該耐摩環で形成されたリング溝の表面に
陽極酸化処理(アルマイト処理)によるアルマイト処理
層を形成したことを特徴としている。
The present invention has been devised in view of the actual situation in each of the above-mentioned conventional examples. Silicon carbide (S
iC) A wear-resistant ring of aluminum alloy containing particles is cast at a position corresponding to the top ring groove of the piston made of aluminum alloy, and the surface of the ring groove formed by the wear-resistant ring is anodized (alumite treated). The feature is that an alumite treatment layer is formed.

【0009】[0009]

【作用】前記構成の本発明によれば、耐摩環自体は、材
料上の点から鋳造等によって成形できると共に、該耐摩
環を単にピストン成形時に鋳ぐるむだけであるため、そ
の製造コストの低廉化が図れる。
According to the present invention having the above-mentioned structure, the wear-resistant ring itself can be formed by casting or the like from the viewpoint of the material, and the wear-resistant ring is simply cast around during the piston molding, so that the manufacturing cost is low. Can be realized.

【0010】また、本発明においては、耐摩環としてア
ルミニウム合金中に炭化珪素(SiC)が分散したもの
となっている。そして、特にアルマイト処理層を形成し
た例えばトップリング溝の少なくとも上下面においても
アルマイト処理層表面に前記耐摩環から析出したSiC
粒子が分散露呈している。
Further, in the present invention, silicon carbide (SiC) is dispersed in an aluminum alloy as a wear resistant ring. In particular, for example, at least the upper and lower surfaces of the top ring groove on which the alumite treatment layer is formed, the SiC deposited from the wear ring on the surface of the alumite treatment layer.
The particles are dispersed and exposed.

【0011】アルマイト処理層は、それ自体で硬質であ
ると共に、非金属層であるため、相手材であるピストン
リングに対して凝着が生じにくく、したがってアルマイ
ト処理層をトップリング溝の上下面に形成しただけでも
ある程度耐摩耗性、耐スカッフ性は向上するが、それだ
けでは必ずしも充分ではない。すなわち、アルマイト処
理層自体が摩耗して母材が露出してしまえば、急激にス
カッフや摩耗が進行するようになる。そこで、この発明
では、アルミニウム合金にSiC粒子を分散した合金を
耐摩環として用いて、アルマイト処理層表面に耐摩環か
ら析出したH3000程度の著しく硬質なSiC粒子
を分散露呈させ、その硬質なSiC粒子により相手材か
らの荷重を支持させて、アルマイト処理層の摩耗の進行
を防止している。すなわち、アルマイト処理層とSiC
粒子との相乗効果によってトップリング溝の耐摩耗性、
耐凝着性を著しく向上させることが可能になった。
Since the alumite treatment layer is hard by itself and is a non-metal layer, adhesion is unlikely to occur on the piston ring which is a mating material, and therefore the alumite treatment layer is formed on the upper and lower surfaces of the top ring groove. The abrasion resistance and the scuffing resistance are improved to some extent just by forming them, but this is not always sufficient. That is, if the alumite treatment layer itself is abraded and the base material is exposed, scuffing and abrasion will rapidly progress. Therefore, in the present invention, an alloy in which SiC particles are dispersed in an aluminum alloy is used as a wear ring to disperse and expose extremely hard SiC particles of about H V 3000 deposited from the wear ring on the surface of the alumite-treated layer, and to expose the hard particles. The SiC particles support the load from the mating material to prevent the wear of the alumite treatment layer from progressing. That is, the alumite treatment layer and SiC
Wear resistance of top ring groove due to synergistic effect with particles,
It became possible to remarkably improve the adhesion resistance.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1〜図2は本発明に係るピストンの断面
図を示し、このピストンは、ピストン本体1がアルミ合
金製(JISAC8A−T6)で略円筒状に形成され、
燃焼室に臨む冠部2と、該冠部2の下部に有するリング
ランド部3の外周面に形成された3つのピストンリング
溝4,5,6と、該各トップ,セカンド,オイルリング
溝4〜6に嵌着されるピストンリング7,8,9と、各
リング溝4〜6下部のスカート部10とを備えている。
1 and 2 are sectional views of a piston according to the present invention, in which the piston body 1 is made of aluminum alloy (JISAC8A-T6) and is formed into a substantially cylindrical shape.
The crown portion 2 facing the combustion chamber, the three piston ring grooves 4, 5, 6 formed on the outer peripheral surface of the ring land portion 3 provided at the lower portion of the crown portion 2, the respective top, second and oil ring grooves 4 1 to 6, piston rings 7, 8 and 9 are fitted, and a skirt portion 10 below each of the ring grooves 4 to 6 is provided.

【0014】前記トップリング溝4は、冠部2の頂面か
ら9mm離れた位置を中心に、幅4mm,深さ8mmに
形成されていると共に、この表面部のみが後述の成形方
法で成形された耐摩環11によって形成されている。
The top ring groove 4 is formed with a width of 4 mm and a depth of 8 mm around a position 9 mm away from the top surface of the crown portion 2, and only this surface portion is formed by a forming method described later. It is formed by the wear resistant ring 11.

【0015】この耐摩環11は、図3にも示すように炭
化珪素(SiC)の粒子11aを含有したアルミニウム
合金11bで構成され、前記ピストン本体1内にトップ
リング溝4の表面部を構成すべく鋳ぐるまれている。
As shown in FIG. 3, the wear-resistant ring 11 is made of an aluminum alloy 11b containing particles 11a of silicon carbide (SiC) and constitutes the surface portion of the top ring groove 4 in the piston body 1. It is cast around as much as possible.

【0016】また、この耐摩環11の表面及びピストン
本体1の冠部2及びリングランド部3のトップリング溝
4付近の外周面に陽極酸化処理によるアルマイト処理層
20が形成されている。このアルマイト処理層20は、
内部に耐摩環11と同様に炭化珪素SiCの粒子20a
が含有されている。即ち、前述のように陽極酸化処理時
に、耐摩環11内のSiC粒子が折出してアルマイト処
理層20に含有されるのである。
An anodized layer 20 is formed on the surface of the wear resistant ring 11 and the outer peripheral surface of the crown 2 and ring land 3 of the piston body 1 near the top ring groove 4 by anodization. This alumite treatment layer 20 is
Particles 20a of silicon carbide SiC as in the wear resistant ring 11
Is included. That is, as described above, during the anodizing treatment, the SiC particles in the wear ring 11 are projected and contained in the alumite treatment layer 20.

【0017】以下、前記耐摩環11の具体的な製造方法
について説明する。即ち、まず、最大径で数μmから数
10μmのSiC粒子を10〜20%含有したアルミニ
ウム合金鋳造インゴットを、アルゴンガス等の不活性雰
囲気中で溶解し、993Kに保持した後、機械撹拌を行
いSiC粒子をアルミニウム合金材内に均一に分散させ
る。
Hereinafter, a specific method for manufacturing the wear resistant ring 11 will be described. That is, first, an aluminum alloy cast ingot containing 10 to 20% of SiC particles having a maximum diameter of several μm to several tens of μm was melted in an inert atmosphere such as argon gas and held at 993K, and then mechanical stirring was performed. The SiC particles are uniformly dispersed in the aluminum alloy material.

【0018】その後、図4に示す下鋳型12内に、Si
C粒子を含有したアルミニウム合金溶湯13を注入して
上鋳型14で圧力を加えて凝固させる。次に、冷却後、
下鋳型12内から耐摩環11の粗形材を取り出した後、
押し湯を切断し、必要に応じて機械加工を行えば、耐摩
環11の成形作業が完了する。
Then, in the lower mold 12 shown in FIG.
The molten aluminum alloy 13 containing C particles is injected and pressure is applied by the upper mold 14 to solidify. Then, after cooling,
After taking out the rough shaped material of the wear ring 11 from the lower mold 12,
The work for forming the wear resistant ring 11 is completed by cutting the hot water and machining it as necessary.

【0019】尚、前記耐摩環11の粗形材は、前記重力
鋳造法の他に、ダイキャスト法や溶湯鋳造法を用いるこ
とも可能である。更に、別の方法として、粉末鍛造法が
ある。これは、SiC粒子とアルミニウム合金粒子を混
合した後、金型内に充填して上鋳型14で圧力を加えて
成形する。そして、加熱した後に鍛造成形を加えて密度
を上げる。また、密度が上昇しない場合は、再度加熱後
に鋳造を繰り返すと密度が上昇する。この方法によれ
ば、最終製品形状に仕上がるため、その後の機械加工が
不要になり、作業性が向上する。
As the rough shape material of the wear resistant ring 11, it is possible to use a die casting method or a molten metal casting method in addition to the gravity casting method. Furthermore, there is a powder forging method as another method. This is done by mixing SiC particles and aluminum alloy particles, filling them in a mold, and applying pressure with an upper mold 14 for molding. Then, after heating, forging is added to increase the density. When the density does not increase, the density increases when the casting is repeated after heating again. According to this method, since the final product shape is finished, the subsequent machining is unnecessary and the workability is improved.

【0020】そして、このようにして成形した耐摩環1
1を、ピストン本体1に鋳ぐみ固定する。この鋳ぐるみ
条件の一例を示せば、耐摩環11の予熱温度は673
K,ピストン本体1の注湯温度は993K,鋳型温度は
473K,耐摩環11の化成処理はパーカライジング
(株)のパルコール3756の溶液を313Kに加熱
し、60秒間浸漬する。
The wear-resistant ring 1 molded in this way
1 is fixed to the piston body 1 by casting. The preheating temperature of the wear-resistant ring 11 is 673 if one example of the conditions of this cast-molding is shown.
K, the pouring temperature of the piston body 1 is 993 K, the mold temperature is 473 K, and the chemical conversion treatment of the wear-resistant ring 11 is performed by heating a solution of PALCOL 3756 manufactured by Parkerizing Co., Ltd. to 313 K and immersing it for 60 seconds.

【0021】ここで、耐摩環11にあらかじめ化成処理
を施す理由は、アルミニウム系材料の場合には、表面に
緻密な酸化膜が強固に形成されているため、溶湯との接
触界面は十分に溶着することができず、そのため溶湯に
よって形成されるピストン本体1のアルミニウム層部分
と、アルミニウム合金の耐摩環11との接合が不十分に
なる。また、溶湯の加熱度を上げたり、また耐摩環11
を十分に予熱した場合などには溶着する現象が認められ
るが、その条件範囲は極めて狭く、均一に接着すること
がむずかしいのが実情である。
Here, the reason why the wear-resistant ring 11 is previously subjected to chemical conversion treatment is that in the case of an aluminum-based material, a dense oxide film is strongly formed on the surface, so that the contact interface with the molten metal is sufficiently welded. Therefore, the aluminum layer portion of the piston body 1 formed by the molten metal and the wear ring 11 of aluminum alloy are not sufficiently joined. In addition, the degree of heating of the molten metal can be increased, and the wear ring 11
Although a phenomenon of fusing is observed when the material is sufficiently preheated, the condition range is extremely narrow, and it is difficult to bond uniformly.

【0022】特に、耐摩環11を予熱することにより酸
化膜が厚くなり、接着が増々困難になる惧れがある。
In particular, preheating the wear-resistant ring 11 may increase the thickness of the oxide film, making adhesion more difficult.

【0023】そこで、前記のように予め化成処理を行う
と、予熱により化成処理層は酸化するが、耐摩環11の
アルミニウム合金材までは酸化されず、上述の化成処理
層の酸化物もピストン本体1のアルミニウム合金の溶湯
により容易に除去される為、ピストン本体1のアルミニ
ウム合金と耐摩環11のアルミニウム合金11bとを高
い接合強度で接着させることが可能となる。
Therefore, if the chemical conversion treatment is performed in advance as described above, the chemical conversion treatment layer is oxidized by preheating, but the aluminum alloy material of the wear ring 11 is not oxidized, and the oxide of the chemical conversion treatment layer is also the piston body. Since the aluminum alloy of No. 1 is easily removed by the molten metal, the aluminum alloy of the piston body 1 and the aluminum alloy 11b of the wear ring 11 can be bonded with high bonding strength.

【0024】また、前記アルマイト処理層20を形成す
る部分を、摩耗の激しいトップリング溝4の上下面の他
に、冠部2及びリングランド部3のトップリング溝4付
近の外周面のみとし、スカート部には施こさなかったの
は、この部分に施すとここに油膜切れが発生してスカッ
フが発生し易くなるからである。
In addition to the top and bottom surfaces of the top ring groove 4 which is subject to severe wear, the alumite-treated layer 20 is formed only on the outer peripheral surfaces of the crown portion 2 and the ring land portion 3 near the top ring groove 4. The reason why it was not applied to the skirt portion is that if it is applied to this portion, the oil film will be broken and scuffing will occur easily.

【0025】また、アルマイト処理層20の厚さは後述
する実験結果からして、10〜50μmの範囲内に設定
した。つまり、10μm未満では充分な耐摩耗性が得ら
れず、一方、50μmを越えれば表面粗さが大きくな
り、処理コストも高くなるからである。
The thickness of the alumite treatment layer 20 was set within the range of 10 to 50 μm based on the experimental results described later. That is, if it is less than 10 μm, sufficient abrasion resistance cannot be obtained, while if it exceeds 50 μm, the surface roughness becomes large and the processing cost becomes high.

【0026】さらに、SiC粒子11a,20aの大き
さは、3〜40μmの範囲内に定めた。なぜなら、後述
の実験結果からして、3μm未満の場合はピストンリン
グ7の荷重を十分に支持することが困難であるため、十
分な耐摩耗性を示すことが困難であり、一方、40μm
を越えれば溝加工後の表面粗さが大きくなるため、アル
マイト処理後の粗さも大きくなってしまい、またアルマ
イト処理層20にクラックが生じ易くなって剥離する惧
れがあるためである。
Further, the size of the SiC particles 11a and 20a is set within the range of 3 to 40 μm. This is because, based on the experimental results described below, it is difficult to sufficiently support the load of the piston ring 7 when the thickness is less than 3 μm, and thus it is difficult to exhibit sufficient wear resistance.
If the value exceeds the above range, the surface roughness after the groove processing becomes large, so that the roughness after the alumite treatment also becomes large, and cracks are likely to occur in the alumite treatment layer 20, and there is a risk of peeling.

【0027】以下、前述のような工程で成形された耐摩
環11にアルマイト処理層20を施した場合の耐摩耗性
と耐凝着性及び耐摩環11材料の材料の機械加工性につ
いての特性変化を実験した結果を説明する。
Hereinafter, the wear resistance and the adhesion resistance when the alumite treatment layer 20 is applied to the wear resistant ring 11 formed by the above-mentioned process, and the change in the characteristics of the machinability of the material of the wear resistant ring 11 material. The result of the experiment will be described.

【0028】まず、マトリックスのアルミニウム合金の
成分を表に示す。この実験においては鋳造法で製作した
試料を用いた。粒径9.3±4μmのSiC粒子の添加
量は、0,5,10,15,20,25,30体積%と
して7種の材料にアルマイト処理をしたものについて評
価した。
First, the components of the matrix aluminum alloy are shown in the table. In this experiment, a sample manufactured by the casting method was used. The addition amount of SiC particles having a particle size of 9.3 ± 4 μm was set to 0, 5, 10, 15, 20, 25, and 30% by volume, and seven types of materials subjected to alumite treatment were evaluated.

【0029】次に、SiC粒子の体積率を10.0%と
して、添加するSiC粒子の粒径を2,5,10,2
0,30,40μmの6種の材料にアルマイト処理を施
こしたものについて評価した。また同時にSiC粒子を
添加せずマトリックスのアルミニウム合金のみとアルマ
イト処理を施こさないものについても評価した。
Next, assuming that the volume ratio of the SiC particles is 10.0%, the particle diameter of the SiC particles to be added is 2, 5, 10, 2.
Evaluations were made on 6 kinds of materials of 0, 30, 40 μm which were subjected to alumite treatment. At the same time, the evaluation was also performed on the matrix aluminum alloy without addition of SiC particles and the one not subjected to the alumite treatment.

【0030】[0030]

【表1】 [Table 1]

【0031】そして、耐摩耗性の評価方法は、図5に示
す装置を用いて行った。即ち、図外のモータで回転する
回転台15上にピストンリング7を固定して、この上部
にヒータ16の下端に固定されたテストピース17を押
し付けて摩耗させる。このテストピース17は、ピスト
ン本体1のリング溝から切り出した耐摩環である。この
方法における温度,潤滑状態等の試験条件は実際のエン
ジンのピストンと相関性のあるものとした。評価は、試
験後の摩耗深さで行った。
The evaluation method of wear resistance was carried out by using the apparatus shown in FIG. That is, the piston ring 7 is fixed on the rotary table 15 which is rotated by a motor (not shown), and the test piece 17 fixed to the lower end of the heater 16 is pressed against the piston ring 7 to wear it. The test piece 17 is an anti-wear ring cut out from the ring groove of the piston body 1. The test conditions such as temperature and lubrication condition in this method are assumed to be correlated with the actual piston of the engine. The evaluation was performed by the wear depth after the test.

【0032】また、耐凝着性の評価方法は、図6に示す
装置を用いて行い、ピストン本体1のトップリング溝4
下面にピストンリング7を押し当てて、アクチュエータ
18,19を介して矢印一方向にのみ摺動させる加速試
験法によった。評価は、リング溝4のピストンリング7
摺動面積に対する凝着摩耗した面積の割合で行った。試
験はアルマイト皮膜が充分になくなるまでの摺動回数と
した。
The method for evaluating the adhesion resistance is carried out by using the apparatus shown in FIG. 6, and the top ring groove 4 of the piston body 1 is evaluated.
It was based on the acceleration test method in which the piston ring 7 was pressed against the lower surface and slid only in one direction of the arrows via the actuators 18 and 19. The evaluation is the piston ring 7 of the ring groove 4.
The ratio was the ratio of the area of adhesive wear to the sliding area. The test was the number of times of sliding until the alumite film was sufficiently removed.

【0033】機械加工性の評価は、直径70mmの円柱
粗材を以下の加工条件で加工し、工具の摩耗量が0.3
mmになるまでの加工数で評価した。切削速度:200
m/min,切り込み量:0.3mm,送り量:0.0
3mm(1回転毎),工具:気相合成ダイヤモンド工具
(旭ダイヤ(株)製) 前記各評価結果を表2及び表3に示す。
The machinability was evaluated by machining a cylindrical rough material having a diameter of 70 mm under the following machining conditions, and the wear amount of the tool was 0.3.
It was evaluated by the number of processed pieces up to mm. Cutting speed: 200
m / min, depth of cut: 0.3 mm, feed: 0.0
3 mm (every 1 rotation), tool: vapor phase synthetic diamond tool (manufactured by Asahi Diamond Co., Ltd.) The above evaluation results are shown in Tables 2 and 3.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】ここで、耐摩耗性は、SiC粒子が無添加
つまりOで、アルマイト処理無しの摩耗量を100とし
た割合を示す。数値が小さい程摩耗しないことを示す。
Here, the abrasion resistance refers to a ratio where the SiC particles are not added, that is, O, and the abrasion amount without the alumite treatment is 100. The smaller the value, the less wear.

【0037】耐凝着性は、SiC粒子が無添加アルマイ
ト処理無しの凝着した面積を100とした割合を示す。
数値が小さい程凝着しないことを示す。
The anti-adhesion property indicates the ratio of the adhered area of SiC particles without additive-anodized alumite treatment to 100.
The smaller the value, the less the adhesion.

【0038】機械加工性は、SiC粒子の無添加の粗材
を、工具としてCPXを使って加工した場合の工具寿命
を100とした。但し、SiC粒子が添加された粗材は
気相合成ダイヤモンド工具で加工している。
With regard to machinability, the tool life was set to 100 when a rough material without addition of SiC particles was machined using CPX as a tool. However, the coarse material to which the SiC particles are added is processed by the vapor phase synthetic diamond tool.

【0039】表2及び表3から明らかのように、アルマ
イト処理無しの場合はSiC粒子の添加量が5体積%で
も無添加の場合に比べて耐摩性は著しく向上し10体積
%でほぼその効果は一定となる。
As is clear from Tables 2 and 3, even when the amount of SiC particles added is 5% by volume, the wear resistance is significantly improved compared to the case where the amount of SiC particles is not added. Is constant.

【0040】アルマイト処理をした場合、アルマイト皮
膜の耐摩耗がアルミニウム合金に比べて優れるためSi
C粒子を添加したアルミニウム合金にアルマイト処理を
した場合、しない場合と比べて耐摩性は向上する。
When the alumite treatment is applied, the wear resistance of the alumite coating is superior to that of the aluminum alloy.
When the aluminum alloy containing C particles is subjected to the alumite treatment, the wear resistance is improved as compared with the case where the aluminum alloy is not treated.

【0041】一方、耐凝着性も同様な傾向にありアルマ
イト処理無しの場合SiC粒子の添加量が増加するにつ
れて、耐凝着性が著しく向上していることが判る。そし
て25体積%以上では凝着の発生は無い。
On the other hand, the adhesion resistance also tends to be similar, and it can be seen that the adhesion resistance is remarkably improved as the amount of SiC particles added is increased without the alumite treatment. When the content is 25% by volume or more, no adhesion occurs.

【0042】アルマイト処理をした場合にはSiC添加
量が5体積%でも凝着の発生はなく著しく耐凝着性の向
上していることが判る。
It can be seen that when the alumite treatment is performed, no adhesion occurs even when the amount of SiC added is 5% by volume, and the adhesion resistance is remarkably improved.

【0043】また、機械加工性は、SiC粒子の添加量
が5体積%でも無添加に比べて加工性が悪くなる。更
に、添加量の増加に伴って加工性は悪化して行き、30
体積%では工具の刃先に欠けが生じて加工不能である。
Further, the machinability deteriorates even if the amount of SiC particles added is 5% by volume, as compared with the case where no addition is made. Furthermore, as the amount of addition increases, the workability deteriorates.
When the content is% by volume, the cutting edge of the tool is chipped and machining is impossible.

【0044】SiC粒子の大きさの効果はアルマイト処
理無しの場合では5μm正確には3μm以上あれば耐摩
耗性は著しく向上する。また耐凝着性においても粒子の
大きさが大きくなるほど向上する様であるがSiC粒子
の体積率が一定の場合著しい向上は無い。
With respect to the effect of the size of the SiC particles, in the case of no alumite treatment, the wear resistance is remarkably improved when it is 5 μm or more accurately 3 μm or more. The adhesion resistance also seems to improve as the size of the particles increases, but there is no significant improvement when the volume ratio of the SiC particles is constant.

【0045】しかしアルマイト処理をした場合SiC粒
子の大きさが5μm正確には3μm以上あれば耐摩耗性
は著しく向上しまた凝着の発生もなくなる。
However, in the case of the alumite treatment, if the size of the SiC particles is 5 μm, more precisely 3 μm or more, the wear resistance is remarkably improved and the adhesion is not generated.

【0046】また粒子の大きさが大きくなればなるほど
加工性は悪化し40μmでは加工後の粗さが悪くなりそ
の後のアルマイト処理による粗さの悪化が著しい。
Further, the larger the size of the particles, the worse the workability, and when the particle size is 40 μm, the roughness after processing becomes worse, and the subsequent deterioration of the roughness due to the alumite treatment is remarkable.

【0047】以上の実験から、最適なSiC粒子の添加
量は5体積%から25体積%までで、望ましくは10体
積%から20体積%であることがわかる。
From the above experiment, it can be seen that the optimum addition amount of SiC particles is 5% by volume to 25% by volume, preferably 10% by volume to 20% by volume.

【0048】また粒子の大きさは3μm以上40μm以
内であり望ましくは20μm以下である方が良い。
The particle size is preferably 3 μm or more and 40 μm or less, and more preferably 20 μm or less.

【0049】分散粒子は以上説明してきたSiC粒子の
他に同等以上の硬さを有するものであれば良くBN,S
4,Al23,WC,TiC,TiB2,等の粒子
を用いても良い。
In addition to the SiC particles described above, the dispersed particles may be BN, S as long as they have a hardness equal to or higher than the above.
Particles such as i 3 n 4 , Al 2 O 3 , WC, TiC, and TiB 2 may be used.

【0050】以上説明してきたSiC粒子を添加したア
ルミニウム合金で形成された耐摩環11を、アルミニウ
ム合金のピストン本体1内に鋳ぐるんだピストンにアル
マイト処理を施したピストンを、内燃機関に組み込んで
試験を行った。ここで、耐摩環11のSiC粒子の添加
量は10体積%に設定した。尚、比較のためにアルマイ
ト処理をしないピストンおよび前述のような耐摩環をピ
ストン本体に鋳ぐるまないピストンの試験も行った。
The wear-resistant ring 11 formed of an aluminum alloy containing SiC particles as described above is cast into a piston body 1 of an aluminum alloy. A piston obtained by subjecting a piston to an alumite treatment is incorporated in an internal combustion engine. The test was conducted. Here, the amount of SiC particles added to the wear resistant ring 11 was set to 10% by volume. For comparison, a test of a piston not subjected to alumite treatment and a piston in which the wear resistant ring as described above was not cast around the piston body was also conducted.

【0051】運転条件は、4気筒で排気量が2000c
cのディーゼル機関を用い油温150度,冷却水温度1
20度にて200時間の連続運転を行った。
The operating conditions are four cylinders and a displacement of 2000c.
Oil temperature 150 degrees, cooling water temperature 1 using diesel engine of c
Continuous operation was performed at 20 degrees for 200 hours.

【0052】この結果、耐摩環を鋳ぐるまないピストン
は50μmの摩耗が発生し、トップリング溝下面の85
%に凝着の発生が認められたのに対し、前記耐摩環11
を鋳ぐるんだピストンでアルマイト処理をしないもので
は5μmの摩耗が発生し、トップリング溝下面の50%
に凝着の発生が認められたのに対してアルマイト処理を
したものでは摩耗も凝着も認められなかった。
As a result, the piston, which does not encircle the wear-resistant ring, is worn by 50 μm, and the wear on the lower surface of the top ring groove becomes 85.
%, While the occurrence of adhesion was observed, the wear-resistant ring 11
With a piston that has been cast around and is not anodized, wear of 5 μm occurs and 50% of the bottom surface of the top ring groove
Although the occurrence of adhesion was observed in the specimens, neither wear nor adhesion was observed in the one treated with alumite.

【0053】[0053]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、炭化珪素(SiC)粒子を含有したアルミニウ
ム合金材に耐摩環を、アルミニウム合金製のピストン本
体に鋳ぐるんでリング溝を形成したため、ピストンリン
グとの耐摩耗性等が向上することは勿論のこと、単なる
溶湯鋳造法によって成形できるため、製造コストの低廉
化が図れる。
As is apparent from the above description, according to the present invention, an aluminum alloy material containing silicon carbide (SiC) particles is provided with a wear ring, and a piston body made of aluminum alloy is cast to form a ring groove. Since it is formed, not only the wear resistance with the piston ring is improved, but also it can be formed by a simple molten metal casting method, so that the manufacturing cost can be reduced.

【0054】特に、前記耐摩環のリング溝表面にアルマ
イト処理層を形成したため、該アルマイト処理層とアル
マイト処理層内の炭化珪素粒子との相乗効果によって前
記リング溝表面の耐摩耗性や耐凝着性が著しく向上す
る。
In particular, since the alumite-treated layer is formed on the ring groove surface of the wear-resistant ring, the wear resistance and anti-adhesion property of the ring groove surface are produced by the synergistic effect of the alumite-treated layer and the silicon carbide particles in the alumite-treated layer. Significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例を示すピストンの要部断面図。FIG. 1 is a sectional view of an essential part of a piston showing an embodiment of the present invention.

【図2】本実施例のピストンの縦断面図。FIG. 2 is a vertical cross-sectional view of a piston of this embodiment.

【図3】本実施例のピストンの要部拡大断面図。FIG. 3 is an enlarged cross-sectional view of a main part of the piston of this embodiment.

【図4】本実施例の耐摩環の金型成形を示す説明図。FIG. 4 is an explanatory view showing die molding of the wear resistant ring of the present embodiment.

【図5】耐摩耗性のテスト状態を示す説明図。FIG. 5 is an explanatory diagram showing a wear resistance test state.

【図6】耐凝着性のテスト状態を示す説明図。FIG. 6 is an explanatory diagram showing a test state of adhesion resistance.

【符号の説明】[Explanation of symbols]

1…ピストン本体 2…冠部 3…リングランド部 4…トップリング溝 7…トップリング 11…耐摩環 11a…SiC粒子 20…アルマイト処理層 DESCRIPTION OF SYMBOLS 1 ... Piston main body 2 ... Crown part 3 ... Ring land part 4 ... Top ring groove 7 ... Top ring 11 ... Wear resistant ring 11a ... SiC particles 20 ... Alumite treatment layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金製からなるピストン本
体の外周に複数のピストンリング溝が形成されてなる内
燃機関のピストンにおいて、 前記ピストンリング溝の少なくともトップリング溝に対
応する位置に、炭化珪素の粒子を含有したアルミニウム
合金材の耐摩環を鋳ぐるむと共に、該耐摩環で形成され
たリング溝の表面に陽極酸化処理によるアルマイト処理
層を形成したことを特徴とする内燃機関のピストン。
1. A piston of an internal combustion engine having a plurality of piston ring grooves formed on an outer circumference of a piston body made of an aluminum alloy, wherein particles of silicon carbide are present at a position corresponding to at least the top ring groove of the piston ring groove. A piston for an internal combustion engine, comprising: forming a wear-resistant ring of an aluminum alloy material containing aluminum and forming an alumite treatment layer by anodizing on the surface of a ring groove formed by the wear-resistant ring.
【請求項2】 アルミニウム合金製からなるピストン本
体の外周に複数のピストンリング溝が形成されてなる内
燃機関のピストンの製造方法であって、 アルミニウム合金材の内部に炭化珪素を含有した耐摩環
を予め成形すると共に、前記ピストン本体の鋳造時に、
前記ピストンリング溝の少なくともトップリング溝に対
応する位置に前記耐摩環を鋳込み、その後、前記耐摩環
で形成されたリング溝の表面を陽極酸化処理を行なうよ
うにしたことを特徴とする内燃機関のピストンの製造方
法。
2. A method of manufacturing a piston for an internal combustion engine, comprising a piston body made of an aluminum alloy, and a plurality of piston ring grooves formed on the outer periphery of the piston body, wherein the wear-resistant ring containing silicon carbide is formed inside the aluminum alloy material. With pre-molding, when casting the piston body,
In the internal combustion engine, the wear ring is cast into a position corresponding to at least the top ring groove of the piston ring groove, and then the surface of the ring groove formed by the wear ring is anodized. Piston manufacturing method.
JP10581694A 1994-05-20 1994-05-20 Piston for internal combustion engine and method of manufacturing the same Expired - Fee Related JP3280516B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10581694A JP3280516B2 (en) 1994-05-20 1994-05-20 Piston for internal combustion engine and method of manufacturing the same
DE1995118552 DE19518552C2 (en) 1994-05-20 1995-05-19 Pistons for internal combustion engines
GB9510270A GB2290598B (en) 1994-05-20 1995-05-22 Pistons for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10581694A JP3280516B2 (en) 1994-05-20 1994-05-20 Piston for internal combustion engine and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07310588A true JPH07310588A (en) 1995-11-28
JP3280516B2 JP3280516B2 (en) 2002-05-13

Family

ID=14417617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10581694A Expired - Fee Related JP3280516B2 (en) 1994-05-20 1994-05-20 Piston for internal combustion engine and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP3280516B2 (en)
DE (1) DE19518552C2 (en)
GB (1) GB2290598B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031938A (en) * 2002-10-08 2004-04-14 현대자동차주식회사 Top land apparatus or piston
WO2018173719A1 (en) * 2017-03-23 2018-09-27 Kyb株式会社 Method for manufacturing sliding member, and sliding member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535590A1 (en) * 1994-09-26 1996-04-04 Unisia Jecs Corp Piston for IC engines
DE19532252C2 (en) * 1995-09-01 1999-12-02 Erbsloeh Ag Method of manufacturing bushings
DE19532244C2 (en) * 1995-09-01 1998-07-02 Peak Werkstoff Gmbh Process for the production of thin-walled tubes (I)
JP4886370B2 (en) * 2006-06-07 2012-02-29 サンデン株式会社 Fluid machinery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339867A1 (en) * 1982-12-16 1985-05-15 Kolbenschmidt AG, 7107 Neckarsulm METHOD FOR THE PRODUCTION OF WEAR-RESISTANT SURFACES OF THE RING GROOVES OF PISTONS, MADE OF ALUMINUM ALLOYS, FOR INTERNAL COMBUSTION ENGINES
JPS59201953A (en) * 1983-04-28 1984-11-15 Izumi Jidosha Kogyo Kk Piston used for internal-combustion engine
JPH01190951A (en) * 1988-01-26 1989-08-01 Toyota Motor Corp Piston for internal combustion engine
DE4010474A1 (en) * 1990-03-31 1991-10-02 Kolbenschmidt Ag LIGHT METAL PISTON
JP2880589B2 (en) * 1991-06-27 1999-04-12 倉敷化工株式会社 Liquid filled bush
JPH06218521A (en) * 1993-01-26 1994-08-09 Unisia Jecs Corp Piston of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031938A (en) * 2002-10-08 2004-04-14 현대자동차주식회사 Top land apparatus or piston
WO2018173719A1 (en) * 2017-03-23 2018-09-27 Kyb株式会社 Method for manufacturing sliding member, and sliding member
JP2018159113A (en) * 2017-03-23 2018-10-11 Kyb株式会社 Sliding member and manufacturing method of sliding member
US10767694B2 (en) 2017-03-23 2020-09-08 Kyb Corporation Manufacturing method for sliding member and sliding member

Also Published As

Publication number Publication date
JP3280516B2 (en) 2002-05-13
DE19518552C2 (en) 1999-03-11
GB2290598B (en) 1998-01-07
DE19518552A1 (en) 1995-11-30
GB9510270D0 (en) 1995-07-19
GB2290598A (en) 1996-01-03

Similar Documents

Publication Publication Date Title
CA2614552C (en) Cylinder liner and engine
EP0143330B1 (en) Reinforced pistons
US4696866A (en) Fiber reinforced metal composite material
EP0704543B1 (en) Slide member made of sintered aluminium alloy
EP1711291A1 (en) Cylinder liner for insert casting and method for manufacturing thereof
JP2007284706A (en) Sliding material
CN102678369A (en) Linerless engine
JPH06218521A (en) Piston of internal combustion engine
US20220220920A1 (en) Piston ring groove insert and methods of making
JP3280516B2 (en) Piston for internal combustion engine and method of manufacturing the same
US5293923A (en) Process for metallurgically bonding aluminum-base inserts within an aluminum casting
US5671710A (en) Pistons for internal combustion engines and method of manufacturing same
JPH02104465A (en) Production of aluminum alloy member having wear resistance
JPS6233730A (en) Wear resistant composite material
JPH08151954A (en) Piston for internal combustion engine and manufacture thereof
EP0424109A2 (en) Aluminium alloy matrix composite for internal combustion engines
JPH09256903A (en) Piston for internal combustion engine and manufacturer thereof
JP2572889B2 (en) Manufacturing method of piston for diesel engine
EP0747494B2 (en) A1-based composite material having adhesion resistance property and process for producing the same
Bialo et al. Applications of metallic composites in the automotive industry and their machining by the EDM
JPH1193768A (en) Piston for internal combustion engine and its manufacture
JPH0284245A (en) Manufacture of wear resistant aluminum alloy member
RU2205970C2 (en) Piston of internal combustion engine and method of its manufacture
JPH05287468A (en) Manufacture of casting made of aluminum alloy
Reddy Wear And Seizure Of Aluminium-Silicon Alloys In Dry Sliding Against Steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees