[go: up one dir, main page]

JPH0730795B2 - Method for manufacturing porous static pressure guide - Google Patents

Method for manufacturing porous static pressure guide

Info

Publication number
JPH0730795B2
JPH0730795B2 JP62159737A JP15973787A JPH0730795B2 JP H0730795 B2 JPH0730795 B2 JP H0730795B2 JP 62159737 A JP62159737 A JP 62159737A JP 15973787 A JP15973787 A JP 15973787A JP H0730795 B2 JPH0730795 B2 JP H0730795B2
Authority
JP
Japan
Prior art keywords
plating
porous body
porous
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159737A
Other languages
Japanese (ja)
Other versions
JPS646515A (en
Inventor
宗統 金井
直 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62159737A priority Critical patent/JPH0730795B2/en
Priority to DE3750904T priority patent/DE3750904T2/en
Priority to EP87113143A priority patent/EP0297164B1/en
Priority to DE3750961T priority patent/DE3750961T2/en
Priority to US07/095,038 priority patent/US4793201A/en
Priority to EP90250345A priority patent/EP0429155B1/en
Priority to DE8787113143T priority patent/DE3778156D1/en
Priority to EP90250344A priority patent/EP0427363B1/en
Publication of JPS646515A publication Critical patent/JPS646515A/en
Publication of JPH0730795B2 publication Critical patent/JPH0730795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Chemically Coating (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 回転運動を直線運動に変換させるねじ送りの高速化,高
精度化を達成させる手段の一つとして、雄ねじと雌ねじ
との間のスキマに加圧流体を供給し、流体圧を介して雄
ねじと雌ねじ間を支持する静圧ねじがある。また回転体
の軸と、これを支持する軸受との間のスキマに加圧流体
を供給する流体軸受が提案されている。これらは一般に
静圧案内と言われている。しかして、本発明は多孔質静
圧案内の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) As one of means for achieving high speed and high accuracy of screw feed for converting rotary motion into linear motion, it is applied to a gap between a male screw and a female screw. There is a static pressure screw which supplies a pressure fluid and supports between a male screw and a female screw via fluid pressure. Further, there has been proposed a fluid bearing that supplies a pressurized fluid to a gap between a shaft of a rotating body and a bearing that supports the shaft. These are generally called static pressure guides. The invention thus relates to a method of manufacturing a porous hydrostatic guide.

(従来技術及び発明が解決しようとする問題点) 周知のごとく、静圧案内は案内面間に加圧流体、例えば
気体や流体を供給し物体を流体圧によって浮上させる非
接触案内であるため、物体の移動に伴う摩擦損失を極め
て小さくできることは勿論、案内面の摩耗も皆無にでき
る。加えて、流体が案内面の加工精度を平均化する効果
もあるため案内精度が著しく向上するなど、物体を長期
間に亘って高速・高精度に運動させる手段として超高速
回転、超精密な加工や測定、あるいは、高精度な送りや
位置決め等が要求される機構要素系、例えば、回転軸受
や直進ガイド等の案内に用いられ、また、送りねじにも
適用されはじめており、さらに一層の性能向上が望まれ
ている。
(Problems to be Solved by the Prior Art and Invention) As is well known, the static pressure guide is a non-contact guide in which a pressurized fluid, for example, gas or fluid is supplied between the guide surfaces to levitate an object by fluid pressure. Not only the friction loss due to the movement of the object can be made extremely small, but also the guide surface is not worn at all. In addition, since the fluid also has the effect of averaging the machining accuracy of the guide surface, the guide accuracy is significantly improved.For example, ultra-high speed rotation and ultra-precision machining as a means to move an object at high speed and high accuracy over a long period of time. It has been used for measurement and measurement, or for mechanical element systems that require high-precision feed and positioning, such as guides for rotary bearings and linear guides, and has also begun to be applied to feed screws, further improving performance. Is desired.

一般に静圧案内は、単に案内面間に加圧流体を供給する
のでなく案内面間で構成される浮上スキマ内の流路抵抗
とは別に、もう一つ以上の流路抵抗、即ち絞りを設け小
流量で、且つ、案内面間の浮上剛性(以下剛性と言う)
が大きくなるように工夫する。
Generally, in static pressure guide, one or more flow path resistances, that is, throttles, are provided in addition to the flow path resistance in the levitation gap formed between the guide surfaces instead of simply supplying the pressurized fluid between the guide surfaces. Small flow rate and floating rigidity between guide surfaces (hereinafter referred to as rigidity)
Devise so that

一般に雄ねじと雌ねじ、または軸と軸受間のスキマが減
少するとスキマ内の流路抵抗が増すため流体圧が上昇
し、逆にスキマが増大すると流体圧が下降するバランス
で一定のねじスキマや軸受スキマが保たれるように構成
される。このスキマ変化による流体圧の上昇や下降の割
合が大きいほど雄ねじと雌ねじ、または軸と軸受間の剛
性が高いことになり、性能が良いことになる。しかしな
がらスキマ内の流路抵抗のみでは、この剛性をさほど高
められないので、通常は自成絞り、表面絞り、あるいは
オリフィス絞り等の流路抵抗をさらに付加して、剛性を
効率よく高める工夫がされる。
Generally, if the clearance between the male and female threads or the shaft and the bearing decreases, the fluid pressure in the clearance increases and the fluid pressure rises. Conversely, if the clearance increases, the fluid pressure decreases. Is configured to be maintained. The larger the rate of increase or decrease of the fluid pressure due to this clearance change, the higher the rigidity between the male screw and the female screw, or the shaft and the bearing, and the better the performance. However, since the rigidity cannot be increased so much only by the flow path resistance in the clearance, it is usual to add a flow path resistance such as a self-made throttle, a surface throttle, or an orifice throttle to efficiently increase the rigidity. It

この場合、絞りが静圧案内の性能を支配する剛性に重要
な役割を果たすので、まず、この絞りについて説明す
る。
In this case, the throttle plays an important role in the rigidity that governs the performance of the static pressure guide, so this throttle will be described first.

第4図は従来の静圧案内における絞りの例を示した断面
図で、(A)が自成絞り、(B)がオリフィス絞り、
(C)が面絞り、(D)が多孔質絞りであって、図にお
いて、1が浮上体、2が浮上面、3が案内面、4が浮上
スキマ、5が給気孔、6がオリフィス、7が微小溝、8
が多孔質体である。
FIG. 4 is a cross-sectional view showing an example of a throttle in a conventional static pressure guide. (A) is a self-made throttle, (B) is an orifice throttle,
(C) is a surface diaphragm, (D) is a porous diaphragm, 1 is a floating body, 2 is an air bearing surface, 3 is a guide surface, 4 is a floating clearance, 5 is a supply hole, 6 is an orifice, 7 is a small groove, 8
Is a porous body.

自成絞りは、浮上スキマ4における給気孔5の直下の部
分で構成される空間断面で流体通路を縮小して絞りとす
るものである。
The self-made throttle is a throttle in which the fluid passage is reduced in a spatial cross section formed in a portion directly below the air supply hole 5 in the floating clearance 4.

オリフィス絞りは、中心に微小な孔が穿けられたオリフ
ィス6を給気孔5下に設けて絞りとするものである。
The orifice restrictor is provided with an orifice 6 having a minute hole at the center below the air supply hole 5 to serve as a restrictor.

面絞りは、浮上面2に微小な断面を有する微小溝7を加
工して絞りとするものである。
The surface stop is a stop formed by processing a minute groove 7 having a minute cross section on the air bearing surface 2.

多孔質絞りは、多孔質体8内に存在する連った無数の微
小空間で構成される通路を絞りとするものである。
The porous restrictor is a restrictor that is a passage that is formed in the porous body 8 and that is composed of innumerable minute spaces.

いずれにしても給気孔5から元圧Psで加圧供給された流
体は、一旦、これらの絞りで中間圧Pmに減圧されたのち
浮上スキマ4内で、さらに減圧された最後は浮上スキマ
4外の大気圧Pa中に開放される。しかるに、浮上スキマ
4内の圧力総和は浮上体1にかかる重量と等しく、これ
が釣合っていることになる。従って、剛性は重量増減に
伴う浮上スキマ変化の割合で元圧Ps及び大気圧Paは一定
であるから、結局、浮上スキマ変化に対する中間圧Pmの
変化割合が大きいほど剛性(浮上スキマに反比例)が高
くなる。高精度の形状加工は、剛性を高める必須要件で
あるので、この剛性が高いことは、加工が高精度である
ことを反映している。
In any case, the fluid pressurized and supplied with the original pressure Ps from the air supply hole 5 is once reduced to the intermediate pressure Pm by these throttles, and then inside the levitation gap 4, and finally when the pressure is further reduced, outside the levitation gap 4. Open to atmospheric pressure Pa. However, the total pressure in the levitation gap 4 is equal to the weight applied to the levitation body 1, and this is in balance. Therefore, the rigidity is the rate of change in the levitation clearance due to the increase or decrease in weight, and the source pressure Ps and the atmospheric pressure Pa are constant. Therefore, the larger the change rate of the intermediate pressure Pm with respect to the change in the levitation clearance, the greater the rigidity (inversely proportional to the levitation clearance). Get higher Since high-precision shape processing is an essential requirement for increasing rigidity, high rigidity reflects high-precision processing.

一方、自成絞り、オリフィス絞り、及び、面絞りは、い
ずれも流体通路の断面積変化を主体とした絞りであるの
に対し、多孔質絞りは断面積変化は勿論、これに流体と
多孔質体壁面との接触による粘性抵抗が加わることが他
の絞りと著しく異る点である。
On the other hand, the self-made restrictor, the orifice restrictor, and the surface restrictor are all restrictors whose main purpose is to change the sectional area of the fluid passage. The difference from other diaphragms is that viscous resistance is added due to contact with the body wall.

この粘性抵抗は流速に比例するから多孔質絞りにおい
て、浮上スキマ4が減少すれば当然、浮上スキマ内の粘
性抵抗(浮上スキマの3乗に反比例)が増大し、この
分、多孔質体8内の流量、即ち流速が減少しようとする
が粘性抵抗は流速に比例するので、多孔質絞りによる粘
性抵抗はかえって小さくなる。このため、浮上スキマ4
内により流体を供給し中間圧Pmを上昇させる結果とな
る。逆に浮上スキマ4が増大すれば中間圧Pmをより下降
させる。これは剛性を高める効果そのものである。この
ように多孔質絞りは粘性抵抗の作用分だけ他の絞りに比
べ静圧案内の高剛性化の点で優位の絞りとなっている。
Since this viscous resistance is proportional to the flow velocity, if the levitation clearance 4 is reduced in the porous throttle, the viscous resistance in the levitation clearance (inversely proportional to the cube of the levitation clearance) is naturally increased, and the inside of the porous body 8 is correspondingly increased. However, since the viscous resistance is proportional to the flow rate, the viscous resistance due to the porous restriction is rather reduced. Therefore, levitating gap 4
As a result, the fluid is supplied to the inside to raise the intermediate pressure Pm. On the contrary, if the floating clearance 4 increases, the intermediate pressure Pm is further lowered. This is the effect itself of increasing the rigidity. As described above, the porous restrictor is superior to other restrictors in that the static pressure guide has high rigidity due to the effect of viscous resistance.

尚、一般に静圧案内では前述の中間圧Pmが高いほど負荷
重を大きくとれ、且つ、浮上スキマ変化に対する中間圧
Pmの上昇、下降幅が大きいほど高剛性となるが、中間圧
Pmは元圧Ps以上には成り得ないから中間圧Pmをあまり高
めると剛性が得られなくなる。このため、中間圧Pmのピ
ーク値が元圧Psの2/3程度になるように浮上スキマ部と
絞り部との流路抵抗の比をさだめるのが普通である。
Generally, in the static pressure guide, the higher the above-mentioned intermediate pressure Pm, the greater the load weight, and the intermediate pressure with respect to the change in the floating clearance.
The greater the rise and fall width of Pm, the higher the rigidity, but the intermediate pressure
Since Pm cannot exceed the original pressure Ps, if the intermediate pressure Pm is increased too much, rigidity cannot be obtained. For this reason, it is usual to find the ratio of the flow path resistance between the floating clearance and the throttle so that the peak value of the intermediate pressure Pm is about 2/3 of the original pressure Ps.

この場合、浮上スキマが小さいほど剛性が上がるので優
位になるが、上記流路抵抗の比を一定にする必要がある
から、浮上スキマが小さくなれば、浮上スキマの流路抵
抗は必然的に大となる。従って、この分だけ静圧案内の
絞り抵抗も大きくでき、さらに負荷重に対応するスキマ
変動の絶対値も小さくできるので小流量・高剛性の静圧
案内となるが、浮上スキマの極小化は加工技術に依存す
るため、静圧案内の高性能化は高精度加工技術の向上と
密接に関連していることも周知の事実である。
In this case, the smaller the levitation clearance, the higher the rigidity, which is advantageous. However, since it is necessary to keep the ratio of the flow path resistances constant, if the levitation clearance becomes smaller, the flow resistance of the levitation clearance will inevitably increase. Becomes Therefore, the throttle resistance of the static pressure guide can be increased by this amount, and the absolute value of the clearance variation corresponding to the load weight can also be reduced, resulting in a static flow guide with a small flow rate and high rigidity, but minimizing the floating clearance Since it depends on the technology, it is well known that the improvement of the performance of the static pressure guide is closely related to the improvement of the high precision processing technology.

以下多孔質絞りにおける従来の問題点について説明す
る。
The conventional problems in the porous diaphragm will be described below.

第5図は厚膜多孔質体を用いた場合の供圧構造の断面図
を示すもので、図において、1は浮上体、2は浮上面、
3は案内面、4は浮上スキマ、5は給気孔、9は供圧
口、10は開放口、11は封止面、12及び13はそれぞれ矢印
A及び矢印Bであって、何れも多孔質体8内において流
体の流れる方向、位置、及び流量を矢印の向き、位置、
及び大きさに対応させたものである。第5図において流
体は供圧口9から開放口10に向って、流路抵抗が最小と
なるように流れようとする。この場合、多孔質体8が厚
くなるほど、供圧口9の幅が広くなるほど流体は矢印A1
2のように流れ開放口10に集中し、この分矢印B13に示す
中央部の流れが小さくなる。
FIG. 5 shows a sectional view of the pressure-supplied structure using a thick film porous body, in which 1 is a floating body, 2 is an air bearing surface,
3 is a guide surface, 4 is a floating clearance, 5 is an air supply hole, 9 is a pressure supply port, 10 is an opening port, 11 is a sealing surface, and 12 and 13 are arrows A and B, respectively, which are porous. The flow direction, position, and flow rate of the fluid in the body 8 are indicated by the arrow direction, position,
And corresponding to the size. In FIG. 5, the fluid tries to flow from the pressure supply port 9 toward the opening port 10 so that the flow path resistance is minimized. In this case, the thicker the porous body 8 is and the wider the width of the pressure supply port 9 is, the more the fluid flows through the arrow A1.
As shown by 2, the flow concentrates on the flow opening 10, and the flow in the central portion indicated by the arrow B13 is reduced accordingly.

第6図は薄膜多孔質体を用いた場合の供圧構造の断面図
を示すもので、図において、1は浮上体、2は浮上面、
3は案内面、4は浮上スキマ、5は給気孔、9は供圧
口、10は開放口、11は封止面、13は矢印B、14は矢印
C、15は矢印Dであり、矢印は流体の流れを示す。第6
図においても流体は流路抵抗が最小となるように流れよ
うとするから、多孔質体8が薄くなるほど、供圧口9の
幅が狭くなるほど流体は浮上スキマ4を通らず多孔質体
8内を矢印C14及び矢印D15のように流れ、やはり矢印B1
3に示す中央部の流れが小さくなる。
FIG. 6 shows a sectional view of a pressure-supplied structure using a thin film porous body. In the figure, 1 is a floating body, 2 is an air bearing surface,
3 is a guide surface, 4 is a floating clearance, 5 is an air supply hole, 9 is a pressure supply port, 10 is an opening port, 11 is a sealing surface, 13 is an arrow B, 14 is an arrow C, and 15 is an arrow D. Indicates the flow of fluid. Sixth
Also in the figure, since the fluid tries to flow so that the flow path resistance is minimized, the thinner the porous body 8 is and the narrower the width of the pressure supply port 9 is, the fluid does not pass through the levitation gap 4 and inside the porous body 8. Flow through arrow C14 and arrow D15, again arrow B1
The flow in the central part shown in 3 becomes smaller.

以上、単なる多孔質絞りでは供圧口9の幅や多孔質体8
の厚さを工夫しても、流体は浮上スキマ4の中央部付近
を迂回し開放口10近辺に集中することを述べた。他方、
流路抵抗の総和は多孔質部と浮上スキマ部との流路抵抗
の和であって、この流路抵抗の差分で前述の中間圧Pmが
定まるから浮上スキマ4部の流路抵抗が大きいほど、小
流量で中間圧Pmの上昇/下降幅、即ち、剛性が高くとれ
る。従って、開放口10近辺の浮上スキマ4に依存せず、
流体が浮上スキマ4内をより長距離にわたって流れる供
圧構造が望ましく、このためには多孔質体の浮上面2で
特に流路抵抗を大きくすればよく、通常、浮上面2を目
潰しさせた多孔質絞りが用いられる。
As described above, in the case of a simple porous diaphragm, the width of the pressure supply port 9 and the porous body 8
It has been stated that even if the thickness of the above is devised, the fluid bypasses the vicinity of the central portion of the levitation gap 4 and concentrates in the vicinity of the opening 10. On the other hand,
The sum of the flow path resistances is the sum of the flow path resistances of the porous part and the levitation clearance part, and the intermediate pressure Pm is determined by the difference of the flow path resistances. With a small flow rate, the rising / falling width of the intermediate pressure Pm, that is, the rigidity can be increased. Therefore, without depending on the levitation gap 4 near the opening 10,
A pressure-supplied structure in which the fluid flows over a longer distance in the levitation gap 4 is desirable. For this purpose, it is sufficient to increase the flow path resistance particularly on the air bearing surface 2 of the porous body. A texture stop is used.

第7図は目潰しした多孔質体における従来の供圧構造の
断面図で、1は浮上体、2は浮上面、3は案内面、4は
浮上スキマ、5は給気孔、9は供圧口、10は開放口、11
は封止面、12,13は流体の流れを示す矢印である。16は
浮上面2の目潰し層、17は矢印Eで流体の流れを示す。
第7図では目潰しによって多孔質体8内部より目潰し層
16の流路抵抗が十分大きくなるので多孔質体8内部は元
圧Psに近いほぼ一様な圧力になる。このため、流体は多
孔質体8内部を矢印A12のように流れたとしても目潰し
させた浮上面2からは矢印E17のように、ほぼ一様に流
れ出る。このため、一様な多孔質体に比べ中央付近の矢
印B13に示す浮上スキマ4内を長距離にわたって流れる
流体が多くなり、この分、小流量で高剛性が得られる多
孔質絞りを実現できることになる。
FIG. 7 is a cross-sectional view of a conventional pressure-supplied structure in a crushed porous body, where 1 is a levitation body, 2 is an air bearing surface, 3 is a guide surface, 4 is a levitation clearance, 5 is an air supply hole, and 9 is a pressure supply port. , 10 is open mouth, 11
Is a sealing surface, and 12 and 13 are arrows indicating the flow of fluid. Reference numeral 16 indicates a meshing layer on the air bearing surface 2, and 17 indicates a flow of fluid by an arrow E.
In FIG. 7, a crush layer is formed from the inside of the porous body 8 by crushing.
Since the flow path resistance of 16 becomes sufficiently large, the inside of the porous body 8 has a substantially uniform pressure close to the original pressure Ps. Therefore, even if the fluid flows inside the porous body 8 as indicated by arrow A12, the fluid flows out almost uniformly from the crushed air bearing surface 2 as indicated by arrow E17. Therefore, as compared with a uniform porous body, a large amount of fluid flows over a long distance in the levitation skimmer 4 near the center indicated by an arrow B13, and accordingly, it is possible to realize a porous throttle that can obtain high rigidity with a small flow rate. Become.

以上、多孔質絞りが従来の絞りに比べ優位の絞りである
こと、並びに多孔質体に表層絞りを付加したほうが、さ
らに小流量・高剛性の案内となること等説明した。以
下、従来の表層絞り技術について説明する。
As mentioned above, it has been explained that the porous restrictor is superior to the conventional restrictor, and that the addition of the surface restrictor to the porous body provides a guide with a smaller flow rate and higher rigidity. The conventional surface drawing technique will be described below.

従来の技術は、前述したように多孔質体表層における流
体の通過断面積を目潰しによって小さくする方法がとら
れる。この理由は従来の多孔質素材が、主に金属材料で
構成されることと密接に関連している。即ち、金属パウ
ウダの粒子を融点以下の温度で焼成結合して得られる多
孔質体では粒子間の無数に連なった空間を流体の流路と
するが、この多孔質体は以前から焼結含油軸受やフイル
タ用材料に実用されている関係で多種多様な材料が比較
的容易、且つ安価に入手できるためである。
As a conventional technique, as described above, a method of reducing the passage cross-sectional area of the fluid in the surface layer of the porous body by crushing is adopted. The reason for this is closely related to that the conventional porous material is mainly composed of a metal material. That is, in the porous body obtained by firing and bonding the particles of the metal powder at a temperature below the melting point, the innumerable spaces between the particles are used as fluid passages. This is because a wide variety of materials can be obtained relatively easily and inexpensively because they are practically used as materials for filters and filters.

金属材料多孔質体における目潰しは金属の塑性変形を利
用したもので、具体的には切削、或は研削加工条件、例
えば加工工具の切り刃の鋭さ、切り込み量、加工速度、
又は加工温度等を選択して加工することで、多孔質体面
に存在する流体通路の断面積を塑性変形により表層で小
さくするものである。従って塑性変形量が表層の流路抵
抗増大分に相当することになる。しかるに、多孔質体面
には大小無数の孔が存在するから、当然塑性変形量が増
せば小さな孔は封止されるし、半封止の孔や、さほど封
止されない孔などが確率的に取り残されることになる。
これが目潰しによる表層絞りの原理であって、塑性変形
量によって多孔質体表層の流路抵抗を制御しようとする
ものである。ただし塑性変形による目潰しは塑性変形が
可能な材料に限られること、加工条件の選定を要するこ
とは勿論、多孔質素材の特性、例えば焼結強度や硬度の
バラツキが加工条件に悪影響すること、加工工具の摩擦
や損傷や加工条件の安定確保を妨げ、再現性や生産性に
乏しいこと、或は塑性変形そのものが確率的な加工に基
くため、適正、且つ均一な目潰し面の実現を妨げる欠点
を数多く有している。とくに、塑性変形量が多孔質体を
構成するパウダの粒子径に近付けば、粒子の脱落や再付
着が同時に進行するし、加工工具の摩耗や損傷も激しく
なるから目潰し量の正確な制御は期待し得ず、目潰し面
の加工精度は大幅な低下は避けられない。このように、
塑性変形は加工精度の向上とは相反する要素であるが、
前述のように静圧案内の性能そのものは加工精度の向上
に直結しているから塑性変形による目潰しは静圧案内の
高性能化に逆行する表層絞り技術であると言える。
The crushing in the metallic material porous body utilizes plastic deformation of the metal, and specifically, cutting or grinding processing conditions, for example, the sharpness of the cutting edge of the processing tool, the cutting amount, the processing speed,
Alternatively, by selecting a processing temperature or the like for processing, the cross-sectional area of the fluid passage existing on the surface of the porous body is reduced in the surface layer by plastic deformation. Therefore, the amount of plastic deformation corresponds to the increase in the flow path resistance of the surface layer. However, since there are innumerable large and small holes on the surface of the porous body, naturally small holes are sealed if the amount of plastic deformation increases, and semi-sealed holes and holes that are not so sealed are stochastically left behind. Will be done.
This is the principle of surface layer drawing by crushing, and attempts to control the flow path resistance of the surface layer of the porous body by the amount of plastic deformation. However, crushing due to plastic deformation is limited to materials that can be plastically deformed, and it is of course necessary to select processing conditions, and the characteristics of porous materials, such as variations in sintering strength and hardness, adversely affect processing conditions. There are drawbacks such as tool friction and damage, stable securing of machining conditions, poor reproducibility and productivity, and plastic deformation itself based on stochastic machining, which hinders realization of a proper and uniform crushed surface. I have many. In particular, if the amount of plastic deformation approaches the particle size of the powder that makes up the porous body, the particles will drop off and re-adhere at the same time, and the wear and damage of the processing tool will become severe, so accurate control of the amount of crushing is expected. However, it is inevitable that the machining accuracy of the blind surface will be significantly reduced. in this way,
Plastic deformation is an element that contradicts the improvement of machining accuracy,
As mentioned above, since the performance of the static pressure guide itself is directly connected to the improvement of the machining accuracy, it can be said that the crushing due to the plastic deformation is a surface layer drawing technology which goes against the high performance of the static pressure guide.

一方、目潰しは多孔質体の流路抵抗を大幅に変化させ
る。ただし、静圧案内の剛性を確保するには中間圧Pmの
ピーク値が元圧Psの2/3程度になるよう流路抵抗の比を
定める必要があることは前述した通りで、単に、多孔質
体面を均一に目潰しするだけでなく多孔質絞り全体の流
路抵抗の制御が求められる。このため、目潰しの良否が
静圧案内の性能を決めると言っても過言でない。ところ
が、現実には多孔質絞りが実用に供されている例は皆無
に等しく、従来の絞り、特に面絞りが静圧案内の主流と
なっている。このこと自体が多孔質絞りを自現させる流
路抵抗の制御、或は表層絞りの付加等に対するの技術が
未解決であることを如実に示している。
On the other hand, the blinding significantly changes the flow path resistance of the porous body. However, in order to secure the rigidity of the static pressure guide, it is necessary to set the flow path resistance ratio so that the peak value of the intermediate pressure Pm is about 2/3 of the original pressure Ps, as described above. It is required not only to uniformly crush the surface of the body but also to control the flow path resistance of the entire porous restrictor. Therefore, it is no exaggeration to say that the quality of the blindness determines the performance of the static pressure guide. However, in reality, there are almost no examples where the porous throttle is put to practical use, and the conventional throttle, particularly the surface throttle, is the mainstream of static pressure guide. This itself shows that the technology for controlling the flow path resistance that causes the porous throttle to manifest itself, or the addition of the surface layer throttle is unsolved.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、その目的は新たな流路抵抗制御手段を付与した多孔
質静圧案内の製造方法を提供することにある。
(Object of the Invention) The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object thereof is to provide a method for manufacturing a porous static pressure guide provided with a new flow path resistance control means.

(問題点を解決するための手段) 上記の目的を達成するため、本発明は浮上体と固定体と
からなる静圧案内の製造において、浮上体を多孔質セラ
ミック体で形成し、前記浮上体の表面の第1の領域をメ
ッキ液に浸す工程と、前記浮上体の表面の第1の領域以
外の第2の領域から、前記浮上体を介して、メッキ液の
吸引圧力を制御しながら吸引することにより、前記第1
の領域の表面および多孔質セラミックの内部に被膜を形
成する工程と、ついで前記多孔質体に前記メッキ下地に
到る精密加工を施す工程とを有することを特徴とする多
孔質静圧案内の製造方法を発明の要旨とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention, in the manufacture of a static pressure guide including a levitation body and a fixed body, forms the levitation body with a porous ceramic body, A step of immersing a first area on the surface of the floating body in a plating solution, and sucking the plating solution from a second area other than the first area on the surface of the floating body through the floating body while controlling the suction pressure of the plating solution. By doing the first
And a step of forming a coating on the surface of the porous ceramic and the inside of the porous ceramic, and then subjecting the porous body to precision processing up to the plating base to produce a porous static pressure guide. A method is the subject matter of the invention.

(実施例1) 始めに、無電解メッキについて簡単に説明する。(Example 1) First, electroless plating will be briefly described.

周知の如く、電気メッキは電解液中の金属陽イオンその
ものを外部からの電流作用によって陰極に導いて付着さ
せるが、広義の無電解メッキは外部電流によらず電解液
中の金属陽イオンを還元して析出させるメッキ法のすべ
てを含む総称でもあり、化学メッキと呼ばれることもあ
る。
As is well known, in electroplating, metal cations in the electrolytic solution themselves are guided to and adhere to the cathode by the action of an external current, but electroless plating in a broad sense reduces metal cations in the electrolytic solution regardless of the external current. It is also a generic term that includes all the plating methods for depositing the metal and is sometimes called chemical plating.

無電解メッキの特徴は外部電流によらず電解液中の金属
陽イオンを還元して析出させる点にあるが、この方法に
は異種金属間に固有の電位差を利用した例えば、置換亜
鉛メッキや浸漬金メッキのように、電位の低い金属
(卑)に電位の高い金属(貴)の陽イオンを接触させ、
貴の金属を還元析出させて付着させる方法、並びに、還
元剤の酸化や分解反応に基く還元作用を利用した例え
ば、化学銅メッキや無電解ニッケル(Ni)メッキのよう
に、被メッキ物そのものが触媒となって電解液中の金属
陽イオンを還元し、その表面に金属を析出させて付着さ
せる方法とに大別される。ただし、今日、工業的に重要
な役割を果たしているのは還元法である。
The feature of electroless plating is that metal cations in the electrolytic solution are reduced and deposited without relying on an external current.However, this method uses a potential difference unique to different metals, for example, substitutional zinc plating or immersion. Like gold plating, the cation of a high potential metal (noble) is brought into contact with a low potential metal (base),
The method of depositing the precious metal by reducing and depositing it, and utilizing the reducing action based on the oxidation or decomposition reaction of the reducing agent, for example, chemical copper plating or electroless nickel (Ni) plating It is roughly classified into a method of acting as a catalyst to reduce metal cations in the electrolytic solution, and depositing and depositing a metal on the surface thereof. However, the reduction method plays an important role industrially today.

このように無電解メッキは被メッキ物表面の化学反応に
基くものであるから、電気メッキのように電界強度の高
い所に付着が集中したりせず、極めて均一な厚さにメッ
キできること、並びに電界が存在し得ない個所、例えば
多孔質体内にもメッキできること等、電気メッキとは異
なる特徴を持っている。
As described above, the electroless plating is based on the chemical reaction on the surface of the object to be plated, so that the adhesion does not concentrate at the place where the electric field strength is high like the electroplating, and the plating can be performed to an extremely uniform thickness, and It has characteristics different from electroplating, such as being able to plate even in a place where an electric field cannot exist, for example, in a porous body.

以上、単に無電解メッキと言っても様々な方法が有るこ
とを説明したが、多孔質体の流路抵抗制御手段として還
元法の無電解ニッケルメッキが、中でも特に好適なので
以下無電解ニッケルメッキによる実施例について説明す
る。
As mentioned above, it has been explained that there are various methods even if it is simply referred to as electroless plating, but electroless nickel plating of the reduction method as a flow path resistance control means of the porous body is particularly suitable among them, so Examples will be described.

第1図は本発明に用いられている無電解ニッケルメッキ
(以下Niメッキと言う)の実施例であって、図におい
て、18はメッキされる被多孔質体、19は被多孔質体18の
保持具、20はNiメッキ液21が入っているビーカ、22は温
度計、23は水温式恒温槽で24は水を温めるヒータ、25は
プロペラ式の攪拌器、26は管路27を介して保持具19や真
空ポンプ29と接続されている負圧タンク、28は負圧圧力
計である。また、30、31、及び32は管路27に設けた、そ
れぞれ、流量調整弁、開閉弁A、及び開閉弁Bで、33は
開閉弁Cである。これらの弁は管路27を流れるNiメッキ
液の流量制御、並びに負圧タンク26内の廃液を処理する
ときに使用する。
FIG. 1 shows an example of electroless nickel plating (hereinafter referred to as Ni plating) used in the present invention, in which 18 is a porous body to be plated, and 19 is a porous body 18 to be plated. A holding tool, 20 is a beaker containing the Ni plating solution 21, 22 is a thermometer, 23 is a water temperature type constant temperature bath, 24 is a heater for heating water, 25 is a propeller type agitator, and 26 is a pipe 27. Negative pressure tank 28 connected to the holder 19 and the vacuum pump 29 is a negative pressure manometer. Further, 30, 31, and 32 are a flow rate adjusting valve, an opening / closing valve A, and an opening / closing valve B, respectively, which are provided in the pipe 27, and 33 is an opening / closing valve C. These valves are used when controlling the flow rate of the Ni plating liquid flowing in the pipe line 27 and when treating the waste liquid in the negative pressure tank 26.

このような構をとってあるので、Niメッキ液21の温度、
並びに被多孔質体18内部を流れるNiメッキ液の流量は自
由に製造できる。従って、一旦、被多孔質体18内部を水
で置換した後、流量調整弁30を閉じてメッキ液に被多孔
質体18を投入すれば、被多孔質体18へのNiメッキ液21の
侵入は拡散のみとなる。この場合、メッキ液中のNi陽イ
オンは侵入すればするほど、被多孔質体18内の壁面に付
着して減少するため、メッキは被多孔質体18の表層部分
のみに限定され、ついには被多孔質体18の表面に存在す
る無数の孔は封止される。一方、流量調整弁30を開けて
メッキすれば、Ni陽イオンを含む新たなメッキ液が常に
被多孔質体18内部に補充されるため、被多孔質体18内の
深層部分にもメッキできることになる。しかるに、メッ
キ液の流量は負圧タンク26内の負圧力と流量調整弁30
で、メッキ速度はNiメッキ液21の温度で、メッキ量は時
間でコントロールできる。このため、予めメッキ量と多
孔質体の流路抵抗との関係を求めておけば、メッキ量は
予測でき、場合によっては、メッキ途中で流路抵抗を計
測しながらメッキすることも可能となる。
Since it has such a structure, the temperature of the Ni plating solution 21,
In addition, the flow rate of the Ni plating liquid flowing inside the porous body 18 can be freely manufactured. Therefore, once the inside of the porous body 18 is replaced with water, the flow rate adjusting valve 30 is closed and the porous body 18 is added to the plating solution, and the Ni plating solution 21 enters the porous body 18. Is only diffuse. In this case, the more the Ni cations in the plating solution penetrate, the more they adhere to the wall surface inside the porous body 18 and decrease, so that the plating is limited to only the surface layer portion of the porous body 18, and finally. Innumerable holes existing on the surface of the porous body 18 are sealed. On the other hand, if the flow rate adjusting valve 30 is opened and plating is performed, a new plating solution containing Ni cations is constantly replenished inside the porous body 18, so that the deep layer inside the porous body 18 can be plated. Become. Therefore, the flow rate of the plating solution is the negative pressure in the negative pressure tank 26 and the flow rate adjustment valve 30.
The plating speed can be controlled by the temperature of the Ni plating solution 21, and the plating amount can be controlled by time. Therefore, if the relationship between the plating amount and the flow path resistance of the porous body is obtained in advance, the plating amount can be predicted, and in some cases, it is possible to perform plating while measuring the flow path resistance during plating. .

これらによる効果としては多孔質体の流路抵抗を正確に
制御できること、流路抵抗を表層部で大きくできること
は勿論、深層部でも制御できるので、この分、流路抵抗
の制御域が広がること、或は多孔質体表面の封止メッキ
もできるから封止不要な表面はマスキングすることで多
孔質体に封止面を選択的に形成できること等、塑性変形
を利用した従来技術に比べ流路抵抗の制御性が高まり、
また制御域が広がることは勿論、新たな効果も生ぜしめ
ることになる。
As an effect of these, it is possible to accurately control the flow path resistance of the porous body, it is possible to increase the flow path resistance in the surface layer portion, it is also possible to control in the deep layer portion, so that the control range of the flow path resistance is expanded by this amount, Alternatively, since sealing can be performed on the surface of the porous body, the sealing surface can be selectively formed on the porous body by masking the surface that does not require sealing. Controllability of
In addition to expanding the control range, new effects will also be produced.

さらに、メッキ液の流量を調整すれば、多孔質体の表層
から深層に至るメッキの付着度合が徐々に減少するよう
に変化させることが可能である。また、これは保持具19
に対して被多孔質体18の表裏を逆にセットすれば表層以
外に深層に対してもメッキの付着したものも作成可能で
ある。
Further, by adjusting the flow rate of the plating solution, it is possible to gradually change the degree of plating adhesion from the surface layer to the deep layer of the porous body. Also, this is a holder 19
On the other hand, if the front and back of the porous body 18 are set upside down, it is possible to prepare a material having plating attached to the deep layer as well as the surface layer.

尚、通常の電気メッキでは深層メッキはほとんど不可能
であることは言うまでもない。特にNiメッキは腐食性が
ない点がすぐれている。
Needless to say, deep layer plating is almost impossible with ordinary electroplating. Especially Ni plating is excellent in that it is not corrosive.

(実施例2) つぎに、多孔質体に対するNiメッキの付着形態について
説明する。
(Example 2) Next, the form of adhesion of Ni plating to the porous body will be described.

第2図は焼結多孔質体の断面構造モデルを示したもの
で、図において、34は焼結粒子、35は焼結粒子34間の粒
子結合部、36は焼結粒子34の空胞、即ち、流体の通路で
ある。また第2図(A)は焼結粒子34の中心を通る断面
で、第2図(B)は焼結粒子34の粒子結合部35を通る断
面で、それぞれ切断したときの断面構造である。このよ
うに断面位置によって流体通路36の占める面積が異るか
ら、結局、多孔質体は瓢箪を立体的に連ねたような流体
通路で構成されていると言える。ただし、第2図は理解
を容易にするため、直径の等しい球形の焼結粒子34が整
然と配列した構造で示したが、実際は形状、大きさが異
る焼結粒子34がランダムに配列された構造であり、一様
な流体通路が多孔質体内に形成されているとは限らず、
大小異る流体通路が混在していることになる。
FIG. 2 shows a cross-sectional structural model of a sintered porous body, in which 34 is a sintered particle, 35 is a particle bonding portion between the sintered particles 34, 36 is a void of the sintered particle 34, That is, a fluid passage. Further, FIG. 2 (A) is a cross section passing through the center of the sintered particles 34, and FIG. 2 (B) is a cross section passing through the particle bonding portion 35 of the sintered particles 34, which are cross-sectional structures when cut. Thus, since the area occupied by the fluid passage 36 differs depending on the cross-sectional position, it can be said that the porous body is finally constituted by a fluid passage in which gourds are connected in three dimensions. However, in order to facilitate understanding, FIG. 2 shows a structure in which spherical sintered particles 34 having the same diameter are arranged in an orderly manner, but actually, the sintered particles 34 having different shapes and sizes are randomly arranged. It is a structure and the uniform fluid passage is not always formed in the porous body,
This means that fluid passages of different sizes are mixed.

一方、静圧案内を構成するとき従来の絞りであれば、設
計さえ可能なら所望の流路抵抗の絞りを精密加工によっ
て製作できるが、多孔質絞りは焼結粒子34径の選択自由
度や均一性に限界があり、また多孔質体そのものも独特
な製造技術によるため、所望の流路抵抗を得るのが容易
でない。従って、既成の多孔質素材を用い何らかの手段
で所望の流路抵抗に制御することは勿論、表層部で特に
絞り抵抗が増大するような流路抵抗制御手段が求められ
ることは前述した通りである。
On the other hand, when constructing a static pressure guide, if a conventional throttle can be designed, a throttle with a desired flow path resistance can be manufactured by precision processing if it can be designed, but a porous throttle has a degree of freedom in selection of the sintered particle 34 diameter and uniform. It is not easy to obtain the desired flow path resistance because the porous material itself has a unique manufacturing technology. Therefore, as described above, it is necessary to use the existing porous material to control the flow path resistance to a desired flow path resistance by some means, and also to obtain the flow path resistance control means that particularly increases the throttling resistance in the surface layer portion. .

第3図は本発明のNiメッキを施した多孔質絞り形状の断
面モデルの一例を示すもので、37は多孔質体が一様でな
いため生じる太めの流体通路、38は同様に細めの流体通
路、39はメッキ液の流入側、40は流出側、また、41は多
孔質体内に対するメッキ液の供給量を多くして付着させ
た深層メッキ膜、42はメッキ液の供給量を少なくして付
着させた表層メッキ膜である。
FIG. 3 shows an example of a cross-sectional model of a porous squeezing shape plated with Ni according to the present invention. 37 is a thicker fluid passage caused by unevenness of the porous body, and 38 is a similarly thinned fluid passage. , 39 is the inflow side of the plating solution, 40 is the outflow side, 41 is the deep-layer plating film deposited by increasing the supply rate of the plating solution into the porous body, and 42 is adhered by reducing the supply rate of the plating solution. It is the surface layer plating film which was made to do.

多孔質体内を通過するメッキ液の流量は流入側39と流出
側40との圧力差でコントロールすることは前述の通りで
あるが、この場合、深層、及び表層メッキに拘らずメッ
キ液は抵抗が最小となるように多孔質体内を流れるた
め、当然、メッキ液は抵抗が小さい太めの流体通路37に
集中するから太めの流体通路37には、より深層部までメ
ッキが付着し、細めの流体通路38へのメッキは表層部に
限られることになり、結果として多孔質体における流路
抵抗が均一となるように作用する。ただし、多孔質体表
面の平坦部にはメッキ液が均等に供給される結果、付着
膜厚が一定となるのでメッキ前の加工精度が確保され
る。
As described above, the flow rate of the plating solution passing through the porous body is controlled by the pressure difference between the inflow side 39 and the outflow side 40, but in this case, the plating solution has a resistance regardless of the deep layer and the surface layer plating. Since it flows in the porous body to the minimum, the plating solution naturally concentrates in the thick fluid passage 37 with low resistance, so the thick fluid passage 37 is plated to a deeper layer, and the thin fluid passage is formed. The plating on 38 is limited to the surface layer, and as a result, the flow path resistance in the porous body is made uniform. However, as a result of the plating liquid being uniformly supplied to the flat portion on the surface of the porous body, the deposited film thickness becomes constant, so that the processing accuracy before plating is secured.

加えて、周知のように、Niメッキ膜そのものは耐腐食
性、耐摩耗性、或は耐潤滑性に富んだ硬質膜であり、塑
性変形が起こりにくい膜である。このため、メッキ後で
あっても研削、或は砥粒加工等による多孔質体表面の高
精度加工が可能である。特に多孔質素材にセラミック材
料、例えばアルミナ(Al2O3)、窒化珪素(SiN)、或は
炭化珪素(SiC)等を用いれば、多孔質体そのものも塑
性変形を許さない材料となるので、ダイヤモンド工具を
用いたメッキ下地層に至る超精密加工も実現できるか
ら、加工精度の向上と直結する静圧案内の性能を従来に
比べ、大幅に高めることができる。
In addition, as is well known, the Ni-plated film itself is a hard film that is highly resistant to corrosion, abrasion and lubrication, and is a film that is unlikely to undergo plastic deformation. Therefore, even after the plating, the surface of the porous body can be highly accurately processed by grinding or abrasive grain processing. In particular, if a ceramic material such as alumina (Al 2 O 3 ), silicon nitride (SiN), or silicon carbide (SiC) is used as the porous material, the porous body itself does not allow plastic deformation. Since ultra-precision machining up to the plating underlayer using a diamond tool can also be realized, the performance of the static pressure guide, which is directly linked to the improvement of machining accuracy, can be greatly improved compared to the conventional one.

(発明の効果) 元来静圧案内において、浮上体と固定体との接触面は、
強固かつ表面が滑らかであることが必要である。しか
し、浮上体に金属メッキしただけでは、たとえ、それが
耐腐食性,耐摩耗性,潤滑性に優れたNiメッキ膜であっ
ても、それは平滑なセラミック体には劣るものである。
しかし、本発明のように、下地を多孔質セラミック体か
ら構成した場合、多孔質セラミック体は全く塑性変形を
許さない材料であるので、メッキ後、多孔質体表面のメ
ッキ膜を除去するような『メッキ下地に到る精密加工す
る』ことも可能になり、メッキ後、多孔質セラミック体
を浮上体の接触面に露出させることが可能になる。
(Effects of the Invention) In the static pressure guide, the contact surface between the floating body and the fixed body is originally
It must be strong and have a smooth surface. However, even if the floating body is simply metal-plated, even if it is a Ni-plated film excellent in corrosion resistance, wear resistance, and lubricity, it is inferior to a smooth ceramic body.
However, when the base is made of a porous ceramic body as in the present invention, since the porous ceramic body is a material that does not allow plastic deformation at all, it is necessary to remove the plating film on the surface of the porous body after plating. "Precision processing up to the plating base" is also possible, and after plating, the porous ceramic body can be exposed on the contact surface of the floating body.

しかして、多孔質の『孔』の中は深くまでメッキされる
一方、多孔質体は強固なセラミックから構成されている
ので、超高速に耐え、高い剛性を有し、高精度な位置決
めの可能な浮上体を有する、優れた静圧案内を得ること
ができる。
Then, while the porous "holes" are deeply plated, the porous body is made of a strong ceramic, so it can withstand ultra-high speed, has high rigidity, and enables highly accurate positioning. It is possible to obtain an excellent static pressure guide having a large floating body.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の無電解ニッケルメッキ実施例、第2図
は焼結多孔質体の断面構造モデル、第3図は本発明にお
ける無電解ニッケルメッキを適用した多孔質絞り形状を
示した断面モデル、第4図は従来の静圧案内における絞
りの例を示した断面図、第5図は厚膜多孔質体を用いた
場合の供圧構造の断面図、第6図は薄膜多孔質体を用い
た場合の供圧構造の断面図、第7図は目潰しした多孔質
体における従来の供圧構造の断面図を示す。 1……浮上体 2……浮上面 3……案内面 4……浮上スキマ 5……給気孔 6……オリフィス 7……微小溝 8……多孔質体 9……供圧口 10……開放口 11……封止面 12……矢印A 13……矢印B 14……矢印C 15……矢印D 16……目潰し層 17……矢印E 18……メッキされる被多孔質体 19……被多孔質体の保持具 20……ビーカ 21……Niメッキ液 22……温度計 23……水温式恒温槽 24……ヒータ 25……プロペラ式攪拌器 26……負圧タンク 27……管路 28……負圧圧力計 29……真空ポンプ 30……流量調整弁 31……開閉弁A 32……開閉弁B 33……開閉弁C 34……焼結粒子 35……粒子結合部 36……空胞 37……太めの流体通路 38……細めの流体通路 39……メッキ液の流入側 40……メッキ液の流出側 41……深層メッキ膜 42……表層メッキ膜
FIG. 1 is an embodiment of electroless nickel plating of the present invention, FIG. 2 is a sectional structure model of a sintered porous body, and FIG. 3 is a cross section showing a shape of a porous drawing to which electroless nickel plating of the present invention is applied. A model, FIG. 4 is a cross-sectional view showing an example of a restriction in a conventional static pressure guide, FIG. 5 is a cross-sectional view of a pressure-feeding structure using a thick film porous body, and FIG. 6 is a thin film porous body. FIG. 7 shows a sectional view of the pressure-supplied structure in the case of using the above, and FIG. 1 ...... Floating body 2 ...... Floating surface 3 ...... Guide surface 4 ...... Floating skimmer 5 …… Air supply hole 6 …… Orifice 7 …… Small groove 8 …… Porous body 9 …… Pressurizing port 10 …… Open Mouth 11 ...... Sealing surface 12 ...... Arrow A 13 ...... Arrow B 14 ...... Arrow C 15 ...... Arrow D 16 ...... Blinding layer 17 ...... Arrow E 18 ...... Porous body to be plated 19 ...... Retainer for porous material 20 …… Beaker 21 …… Ni plating solution 22 …… Thermometer 23 …… Water temperature constant temperature bath 24 …… Heater 25 …… Propeller type agitator 26 …… Negative pressure tank 27 …… Pipe Passage 28 …… Negative pressure gauge 29 …… Vacuum pump 30 …… Flow control valve 31 …… Opening valve A 32 …… Opening valve B 33 …… Opening valve C 34 …… Sintered particles 35 …… Particle joint 36 …… Vacuum 37 …… Thick fluid passage 38 …… Thin fluid passage 39 …… Plating solution inflow side 40 …… Plating solution outflow side 41 …… Deep layer plating film 42 …… Surface layer plating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】浮上体と固定体とからなる静圧案内の製造
において、 浮上体を多孔質セラミック体で形成し、前記浮上体の表
面の第1の領域をメッキ液に浸す工程と、 前記浮上体の表面の第1の領域以外の第2の領域から、
前記浮上体を介して、メッキ液の吸引圧力を制御しなが
ら吸引することにより、前記第1の領域の表面および多
孔質セラミックの内部に被膜を形成する工程と、 ついで前記多孔質体に前記メッキ下地に到る精密加工を
施す工程 とを有することを特徴とする多孔質静圧案内の製造方
法。
1. A method of manufacturing a static pressure guide comprising a levitation body and a fixed body, wherein the levitation body is formed of a porous ceramic body, and the first region on the surface of the levitation body is immersed in a plating solution, From the second area other than the first area on the surface of the float,
A step of forming a coating film on the surface of the first region and inside the porous ceramic by suctioning the plating solution through the floating body while controlling the suction pressure of the plating solution; and A method of manufacturing a porous static pressure guide, comprising the step of performing precision processing up to the base.
JP62159737A 1987-06-29 1987-06-29 Method for manufacturing porous static pressure guide Expired - Lifetime JPH0730795B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62159737A JPH0730795B2 (en) 1987-06-29 1987-06-29 Method for manufacturing porous static pressure guide
DE3750904T DE3750904T2 (en) 1987-06-29 1987-09-09 Feed device.
EP87113143A EP0297164B1 (en) 1987-06-29 1987-09-09 Porous static pressure guide
DE3750961T DE3750961T2 (en) 1987-06-29 1987-09-09 Screw drive guide working with static pressure.
US07/095,038 US4793201A (en) 1987-06-29 1987-09-09 Porous static pressure guide
EP90250345A EP0429155B1 (en) 1987-06-29 1987-09-09 Feed mechanism
DE8787113143T DE3778156D1 (en) 1987-06-29 1987-09-09 GUIDE WORKING WITH STATIC PRESSURE MADE OF POROUS MATERIAL.
EP90250344A EP0427363B1 (en) 1987-06-29 1987-09-09 Static pressure lead screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159737A JPH0730795B2 (en) 1987-06-29 1987-06-29 Method for manufacturing porous static pressure guide

Publications (2)

Publication Number Publication Date
JPS646515A JPS646515A (en) 1989-01-11
JPH0730795B2 true JPH0730795B2 (en) 1995-04-10

Family

ID=15700167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159737A Expired - Lifetime JPH0730795B2 (en) 1987-06-29 1987-06-29 Method for manufacturing porous static pressure guide

Country Status (1)

Country Link
JP (1) JPH0730795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871278B1 (en) * 2007-07-02 2008-11-28 경상대학교산학협력단 Constant pressure air bearing spindle system using unidirectional porous metal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763228B2 (en) * 2003-05-23 2011-08-31 キヤノン株式会社 Stage device for electron beam exposure apparatus, positioning method, electron beam exposure apparatus and device manufacturing method
JP5724184B2 (en) * 2010-02-26 2015-05-27 オイレス工業株式会社 Cam follower
JP5705566B2 (en) * 2011-01-31 2015-04-22 京セラ株式会社 Static pressure slider

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127288A (en) * 1974-03-25 1975-10-07
JPS5313330A (en) * 1976-07-22 1978-02-06 Sony Corp Broad band resonance circuit
JPS5356447A (en) * 1976-11-01 1978-05-22 Nippon Telegr & Teleph Corp <Ntt> Porous bearing
JPS571170A (en) * 1980-06-04 1982-01-06 Hitachi Ltd Test operation method for elevator and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871278B1 (en) * 2007-07-02 2008-11-28 경상대학교산학협력단 Constant pressure air bearing spindle system using unidirectional porous metal

Also Published As

Publication number Publication date
JPS646515A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
FI82538C (en) Shutter member of hard material with low coefficient of friction
US4984114A (en) Flying head slider
EP0297164B1 (en) Porous static pressure guide
US5108813A (en) Sliding member
US4856758A (en) Silicon carbide valve elements
US4935313A (en) Process of manufacturing seal members having a low friction coefficient
EP3394457B1 (en) Coating of a system and an associated method thereof
CA2097379C (en) On edge honing devices
CN106893998A (en) A kind of preparation method of the micro- texture diamond coatings blade of ring-type
JPH0730795B2 (en) Method for manufacturing porous static pressure guide
Batham et al. A review on fabrication, grinding performance and failure of micro-grinding tools
US20220145934A1 (en) Diamond surface bearings for sliding engagement with metal surfaces
JPH01127122A (en) Die for forming or coining, sizing sintered parts
CA1338111C (en) Pair of seal members of hard material having a low friction coefficient
GB2391274A (en) Production of lubricant reservoirs in a slide surface
KR100684106B1 (en) Mold for forming disk board
CN206474692U (en) A kind of micro- texture diamond coatings blade structure of ring-type
CN106735080B (en) Continuous extrusion die for aluminum pipe
KR102137793B1 (en) Diamond electrodeposition tool manufacturing method and diamond electrodeposition tool produced thereby
JPH08233121A (en) Faucet valve
CN102601850B (en) Method for processing valve element of silicon carbide ball valve
JPH047400Y2 (en)
KR102743761B1 (en) Multi-layer diamond electrodeposited tool and method for manufacturing the same
JPH0996367A (en) Disc valve
JPH0658434A (en) Ceramic sliding member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13