JPH07304104A - Method and apparatus for forming optically shaped product - Google Patents
Method and apparatus for forming optically shaped productInfo
- Publication number
- JPH07304104A JPH07304104A JP6123083A JP12308394A JPH07304104A JP H07304104 A JPH07304104 A JP H07304104A JP 6123083 A JP6123083 A JP 6123083A JP 12308394 A JP12308394 A JP 12308394A JP H07304104 A JPH07304104 A JP H07304104A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- product
- cured
- laser light
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光硬化性樹脂を用いた
光造形品の形成方法および装置に係り、特に液厚によっ
てレーザ照射条件を制御して高精度の光造形品を得るこ
とができる光造形方法および光造形装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a photofabricated product using a photocurable resin, and in particular, it is possible to obtain a highly accurate photofabricated product by controlling laser irradiation conditions by the liquid thickness. The present invention relates to a stereolithography method and a stereolithography apparatus capable of performing the stereolithography.
【0002】[0002]
【従来の技術】図6は従来の光造形装置を示す概略構成
図である。図において、1は光硬化性樹脂2を収容した
タンクで、タンク1内には駆動装置3によって昇降操作
される成形台4が設けられている。タンク1の上方に
は、レーザ光励起装置5で励起されたレーザ光6をスキ
ャニングデータに従ってスキャンし、レーザ光6をタン
ク1内に導くレーザ光スキャニング装置7が設けられて
いる。レーザ光スキャニング装置7の下方には、タンク
1内に導かれたレーザ光8を光硬化性樹脂2の液面12
上に集光するための集光レンズ9が設けられている。上
記駆動装置3およびレーザ光スキャニング装置7には、
造形しようとする製品の断面形状データを基に、エレベ
ータ駆動データおよびスキャニングデータを作成するC
ADデータ処理装置10が接続されている。上記光造形
装置により製品を作成する際、成形台4を光硬化性樹脂
2の液面12に位置させ、CADデータ処理装置10で
作成したスキャニング装置7により、レーザ光励起装置
5からのレーザ光6をスキャンし、スキャンしたレーザ
光8を集光レンズ9で液面12に集光して光硬化性樹脂
2を成形台4上で製品の断面形状に合わせて硬化させ
る。この断面形状について樹脂の硬化が完了した後、エ
レベータ駆動データに従って成形台4を駆動装置3によ
り微少量降下させるとともに、硬化層の上に液の厚さを
設け、この液厚にスキャニングデータに従ってレーザ光
8をスキャン(照射)し、上記硬化させた断面形状の上
に新たな断面形状の硬化層を連続して形成する。そし
て、この成形台4の降下とレーザ光8のスキャニングと
を繰り返して行い、所望の断面形状を有する光造形品1
1を作製する。2. Description of the Related Art FIG. 6 is a schematic block diagram showing a conventional stereolithography apparatus. In the figure, reference numeral 1 is a tank containing a photocurable resin 2, and a molding table 4 which is operated to be moved up and down by a drive device 3 is provided in the tank 1. Above the tank 1, there is provided a laser light scanning device 7 which scans the laser light 6 excited by the laser light excitation device 5 according to scanning data and guides the laser light 6 into the tank 1. Below the laser beam scanning device 7, the laser beam 8 guided into the tank 1 is exposed to the liquid surface 12 of the photocurable resin 2.
A condenser lens 9 for converging light is provided above. The driving device 3 and the laser light scanning device 7 include:
Create elevator drive data and scanning data based on the cross-sectional shape data of the product to be modeled C
The AD data processing device 10 is connected. When a product is produced by the above-mentioned optical modeling apparatus, the molding table 4 is positioned on the liquid surface 12 of the photocurable resin 2, and the scanning device 7 produced by the CAD data processing device 10 causes the laser light 6 from the laser light excitation device 5 to be emitted. Is scanned, and the scanned laser beam 8 is condensed on the liquid surface 12 by the condenser lens 9 to cure the photocurable resin 2 on the molding table 4 in accordance with the sectional shape of the product. After the curing of the resin for this cross-sectional shape is completed, the molding table 4 is slightly lowered by the driving device 3 according to the elevator driving data, a liquid thickness is provided on the hardening layer, and the laser thickness is set according to the scanning data according to the scanning data. The light 8 is scanned (irradiated), and a cured layer having a new sectional shape is continuously formed on the cured sectional shape. Then, the descending of the molding table 4 and the scanning of the laser beam 8 are repeatedly performed, and the stereolithography product 1 having a desired cross-sectional shape is obtained.
1 is produced.
【0003】上記光造形品11の作製にあったて、光造
形品11のZ方向の形状精度は、成形台4の移動量によ
って決まるが、光硬化層の厚みは、造形形状・温度等の
影響を大きく受けるため、バラツキが生じ、光造形品1
1の品質が悪くなる。In the fabrication of the above-mentioned stereolithography product 11, the shape accuracy of the stereolithography product 11 in the Z direction is determined by the amount of movement of the molding table 4, but the thickness of the photocurable layer depends on the fabrication shape, temperature, etc. Because it is greatly affected, variations occur, and stereolithography product 1
The quality of 1 becomes worse.
【0004】そこで、形成される光硬化層の厚みを正確
に制御するために、光造形品11の側方の成形台4の上
面に光造形品11の硬化層の形成と同時に検出用光硬化
層14を作製し、位置検出装置15で、検出用光硬化層
14の表面位置を検出し、光硬化性樹脂2を供給しなが
ら、成形を行うことによって形状精度や品質の優れた成
形品を得る方法が案出され、特開平2−175134号
公報に開示されている。Therefore, in order to accurately control the thickness of the photo-cured layer to be formed, the photo-cured layer for detection is photo-cured simultaneously with the formation of the cured layer of the photo-molded article 11 on the upper surface of the molding table 4 beside the photo-molded article 11. By forming the layer 14, detecting the surface position of the photocurable layer 14 for detection by the position detection device 15, and performing the molding while supplying the photocurable resin 2, a molded article having excellent shape accuracy and quality can be obtained. A method for obtaining the same has been devised and disclosed in Japanese Patent Laid-Open No. 2-175134.
【0005】[0005]
【発明が解決しようとする課題】前記特開平2−175
134号公報にあっては、検出用光硬化層14の表面位
置を検出し、この検出値を基準として液厚の制御、すな
わち、成形台4を下降させるべき移動量の制御を行って
いる。しかし、液厚を調整して造形をしていくことはで
きるが、光硬化層数が多ければ多いほど、造形品のZ方
向の累積誤差は大きくなる。また、光硬化性樹脂2の液
面12の位置は造形品の体積や温度等の諸条件で変動
し、一定の値を保つことは困難である。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In Japanese Patent Publication No. 134, the surface position of the photocurable layer for detection 14 is detected, and the liquid thickness is controlled based on the detected value, that is, the amount of movement for lowering the molding table 4 is controlled. However, although the liquid thickness can be adjusted for modeling, the larger the number of photo-curing layers, the larger the cumulative error in the Z direction of the modeled product. Further, the position of the liquid surface 12 of the photocurable resin 2 varies depending on various conditions such as the volume and temperature of the shaped product, and it is difficult to maintain a constant value.
【0006】本発明は、上記従来技術の問題点に鑑みて
なされたもので、光硬化層と光硬化性樹脂液の表面位置
を正確に検出し、液厚の値によって自動的にレーザ照射
条件を変えることによって安定した造形を行い、形状精
度や品質の優れた造形品を得ることができる光造形品の
形成方法および装置を提供することを目的とする。The present invention has been made in view of the above problems of the prior art. The surface positions of the photocurable layer and the photocurable resin liquid are accurately detected, and the laser irradiation condition is automatically determined by the value of the liquid thickness. It is an object of the present invention to provide a method and an apparatus for forming a stereolithography product, which can perform stable modeling by changing, and obtain a fabrication product with excellent shape accuracy and quality.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に記載した光造形品の形成方法
は、コンピュータ援用設計システムで設計された製品の
全断面形状のデータから、その一断面形状のデータによ
り、レーザ光をスキャンしてタンク内に収容した光硬化
性樹脂を上記一断面形状に硬化した後、上記一断面形状
と直近する断面形状のデータに従って上記光硬化性樹脂
を硬化した断面形状を上記一断面形状に硬化した樹脂上
に順次連続して形成することにより、上記製品の光造形
品を形成する方法において、硬化された硬化層の表面位
置と光硬化性樹脂液の表面位置から液厚を検出すること
によって各層のレーザ光の照射条件を自動的に制御する
ように構成した。In order to solve the above-mentioned problems, the method for forming a stereolithography product according to claim 1 of the present invention is based on data of all cross-sectional shapes of products designed by a computer-aided design system. According to the data of the one cross-section shape, the photocurable resin stored in the tank by scanning the laser light is cured to the one cross-section shape, and then the photocurability is obtained according to the data of the cross-section shape closest to the one cross-section shape. In the method for forming a stereolithography product of the above-mentioned product by successively forming a resin-cured cross-sectional shape on the resin cured to the above-mentioned one cross-sectional shape, the surface position of the cured layer and the photocurability The laser light irradiation condition of each layer is automatically controlled by detecting the liquid thickness from the surface position of the resin liquid.
【0008】本発明の請求項2に記載した光造形品の成
形装置は、光硬化性樹脂液を収容するタンクと、タンク
内で昇降自在な成形台と、タンクの上方から光硬化性樹
脂液にレーザ光を照射する光照射機構とを備えた光造形
品の形成装置において、光硬化層の表面位置と光硬化性
樹脂液の表面を検出するための検出機構を備えるととも
に、検出機構からの検出信号に基づいてレーザ光の最適
照射条件を制御する制御装置を設けて構成した。According to a second aspect of the present invention, there is provided a molding apparatus for a stereolithography product, comprising: a tank containing a photocurable resin liquid; a molding table that can be raised and lowered in the tank; and a photocurable resin liquid from above the tank. In the apparatus for forming a stereolithography product having a light irradiation mechanism for irradiating a laser beam to the, a detection mechanism for detecting the surface position of the photocurable layer and the surface of the photocurable resin liquid is provided, and A control device for controlling the optimum irradiation condition of the laser light based on the detection signal is provided and configured.
【0009】[0009]
【作用】上記請求項1の構成によれば、硬化された硬化
層の表面位置と光硬化性樹脂液の表面位置を検出するこ
とによって、次に硬化する光硬化性樹脂の液厚を求め、
この液厚の値に基づいてレーザ照射条件が自動的に制御
され、光造形品の形状精度が高められる。According to the structure of the above-mentioned claim 1, by detecting the surface position of the cured cured layer and the surface position of the photocurable resin liquid, the liquid thickness of the photocurable resin to be cured next is determined,
The laser irradiation conditions are automatically controlled based on the value of the liquid thickness, and the shape accuracy of the stereolithography product is improved.
【0010】また、請求項2の構成によれば、検出機構
は、光硬化層の表面位置と光硬化性樹脂の液面高さを正
確に検出し、次に硬化する光硬化性樹脂の液厚を検出す
る。制御装置は、検出機構による液厚の検出値に応じ
て、光硬化性樹脂へのレーザ光照射条件を自動で変更す
る。According to the second aspect of the invention, the detection mechanism accurately detects the surface position of the photocurable layer and the liquid level of the photocurable resin, and then cures the liquid of the photocurable resin. Detect thickness. The control device automatically changes the laser light irradiation condition to the photocurable resin according to the detected value of the liquid thickness by the detection mechanism.
【0011】[0011]
【実施例1】図1は、本発明に係る光造形品の形成装置
の実施例1を示す概略構成図である。なお、図6に示し
た形成装置と同様な構成部分は同一番号を付して、その
説明を省略する。図において、16は光造形品11の上
面13の位置高さおよび光硬化性樹脂2の液面12の位
置を検出するための非接触変位センサである。この非接
触変位センサ16は、高周波電界を発生させて、被測定
面(上面13、液面12)と非接触変位センサ16との
距離に応じた静電容量の変化を検出し、この変化を電圧
変化に置換して変位を計るようになっている。17は、
非接触変位センサ16が光造形品11の上面13の位置
高さと光硬化性樹脂2の液面12の位置を検出するため
に、非接触変位センサ16の水平移動を可能とする駆動
装置である。この駆動装置17は、タンク1の上空から
回避し得るように移動可能な構造となっている。[Embodiment 1] FIG. 1 is a schematic configuration diagram showing Embodiment 1 of an apparatus for forming a stereolithography product according to the present invention. The same components as those of the forming apparatus shown in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted. In the figure, 16 is a non-contact displacement sensor for detecting the height of the position of the upper surface 13 of the stereolithography product 11 and the position of the liquid surface 12 of the photocurable resin 2. The non-contact displacement sensor 16 generates a high-frequency electric field to detect a change in capacitance according to the distance between the surface to be measured (the upper surface 13 and the liquid surface 12) and the non-contact displacement sensor 16, and detects this change. It is designed to measure displacement by replacing it with voltage change. 17 is
The non-contact displacement sensor 16 is a drive device that enables the non-contact displacement sensor 16 to move horizontally in order to detect the position height of the upper surface 13 of the stereolithography product 11 and the position of the liquid surface 12 of the photocurable resin 2. . The drive device 17 has a structure that can be moved so as to avoid it from above the tank 1.
【0012】非接触変位センサ16および駆動装置17
は、CADデータ処理装置10のコンピュータによって
制御される。CADデータ処理装置10のコンピュータ
には、非接触変位センサ16から検出された検出値によ
って、レーザ光の照射条件を設定するプログラムが組み
込まれている。また、レーザ光スキャニング装置7に
は、CADデータ処理装置10からの信号によってレー
ザパワーを自動的に可変する機構を備えている。Non-contact displacement sensor 16 and drive unit 17
Are controlled by the computer of the CAD data processing device 10. The computer of the CAD data processing device 10 incorporates a program for setting irradiation conditions of laser light based on a detection value detected by the non-contact displacement sensor 16. Further, the laser light scanning device 7 is provided with a mechanism for automatically changing the laser power according to a signal from the CAD data processing device 10.
【0013】次に、上記構成からなる形成装置を用いた
光造形品の形成方法の実施例を図1および図2を用いて
説明する。本実施例では、非接触変位センサ16と液面
12の基準とする設定距離を10mmとし、測定範囲を
5mmとするセンサを用いた。Next, an embodiment of a method of forming a stereolithographic product using the forming apparatus having the above-mentioned structure will be described with reference to FIGS. 1 and 2. In the present embodiment, a sensor in which the reference distance between the non-contact displacement sensor 16 and the liquid surface 12 is 10 mm and the measurement range is 5 mm is used.
【0014】まず、段取りとして、光硬化性樹脂2の液
面12の位置をを非接触変位センサ16で検出し、その
後、成形台4を液面12から2〜3mmぐらい上げて、
成形台4の上面4a位置を検出する。この際、成形台4
の上面4aに光硬化性樹脂2が付着しているので、手等
でよく拭き取る。そして、液面12と上面4aで検出さ
れた値の差分だけ成形台4を下降する。これにより、光
硬化性樹脂2の液面12と成形台4の上面4aは一致
し、造形準備完了となる(図2(a)参照)。First, as a setup, the position of the liquid surface 12 of the photocurable resin 2 is detected by the non-contact displacement sensor 16, and then the molding table 4 is raised from the liquid surface 12 by about 2 to 3 mm.
The position of the upper surface 4a of the molding table 4 is detected. At this time, the molding table 4
Since the photocurable resin 2 is attached to the upper surface 4a of the above, it is wiped off well with a hand or the like. Then, the molding table 4 is lowered by the difference between the values detected on the liquid surface 12 and the upper surface 4a. As a result, the liquid surface 12 of the photocurable resin 2 and the upper surface 4a of the molding table 4 coincide with each other, and the preparation for molding is completed (see FIG. 2A).
【0015】次に、成形台4の上面4aに作製する硬化
層のピッチPだけ成形台4を駆動装置3により下降する
(図2(b)参照)。Next, the molding table 4 is lowered by the driving device 3 by the pitch P of the hardened layer formed on the upper surface 4a of the molding table 4 (see FIG. 2B).
【0016】レーザ光励起装置5で励起されたレーザ光
6をスキャニングデータに従ってスキャンしつつ、レー
ザ光スキャニング装置7から成形台4上の光硬化性樹脂
2にレーザ光8の照射し、成形台4の上面4に一層分の
硬化層11aを形成する。本実施例では、ピッチ量をP
=0.1mmとし、レーザパワーを10mWに初期設定
してある。そして、硬化層11aの表面13を非接触変
位センサ16で検出する(図2(c)参照)。While scanning the laser light 6 excited by the laser light exciting device 5 in accordance with the scanning data, the laser light scanning device 7 irradiates the photocurable resin 2 on the molding table 4 with the laser light 8 to cause the molding table 4 to move. A hardened layer 11a for one layer is formed on the upper surface 4. In this embodiment, the pitch amount is P
= 0.1 mm, and the laser power is initially set to 10 mW. Then, the surface 13 of the hardened layer 11a is detected by the non-contact displacement sensor 16 (see FIG. 2C).
【0017】硬化層11aの表面13の位置を検出した
後、成形台4を駆動装置3により1ピッチP(0.1m
m)下降し、光硬化性樹脂2の液面12が平滑になるの
を待って、液面12の検出を行う(図2(d)参照)。After the position of the surface 13 of the hardened layer 11a is detected, the molding table 4 is driven by the drive unit 3 for one pitch P (0.1 m).
m) After descending and waiting for the liquid surface 12 of the photocurable resin 2 to become smooth, the liquid surface 12 is detected (see FIG. 2D).
【0018】検出信号は、CADデータ処理装置10の
コンピュータに送られ、硬化層11aの表面13と液面
12との値から、硬化層11上の液厚Hが検出される
(図2(e)参照)。そして、この液厚Hにより、レー
ザパワーの設定値信号をレーザ光スキャニング装置7に
指令し、この指令に基づいてレーザ光8が照射される。
このとき、液厚Hとレーザパワーは図3に示す関係にな
っている。本実施例では、液厚Hが0.15mmとす
る。この場合、レーザパワーは、図3に示されるように
自動的に12〜13mWに設定される。以下、同様な工
程操作を繰り返して、前硬化層の上に次硬化層を順次積
層して、最終的に所望の光造形品11を形成する。The detection signal is sent to the computer of the CAD data processor 10, and the liquid thickness H on the hardened layer 11 is detected from the values of the surface 13 and the liquid surface 12 of the hardened layer 11a (FIG. 2 (e)). )reference). Then, with this liquid thickness H, a laser power set value signal is instructed to the laser light scanning device 7, and the laser light 8 is irradiated based on this instruction.
At this time, the liquid thickness H and the laser power have the relationship shown in FIG. In this embodiment, the liquid thickness H is 0.15 mm. In this case, the laser power is automatically set to 12 to 13 mW as shown in FIG. Hereinafter, the same process operation is repeated, and the next cured layer is sequentially laminated on the pre-cured layer to finally form the desired stereolithographic article 11.
【0019】(効果)本実施例によれば、各硬化層で、
硬化する液厚に応じてレーザ光照射を最適な条件に制御
することができる。これにより、従来は、Z方向の寸法
精度が0.1〜0.2mmであったのが、本実施例では
0.05mm以下の高精度の光造形品を形成することが
できる。(Effect) According to this embodiment, in each cured layer,
Laser light irradiation can be controlled under optimum conditions according to the thickness of the liquid to be cured. As a result, the dimensional accuracy in the Z direction was 0.1 to 0.2 mm in the related art, but in the present embodiment, it is possible to form an optical modeling product with a high accuracy of 0.05 mm or less.
【0020】[0020]
【実施例2】本実施例の光造形品の成形装置は、実施例
1の成形装置と基本的構成を同じくするので、図示を省
略し、以下の説明においては図1を用いて行う。だだ、
レーザ光スキャニング装置7が、CADデータ処理装置
10の信号によって、レーザ光のスキャン速度を自動的
に可変し得る機構を備えている点が異なっている。[Second Embodiment] The molding apparatus of the present invention has the same basic structure as the molding apparatus of the first embodiment, so that the illustration is omitted and the following description will be made with reference to FIG. It ’s
The difference is that the laser beam scanning device 7 is provided with a mechanism capable of automatically changing the scanning speed of the laser beam in accordance with the signal from the CAD data processing device 10.
【0021】本実施例の光造形品の成形装置を用いた光
造形品の形成方法の実施例を図1および図2を用いて説
明する。本実施例では、ピッチ量を0.1mmとし、レ
ーザスキャン速度を1300mm/sに初期設定してあ
る。実施例1と同様に、硬化層11aの表面13と光硬
化性樹脂2の液面12を検出する。検出信号は、CAD
データ処理装置10のコンピュータに送られ、表面13
と液面12の値(液厚H)から、レーザスキャン速度の
設定値信号をレーザ光スキャニング装置7に指令し、レ
ーザ光8が照射される。このとき、液厚Hとレーザスキ
ャン速度とは、図4に示す関係になっている。本実施例
では、液厚Hが0.15mmとする。この場合、レーザ
スキャン速度は800mm/s〜1200mm/sに設
定される。以下、同様な工程操作を繰り返して、前硬化
層の上に次硬化層を順次積層して、最終的に所望の光造
形品11を形成する。An embodiment of a method for forming a stereolithography product using the molding apparatus for a stereolithography product according to this embodiment will be described with reference to FIGS. 1 and 2. In this embodiment, the pitch amount is set to 0.1 mm and the laser scanning speed is initially set to 1300 mm / s. Similar to the first embodiment, the surface 13 of the hardened layer 11a and the liquid surface 12 of the photocurable resin 2 are detected. The detection signal is CAD
The data is sent to the computer of the data processing device 10, and the surface 13
Based on the value of the liquid surface 12 (liquid thickness H), a laser scanning speed set value signal is commanded to the laser light scanning device 7, and the laser light 8 is emitted. At this time, the liquid thickness H and the laser scanning speed have the relationship shown in FIG. In this embodiment, the liquid thickness H is 0.15 mm. In this case, the laser scan speed is set to 800 mm / s to 1200 mm / s. Hereinafter, the same process operation is repeated, and the next cured layer is sequentially laminated on the pre-cured layer to finally form the desired stereolithographic article 11.
【0022】(効果)本実施例によれば、各硬化層で、
硬化する液厚に応じてレーザ光のスキャン速度を最適な
条件に制御することができる。これにより、従来は、Z
方向の寸法精度が0.1〜0.2mmであったのが、本
実施例では0.05mm以下の高精度で安価な光造形品
を提供することができる。(Effect) According to this embodiment, in each cured layer,
The scanning speed of the laser beam can be controlled to the optimum condition according to the thickness of the liquid to be cured. As a result, conventionally, Z
Although the dimensional accuracy in the direction was 0.1 to 0.2 mm, this embodiment can provide an inexpensive stereolithography product with a high accuracy of 0.05 mm or less.
【0023】[0023]
【実施例3】本実施例の光造形品の成形装置は、実施例
1の成形装置と基本的構成を同じくするので、図示を省
略し、以下の説明においては図1を用いて行う。だだ、
レーザ光スキャニング装置7が、CADデータ処理装置
10の信号によって、レーザ光のパワーとスキャン速度
を並列して自動的に可変し得る機構を備えている点が異
なっている。[Embodiment 3] The molding apparatus of the present invention has the same basic structure as that of the molding apparatus of Embodiment 1. Therefore, the illustration is omitted and the following description will be made with reference to FIG. It ’s
The difference is that the laser beam scanning device 7 is provided with a mechanism capable of automatically varying the power of the laser beam and the scan speed in parallel according to the signal from the CAD data processing device 10.
【0024】本実施例の光造形品の成形装置を用いた光
造形品の形成方法の実施例を図1および図2を用いて説
明する。本実施例では、ピッチ量を0.1mmとし、レ
ーザパワーを10mW、レーザスキャン速度を1300
mm/sに初期設定してある。実施例1と同様に、硬化
層11aの表面13と光硬化性樹脂2の液面12を検出
する。検出信号は、CADデータ処理装置10のコンピ
ュータに送られ、表面13と液面12の値(液厚H)か
ら、レーザパワー、レーザスキャン速度の設定値信号を
レーザ光スキャニング装置7に指令し、レーザ光8が照
射される。このとき、液厚Hとレーザパワー・レーザス
キャン速度は、図5に示す関係になっている。本実施例
では、液厚Hが0.15mmとする。この場合、レーザ
パワーは11〜12mW、レーザスキャン速度は900
mm/s〜1200mm/sに設定される。以下、同様
な工程操作を繰り返して、前硬化層の上に次硬化層を順
次積層して、最終的に所望の光造形品11を形成する。An embodiment of a method for forming a stereolithography product using the molding apparatus for a stereolithography product according to this embodiment will be described with reference to FIGS. 1 and 2. In this embodiment, the pitch amount is 0.1 mm, the laser power is 10 mW, and the laser scanning speed is 1300.
The initial setting is mm / s. Similar to the first embodiment, the surface 13 of the hardened layer 11a and the liquid surface 12 of the photocurable resin 2 are detected. The detection signal is sent to the computer of the CAD data processing device 10, and based on the values (liquid thickness H) of the surface 13 and the liquid surface 12, the laser light and the laser scanning speed set value signals are instructed to the laser light scanning device 7. The laser light 8 is emitted. At this time, the liquid thickness H and the laser power / laser scan speed have the relationship shown in FIG. In this embodiment, the liquid thickness H is 0.15 mm. In this case, the laser power is 11 to 12 mW and the laser scan speed is 900.
It is set to mm / s to 1200 mm / s. Hereinafter, the same process operation is repeated, and the next cured layer is sequentially laminated on the pre-cured layer to finally form the desired stereolithographic article 11.
【0025】(効果)本実施例によれば、各硬化層で、
硬化する液厚に応じてレーザ光のパワーおよびスキャン
速度を最適な条件に制御することができる。これによ
り、実施例2よりも、さらに造形速度が速くなり、高精
度で安価な光造形品を提供することができる。(Effect) According to the present embodiment, in each cured layer,
The power of the laser beam and the scanning speed can be controlled under optimum conditions according to the thickness of the liquid to be cured. As a result, the modeling speed is further increased as compared with the second embodiment, and it is possible to provide a highly accurate and inexpensive optical modeling product.
【0026】なお、本発明は、形状精度や品質の優れた
造形品を得ることができる光造形品の形成方法および装
置を提供することを目的として、以下のように構成こと
ができる。コンピュータ援用設計システムで設計された
製品の全断面形状のデータから、その一断面形状のデー
タにより、レーザ光をスキャンして、タンク内に収容し
た光硬化性樹脂を上記一断面形状に硬化した後、上記一
断面形状と直近する断面形状のデータに従って上記光硬
化性樹脂を硬化した断面形状を上記一断面形状に硬化し
た樹脂上に順次連続して形成することにより、上記製品
の光造形品を形成する方法において、硬化された硬化層
の表面位置と光硬化性樹脂の液面位置から、次に硬化す
る層の液厚を検出することによって各層のレーザ光の照
射条件を、単位面積当たりの照射量により自動的に制御
することを特徴とする光造形品の形成方法。前記レーザ
光の照射条件は、レーザパワーあるいはスキャン速度あ
るいはレーザパワー・スキャン速度のいずれか1つを制
御することを特徴とする光造形品の形成方法。The present invention can be configured as follows for the purpose of providing a method and an apparatus for forming a stereolithography product capable of obtaining a fabrication product excellent in shape accuracy and quality. After the data of the entire cross-sectional shape of the product designed by the computer-aided design system, the laser light is scanned according to the data of the one-sectional shape, and the photocurable resin housed in the tank is cured to the above-mentioned one-sectional shape. , By sequentially forming a cross-sectional shape obtained by curing the photo-curable resin according to the data of the cross-sectional shape closest to the one cross-sectional shape on the resin cured to the one cross-sectional shape, thereby producing a stereolithography product of the product. In the method of forming, from the surface position of the cured cured layer and the liquid surface position of the photocurable resin, the irradiation conditions of the laser light of each layer by detecting the liquid thickness of the layer to be cured next, per unit area A method for forming a stereolithography product, which is characterized by automatically controlling the irradiation amount. The method for forming a stereolithography product, characterized in that any one of laser power, scan speed, or laser power / scan speed is controlled as the irradiation condition of the laser light.
【0027】前記各構成によれば、硬化された硬化層の
表面位置と光硬化性樹脂液の表面位置を検出することに
よって、次に硬化する光硬化性樹脂の液厚を求め、この
液厚の値に基づいてレーザ照射条件が自動的に制御さ
れ、光造形品の形状精度が高められる。According to each of the above-mentioned constitutions, by detecting the surface position of the cured cured layer and the surface position of the photocurable resin liquid, the liquid thickness of the photocurable resin to be cured next is obtained, and this liquid thickness is obtained. The laser irradiation conditions are automatically controlled based on the value of, and the shape accuracy of the stereolithography product is improved.
【0028】光硬化性樹脂液を収容するタンクと、タン
ク内で昇降自在な成形台と、タンクの上方から液面にレ
ーザ光を照射する光照射機構とを備えた光造形品の形成
装置において、光硬化層の表面位置と光硬化性樹脂の液
面を検出するための検出機構を非接触変位センサとし、
この非接触変位センサからの検出信号に基づいて、レー
ザ光の最適照射条件を制御する制御装置を設けているこ
とを特徴とする光造形品の形成装置。前記検出機構は、
静電容量変化を検出する非接触変位計あるいはレーザ系
の検出センサあるいは毛細管を用いたレベル計を用いる
ことを特徴とする光造形品の形成装置。In an apparatus for forming an optical molding product, which is equipped with a tank containing a photo-curable resin liquid, a molding table which can be raised and lowered in the tank, and a light irradiation mechanism for irradiating the liquid surface with laser light from above the tank. , A non-contact displacement sensor as a detection mechanism for detecting the surface position of the photocurable layer and the liquid level of the photocurable resin,
An apparatus for forming a stereolithography product, comprising a control device for controlling an optimum irradiation condition of laser light based on a detection signal from the non-contact displacement sensor. The detection mechanism is
An apparatus for forming a stereolithographic product, characterized by using a non-contact displacement meter for detecting a change in electrostatic capacity, a laser-based detection sensor, or a level meter using a capillary tube.
【0029】前記各構成によれば、検出機構は、光硬化
層の表面位置と光硬化性樹脂の液面高さを正確に検出
し、次に硬化する光硬化性樹脂の液厚を検出する。制御
装置は、検出機構による液厚の検出値に応じて、光硬化
性樹脂へのレーザ光照射条件を自動で変更する。According to each of the above structures, the detection mechanism accurately detects the surface position of the photocurable layer and the liquid level of the photocurable resin, and detects the liquid thickness of the photocurable resin to be cured next. . The control device automatically changes the laser light irradiation condition to the photocurable resin according to the detected value of the liquid thickness by the detection mechanism.
【0030】[0030]
【発明の効果】以上のように、本発明の請求項1の光造
形品の形成方法によれば、硬化層の表面位置と液面の位
置を検出することにより、液厚を正確に知ることがで
き、その液厚をもとにして、レーザ光の照射条件を制御
することができる。従って、複数の光硬化層を積層し
て、光造形品を形成する際に、適正なレーザ光の照射条
件で造形するため、品質性能が安定した精度の高い光造
形品を得ることができる。また、請求項2の光造形品の
製造装置によれば、検出機構によって液厚を検出し、こ
の検出信号に基づいてレーザ光の照射条件を制御するこ
とで、適正なレーザ光の照射条件で造形するため、品質
性能が安定した精度の高い光造形品を得ることができ
る。As described above, according to the method for forming a stereolithography product of the first aspect of the present invention, the liquid thickness can be accurately known by detecting the surface position of the hardened layer and the liquid surface position. It is possible to control the laser light irradiation conditions based on the liquid thickness. Therefore, when a plurality of photo-cured layers are laminated to form a stereolithography product, the stereolithography product is modeled under appropriate laser light irradiation conditions, so that a high-precision stereolithography product with stable quality performance can be obtained. Further, according to the optical-molded article manufacturing apparatus of claim 2, the liquid thickness is detected by the detection mechanism, and the irradiation condition of the laser light is controlled based on the detection signal, so that the irradiation condition of the proper laser light is obtained. Since the molding is performed, it is possible to obtain a highly accurate optical modeling product with stable quality performance.
【図1】本発明に係る光造形品の形成装置の実施例1を
示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a first embodiment of an apparatus for forming a stereolithography product according to the present invention.
【図2】本発明に係る光造形品の成形方法の各実施例を
示す概略工程図である。FIG. 2 is a schematic process drawing showing each embodiment of the method for molding a stereolithography product according to the present invention.
【図3】液厚とレーザパワーとの関係を示す線図であ
る。FIG. 3 is a diagram showing the relationship between liquid thickness and laser power.
【図4】液厚とレーザスキャン速度との関係を示す線図
である。FIG. 4 is a diagram showing a relationship between liquid thickness and laser scanning speed.
【図5】液厚とレーザパワー・レーザスキャン速度との
関係を示す線図である。FIG. 5 is a diagram showing the relationship between liquid thickness and laser power / laser scan speed.
【図6】従来の光造形装置を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a conventional stereolithography apparatus.
1 タンク 2 光硬化性樹脂 3 駆動装置 4 成形台 10 CADデータ処理装置 11 光造形品 12 液面 13 表面 16 非接触変位センサ 17 駆動装置 DESCRIPTION OF SYMBOLS 1 Tank 2 Photocurable resin 3 Driving device 4 Molding table 10 CAD data processing device 11 Optical modeling product 12 Liquid level 13 Surface 16 Non-contact displacement sensor 17 Driving device
Claims (2)
れた製品の全断面形状のデータから、その一断面形状の
データにより、レーザ光をスキャンして、タンク内に収
容した光硬化性樹脂を上記一断面形状に硬化した後、上
記一断面形状と直近する断面形状のデータに従って上記
光硬化性樹脂を硬化した断面形状を上記一断面形状に硬
化した樹脂上に順次連続して形成することにより、上記
製品の光造形品を形成する方法において、硬化された硬
化層の表面位置と光硬化性樹脂の液面位置から、次に硬
化する層の液厚を検出することによって各層のレーザ光
の照射条件を自動的に制御することを特徴とする光造形
品の形成方法。1. From the data of the entire cross-sectional shape of a product designed by a computer-aided design system, the laser light is scanned according to the data of the single cross-sectional shape, and the photo-curable resin contained in the tank is cut into the one cross-section. After being cured into a shape, the above-mentioned product is formed by successively forming the cross-sectional shape obtained by curing the photocurable resin according to the data of the cross-sectional shape closest to the one cross-sectional shape on the resin cured into the one cross-sectional shape. In the method for forming a stereolithography product, the irradiation conditions of the laser light of each layer are detected by detecting the liquid thickness of the layer to be cured next from the surface position of the cured layer and the liquid surface position of the photocurable resin. A method for forming a stereolithography product, which is characterized by automatic control.
ンク内で昇降自在な成形台と、タンクの上方から液面に
レーザ光を照射する光照射機構とを備えた光造形品の形
成装置において、光硬化層の表面位置と光硬化性樹脂の
液面を検出するための検出機構を備えるとともに検出機
構からの検出信号に基づいて、レーザ光の最適照射条件
を制御する制御装置を設けていることを特徴とする光造
形品の形成装置。2. Forming of a stereolithography product comprising a tank containing a photocurable resin liquid, a molding table movable up and down in the tank, and a light irradiation mechanism for irradiating the liquid surface with laser light from above the tank. The device is provided with a detection mechanism for detecting the surface position of the photocurable layer and the liquid surface of the photocurable resin, and a control device for controlling the optimum irradiation condition of the laser light based on the detection signal from the detection mechanism. An apparatus for forming a stereolithography product, which is characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6123083A JPH07304104A (en) | 1994-05-11 | 1994-05-11 | Method and apparatus for forming optically shaped product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6123083A JPH07304104A (en) | 1994-05-11 | 1994-05-11 | Method and apparatus for forming optically shaped product |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07304104A true JPH07304104A (en) | 1995-11-21 |
Family
ID=14851785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6123083A Withdrawn JPH07304104A (en) | 1994-05-11 | 1994-05-11 | Method and apparatus for forming optically shaped product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07304104A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011512275A (en) * | 2008-02-14 | 2011-04-21 | ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Method and system for modeling tangible objects layer by layer |
JP2011514556A (en) * | 2008-02-26 | 2011-05-06 | スリーエム イノベイティブ プロパティズ カンパニー | Multi-photon exposure system |
EP3991945A1 (en) * | 2020-10-30 | 2022-05-04 | Fundació Eurecat | 3d printing device and 3d printing method |
US11806810B2 (en) | 2014-11-14 | 2023-11-07 | Nikon Corporation | Shaping apparatus and shaping method |
US11911844B2 (en) | 2014-11-14 | 2024-02-27 | Nikon Corporation | Shaping apparatus and shaping method |
-
1994
- 1994-05-11 JP JP6123083A patent/JPH07304104A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011512275A (en) * | 2008-02-14 | 2011-04-21 | ネーデルランツ オルガニサティー フォール トゥーゲパストナトゥールヴェテンシャッペリーク オンデルズーク テーエンオー | Method and system for modeling tangible objects layer by layer |
JP2011514556A (en) * | 2008-02-26 | 2011-05-06 | スリーエム イノベイティブ プロパティズ カンパニー | Multi-photon exposure system |
US11806810B2 (en) | 2014-11-14 | 2023-11-07 | Nikon Corporation | Shaping apparatus and shaping method |
US11911844B2 (en) | 2014-11-14 | 2024-02-27 | Nikon Corporation | Shaping apparatus and shaping method |
EP3991945A1 (en) * | 2020-10-30 | 2022-05-04 | Fundació Eurecat | 3d printing device and 3d printing method |
WO2022090451A1 (en) * | 2020-10-30 | 2022-05-05 | Fundació Eurecat | 3d printing device, 3d printing method and 3d tubular objets obtained by said method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0681905B1 (en) | Recoating of stereolithographic layers | |
JP4770838B2 (en) | Manufacturing method of three-dimensional shaped object | |
EP3170590A1 (en) | Non-contact acoustic inspection method for additive manufacturing processes | |
JPH0976353A (en) | Optical shaping apparatus | |
JPH08318574A (en) | Formation of three-dimensional shape | |
JP2004009574A (en) | Light curing molding device, light curing molding method, and light curing molding system | |
JPH02178022A (en) | Forming device of cubic shape | |
JP3515419B2 (en) | Optical three-dimensional molding method and apparatus | |
JPH07304104A (en) | Method and apparatus for forming optically shaped product | |
JPH02113925A (en) | Formation of stereoscopic image | |
CN1900871A (en) | Control system for light hardening quick forming resin level | |
JP2002103459A (en) | Stereolithography device and stereolithography production method | |
JPH05318607A (en) | Optically shaping device | |
JP3782049B2 (en) | Stereolithography method and apparatus therefor | |
JP3948835B2 (en) | Stereolithography method and apparatus therefor | |
JPH0596631A (en) | Method and apparatus for optical shaping | |
JPH04263923A (en) | Method and device for forming three-dimensional object | |
JPH0224121A (en) | Optical shaping method | |
WO2019124526A1 (en) | Stereolithography apparatus, stereolithography program, and stereolithography method | |
WO2006035739A1 (en) | Optical molding device and optical molding method | |
CN114290665B (en) | Photo-curing 3D printing method | |
JPH08238678A (en) | Stereolithography device | |
JP2003181942A (en) | Optical three-dimensional molding method and apparatus | |
JP2000202915A (en) | Sqeegee device for stereo lithographing apparatus, and method therefor | |
JPH0596633A (en) | Optical shaping apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010731 |