[go: up one dir, main page]

JPH07294540A - Magnetism detection device - Google Patents

Magnetism detection device

Info

Publication number
JPH07294540A
JPH07294540A JP4325595A JP4325595A JPH07294540A JP H07294540 A JPH07294540 A JP H07294540A JP 4325595 A JP4325595 A JP 4325595A JP 4325595 A JP4325595 A JP 4325595A JP H07294540 A JPH07294540 A JP H07294540A
Authority
JP
Japan
Prior art keywords
magnetic
bias magnet
vector
bias
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4325595A
Other languages
Japanese (ja)
Other versions
JP3341518B2 (en
Inventor
Masanori Aoyama
正紀 青山
Susumu Azeyanagi
進 畔柳
Ichiro Izawa
一朗 伊澤
Yasuaki Makino
牧野  泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP04325595A priority Critical patent/JP3341518B2/en
Publication of JPH07294540A publication Critical patent/JPH07294540A/en
Application granted granted Critical
Publication of JP3341518B2 publication Critical patent/JP3341518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To provide a magnetism detection device capable of being reduced in size and of preventing a crack of a waveform of varied magnetism. CONSTITUTION:A support plate 1 is provided with a bias magnet 2. The bias magnet 2 generates a magnetic field toward a gear 7. A basic board 3 is stuck to the support plate 1 and is coated with a magnetoresistance element by vaporization. The magnetoresistance element is disposed in parallel to a magnetized face of the bias magnet 2. The magnetoresistance element is disposed in parallel to the N pole magnetized face of the bias magnet 2 and inclined at about 45 degrees with respect to a vector toward a circumferential side thereof. The variation of the vector along the rotation of the gear 7 that is in parallel to the N pole magnetized face of the bias magnet 2 toward the circumferential side in the bias magnetic field causes the variation of the resistance value of the magnetoresistance element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気抵抗素子の抵抗
変化を利用して被検出対象の移動等の運動を検出する磁
気検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detector for detecting movement such as movement of an object to be detected by utilizing a resistance change of a magnetoresistive element.

【0002】[0002]

【従来の技術】従来、磁気抵抗素子を利用したギヤ近接
方式の回転センサが特開平3−195970号公報にて
開示されている。このセンサは、抵抗変化波形の波形割
れ対策が施されている。この技術を、図21を用いて説
明する。基板20には磁気抵抗素子21が蒸着されてい
る。支持板22の一面にはバイアス磁石23が取り付け
られるとともに、支持板22の他の面には基板20がバ
イアス磁石23の着磁面23aに垂直に取り付けられて
いる。さらに、基板20上において磁気抵抗素子21が
バイアス磁石23から発生する磁気ベクトル(着磁面2
3aに垂直な方向の成分BY )に対し所定角度(図21
では45度)傾けて配置されている。そして、ギヤ24
の回転に伴う磁気ベクトルBY の向きの変化を磁気抵抗
素子21にて抵抗変化として検出するようになってい
た。
2. Description of the Related Art Conventionally, a gear proximity type rotation sensor utilizing a magnetoresistive element has been disclosed in Japanese Patent Laid-Open No. 3-195970. This sensor is provided with measures against waveform breakage of the resistance change waveform. This technique will be described with reference to FIG. A magnetoresistive element 21 is vapor-deposited on the substrate 20. The bias magnet 23 is attached to one surface of the support plate 22, and the substrate 20 is attached to the other surface of the support plate 22 perpendicularly to the magnetized surface 23 a of the bias magnet 23. Further, on the substrate 20, the magnetic vector generated by the magnetic resistance element 21 from the bias magnet 23 (magnetization surface 2
The component B Y in the direction perpendicular to 3a) is rotated by a predetermined angle (see FIG. 21).
It is arranged at an angle of 45 degrees. And the gear 24
The change in the direction of the magnetic vector B Y due to the rotation of is detected as the resistance change by the magnetoresistive element 21.

【0003】[0003]

【発明が解決しようとする課題】ところが、基板20
(磁気抵抗素子21)をバイアス磁石23の着磁面23
aに垂直に配置するため、センサがバイアス磁石23の
着磁面23aに垂直な方向に大きくなってしまってい
た。
However, the substrate 20
The (magnetoresistive element 21) is attached to the magnetized surface 23 of the bias magnet 23.
Since the sensor is arranged perpendicular to a, the sensor becomes large in the direction perpendicular to the magnetized surface 23a of the bias magnet 23.

【0004】そこで、この発明の目的は、小型化するこ
とができるとともに抵抗変化波形の波形割れを防止でき
る磁気検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic detection device which can be miniaturized and can prevent the waveform crack of the resistance change waveform.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、着磁面が磁性材料を有する被検出対象に対向し、当
該被検出対象に向けてバイアス磁界を発生するバイアス
磁石と、前記バイアス磁界中に配置された磁気抵抗素子
とを備え、前記磁気抵抗素子にて前記被検出対象の運動
に伴う前記バイアス磁石から前記被検出対象へのバイア
ス磁界の変化により抵抗変化を生じさせるようにした磁
気検出装置において、前記磁気抵抗素子を、前記バイア
ス磁石の着磁面に平行に配置するとともに、前記バイア
ス磁界における前記バイアス磁石の着磁面に平行であっ
て、かつ外周側へ向かう磁気ベクトルあるいは外周側か
ら内方へ向かう磁気ベクトルに対して所定角度傾けて配
置し、前記磁気ベクトルの変化を検出するようにした磁
気検出装置をその要旨とする。
According to a first aspect of the present invention, there is provided a bias magnet, which has a magnetized surface facing a detection target having a magnetic material, and which generates a bias magnetic field toward the detection target. A magnetoresistive element arranged in a bias magnetic field, wherein the magnetoresistive element causes a resistance change due to a change in the bias magnetic field from the bias magnet to the detected object accompanying the movement of the detected object. In the magnetic detection device described above, the magnetoresistive element is arranged parallel to the magnetized surface of the bias magnet, and a magnetic vector parallel to the magnetized surface of the bias magnet in the bias magnetic field and directed toward the outer peripheral side. Alternatively, the magnetic detection device is arranged so as to be inclined at a predetermined angle with respect to the magnetic vector going from the outer circumference side to the inner side so as to detect the change of the magnetic vector. To.

【0006】請求項2に記載の発明は、請求項1に記載
の発明における前記磁気抵抗素子を前記磁気ベクトルに
対して略45度傾けて配置した磁気検出装置をその要旨
とする。
A second aspect of the present invention has as its gist a magnetic detection device in which the magnetoresistive element according to the first aspect of the invention is arranged at an angle of approximately 45 degrees with respect to the magnetic vector.

【0007】請求項3に記載の発明は、請求項1または
2に記載の発明における前記被検出対象の運動方向に対
し前記磁気抵抗素子を30〜150度あるいは210〜
330度回転した位置に配置した磁気検出装置をその要
旨とする。
According to a third aspect of the present invention, the magnetoresistive element is 30 to 150 degrees or 210 to the moving direction of the object to be detected in the first or second aspect of the invention.
The gist is a magnetic detection device arranged at a position rotated by 330 degrees.

【0008】請求項4に記載の発明は、請求項1〜3の
いずれか1項に記載の発明における前記被検出対象の運
動方向に対し前記磁気抵抗素子を90度あるいは270
度回転した位置に配置した磁気検出装置をその要旨とす
る。
According to a fourth aspect of the present invention, the magnetoresistive element is set to 90 degrees or 270 with respect to the movement direction of the object to be detected in the invention according to any one of the first to third aspects.
The gist is a magnetic detection device arranged at a position rotated by a degree.

【0009】請求項5に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記磁気抵抗素子を
バイアス磁石の外周面付近に配置した磁気検出装置をそ
の要旨とする。
A fifth aspect of the present invention has as its gist a magnetic detection device in which the magnetoresistive element according to any one of the first to fourth aspects is arranged near an outer peripheral surface of a bias magnet.

【0010】[0010]

【作用】請求項1に記載の発明によれば、被検出対象が
運動すると、バイアス磁界におけるバイアス磁石の着磁
面に平行であって、かつ外周側へ向かう磁気ベクトルあ
るいは外周側から内方へ向かう磁気ベクトルの向きが変
化する。このベクトルの向きの変化が、バイアス磁石の
着磁面に平行に配置された磁気抵抗素子にて抵抗変化と
して検出される。このとき、磁気抵抗素子がバイアス磁
石の着磁面に平行に配置されているので、磁気抵抗素子
をバイアス磁石の着磁面に垂直に配置した場合に比べ、
バイアス磁石の着磁面に垂直な方向に小さくなる。又、
バイアス磁界におけるバイアス磁石の着磁面に平行であ
って、かつ外周側へ向かう磁気ベクトルあるいは外周側
から内方へ向かう磁気ベクトルに対し、所定角度傾けて
磁気抵抗素子を配置し、前記磁気ベクトルの変化を検出
するようにしているため、抵抗変化波形の波形割れが防
止される。
According to the first aspect of the present invention, when the object to be detected moves, a magnetic vector parallel to the magnetized surface of the bias magnet in the bias magnetic field and directed toward the outer peripheral side or from the outer peripheral side toward the inner side. The direction of the magnetic vector going toward changes. The change in the direction of this vector is detected as a resistance change by the magnetoresistive element arranged in parallel with the magnetized surface of the bias magnet. At this time, since the magnetoresistive element is arranged parallel to the magnetized surface of the bias magnet, compared to the case where the magnetoresistive element is arranged perpendicularly to the magnetized surface of the bias magnet,
It becomes smaller in the direction perpendicular to the magnetized surface of the bias magnet. or,
A magnetic resistance element is arranged at a predetermined angle with respect to a magnetic vector that is parallel to the magnetized surface of the bias magnet in the bias magnetic field and that is directed toward the outer circumference side or inward from the outer circumference side. Since the change is detected, the resistance change waveform is prevented from being broken.

【0011】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、前記磁気ベクトルに対し、
略45度傾けて磁気抵抗素子を配置しているため、抵抗
変化率がベクトルの振れに対して最大値を示すこととな
る。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described in (1),
Since the magnetoresistive element is arranged at an angle of about 45 degrees, the resistance change rate has the maximum value with respect to the vector fluctuation.

【0012】請求項3に記載の発明によれば、請求項1
または2に記載の発明の作用に加え、被検出対象の運動
方向に対し磁気抵抗素子が30〜150度あるいは21
0〜330度回転した位置に配置され、磁気抵抗素子の
抵抗変化率が大きくなる。
According to the invention of claim 3, claim 1
Alternatively, in addition to the function of the invention described in 2, the magnetoresistive element is 30 to 150 degrees or
It is arranged at a position rotated by 0 to 330 degrees, and the resistance change rate of the magnetoresistive element increases.

【0013】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の作用に加え、被検出
対象の運動方向に対し磁気抵抗素子が90度あるいは2
70度回転した位置に配置され、さらに磁気抵抗素子の
抵抗変化率が大きくなる。
According to the invention of claim 4, claim 1
In addition to the operation of the invention described in any one of 1 to 3, the magnetoresistive element is 90 degrees or 2 with respect to the movement direction of the detection target.
It is arranged at a position rotated by 70 degrees, and the resistance change rate of the magnetoresistive element is further increased.

【0014】請求項5に記載の発明は、請求項1〜3の
いずれか1項に記載の発明の作用に加え、磁気抵抗素子
がバイアス磁石の外周面付近に配置され、十分な抵抗変
化率が得られる。
According to a fifth aspect of the present invention, in addition to the operation of the first aspect of the present invention, the magnetoresistive element is arranged near the outer peripheral surface of the bias magnet, and the sufficient resistance change rate is obtained. Is obtained.

【0015】[0015]

【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。図1には、本実施例の磁気回転検出
装置の平面図を示す。又、図2には、図1のA矢視図を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a plan view of a magnetic rotation detecting device of this embodiment. Further, FIG. 2 shows a view as seen from an arrow A in FIG.

【0016】支持板1は長方形をなしている。永久磁石
よりなるバイアス磁石2は円柱形状をなし、バイアス磁
石2の外径は7mmとなっている。バイアス磁石2はそ
の一面がN極に着磁されるとともに、他方の面がS極に
着磁されている。そして、支持板1の一面にバイアス磁
石2の一面(N極着磁面2a)が接着されている。
The support plate 1 has a rectangular shape. The bias magnet 2 made of a permanent magnet has a cylindrical shape, and the outer diameter of the bias magnet 2 is 7 mm. The bias magnet 2 has one surface magnetized to the N pole and the other surface magnetized to the S pole. Then, one surface of the bias magnet 2 (N-pole magnetized surface 2a) is bonded to one surface of the support plate 1.

【0017】図3には、バイアス磁石2のN極着磁面2
aからS極着磁面への磁力線の状態を示す。又、図4に
は、図3のB矢視図を示す。図3に示すように、バイア
ス磁石2のN極着磁面2aから僅かに離れた位置P1に
おいては、磁気ベクトルBは、バイアス磁石2のN極着
磁面2aに対し平行かつ外周側に向かうベクトルB
Xと、バイアス磁石2のN極着磁面2aに垂直な方向の
ベクトルBY とを合成したものとなる。以下、バイアス
磁石2のN極着磁面2aに平行かつ外周側に向かうベク
トルBX を「N極着磁面平行成分ベクトル」というとと
もに、バイアス磁石2のN極着磁面2aに垂直な方向の
ベクトルBY を「N極着磁面垂直成分ベクトル」とい
う。
FIG. 3 shows the N pole magnetized surface 2 of the bias magnet 2.
The state of the magnetic force line from a to the S pole magnetized surface is shown. Further, FIG. 4 shows a view from the arrow B of FIG. As shown in FIG. 3, at a position P1 slightly apart from the N-pole magnetized surface 2a of the bias magnet 2, the magnetic vector B is parallel to the N-pole magnetized surface 2a of the bias magnet 2 and extends toward the outer peripheral side. Vector B
X and the vector B Y in the direction perpendicular to the N-pole magnetized surface 2a of the bias magnet 2 are combined. Hereinafter, the vector B X parallel to the N-pole magnetized surface 2a of the bias magnet 2 and directed to the outer peripheral side will be referred to as "N-pole magnetized surface parallel component vector", and the direction perpendicular to the N-pole magnetized surface 2a of the bias magnet 2 will be described. The vector B Y of is referred to as “N-pole magnetized surface vertical component vector”.

【0018】又、図1に示すように、支持板1のもう一
方の面には、長方形の基板3の一面が接着されている。
基板3の表面には、図5に示すように、2つの磁気抵抗
素子4,5が蒸着にて形成されている。このように、磁
気抵抗素子4,5はバイアス磁石2のN極着磁面2aに
平行に配置されている。
Further, as shown in FIG. 1, one surface of the rectangular substrate 3 is bonded to the other surface of the support plate 1.
As shown in FIG. 5, two magnetoresistive elements 4 and 5 are formed on the surface of the substrate 3 by vapor deposition. Thus, the magnetoresistive elements 4 and 5 are arranged in parallel to the N-pole magnetized surface 2 a of the bias magnet 2.

【0019】磁気抵抗素子4,5は帯状をなし、直線的
に延びている。磁気抵抗素子4,5は、バイアス磁石2
から発生する磁気ベクトルBにおけるN極着磁面平行成
分ベクトルBX の方向(図5でWで示す)に対しそれぞ
れ略プラス・マイナス45度で一対配置されている。こ
の磁気抵抗素子4,5の幅は8μmであり、磁気抵抗素
子4,5の設置位置におけるN極着磁面平行成分ベクト
ルBX とN極着磁面垂直成分ベクトルBY が共に100
ガウス以上のとき磁気抵抗素子4,5が飽和磁界強度以
上となる。
The magnetoresistive elements 4 and 5 are strip-shaped and extend linearly. The magnetoresistive elements 4 and 5 are bias magnets 2.
From the magnetic vector B generated from the magnetic field B, the pair of magnetic poles is arranged at approximately plus / minus 45 degrees with respect to the direction of the N-pole magnetized surface parallel component vector B X (shown by W in FIG. 5). The width of the magnetoresistive elements 4 and 5 is 8 μm, and the N-pole magnetized surface parallel component vector B X and the N-pole magnetized surface vertical component vector B Y at the installation positions of the magnetoresistive elements 4 and 5 are both 100.
When it is Gauss or more, the magnetoresistive elements 4 and 5 have saturation magnetic field strength or more.

【0020】又、図5に示すように、基板3の表面に
は、波形処理回路6が形成されている。さらに、支持板
1には、図1,2に示すように、出力取出し用リード9
が3本設けられ、この出力取出し用リード9にて基板3
の波形処理回路6からの信号が取り出されるようになっ
ている。
Further, as shown in FIG. 5, a waveform processing circuit 6 is formed on the surface of the substrate 3. Further, as shown in FIGS.
3 are provided, and the board 9 is connected by the output lead 9
The signal from the waveform processing circuit 6 is extracted.

【0021】一方、図1に示すように、ギヤ7は磁性材
料を有する被検出対象となっており、ギヤ7には多数の
歯8が形成されている。そして、ギヤ7の歯8に対向す
るように基板3が配置されている。又、図2に示すよう
に、バイアス磁石2の中心はギヤ7の厚さ方向の中心線
上に位置している。磁気抵抗素子4,5の配置位置は、
ギヤ回転方向に対し直角方向(ギヤ回転方向に対し反時
計回りに90°回転した方向)となっている。さらに、
磁気抵抗素子4,5の配置位置は、バイアス磁石2の中
心から0.25〜5.0mmとなっている。
On the other hand, as shown in FIG. 1, the gear 7 is an object to be detected having a magnetic material, and a large number of teeth 8 are formed on the gear 7. The substrate 3 is arranged so as to face the teeth 8 of the gear 7. Further, as shown in FIG. 2, the center of the bias magnet 2 is located on the center line of the gear 7 in the thickness direction. The arrangement positions of the magnetoresistive elements 4 and 5 are
The direction is perpendicular to the gear rotation direction (direction rotated 90 ° counterclockwise to the gear rotation direction). further,
The arrangement position of the magnetoresistive elements 4 and 5 is 0.25 to 5.0 mm from the center of the bias magnet 2.

【0022】つまり、バイアス磁石2の中心から磁気抵
抗素子4,5までの距離は、ギヤ7の厚さtとバイアス
磁石2の径によって決定されるものであり、後述する磁
気ベクトルの振れが発生する範囲で、かつ、磁気抵抗素
子4,5の飽和磁界強度以上の範囲である。
That is, the distance from the center of the bias magnet 2 to the magnetoresistive elements 4 and 5 is determined by the thickness t of the gear 7 and the diameter of the bias magnet 2, and a magnetic vector fluctuation described below occurs. And the saturation magnetic field strength of the magnetoresistive elements 4 and 5 or more.

【0023】このように、バイアス磁石2〜ギヤ7にて
構成される磁気回路中に、その表面に磁気抵抗素子4,
5が蒸着された基板3が配置され、かつ、基板3は、ギ
ヤ面に対向するバイアス磁石2のN極着磁面2aに平行
に配置されている。そして、図5に示すように、磁気ベ
クトルBにおけるN極着磁面平行成分ベクトルBX に対
し磁気抵抗素子4,5がそれぞれ略45°になるように
磁気抵抗素子4,5のなす角は略90°に配置されてい
る。
As described above, in the magnetic circuit composed of the bias magnet 2 to the gear 7, the magnetoresistive element 4 is formed on the surface thereof.
A substrate 3 on which 5 is vapor-deposited is arranged, and the substrate 3 is arranged parallel to the N pole magnetized surface 2a of the bias magnet 2 facing the gear surface. Then, as shown in FIG. 5, the angles formed by the magnetoresistive elements 4 and 5 are such that the magnetoresistive elements 4 and 5 are approximately 45 ° with respect to the N-pole magnetized surface parallel component vector B X in the magnetic vector B, respectively. It is arranged at about 90 °.

【0024】ここで、磁気の検出原理を説明する。本実
施例における磁気抵抗素子4,5が検出する磁気は、磁
気ベクトルBにおけるN極着磁面平行成分ベクトルBX
である。バイアス磁石2のN極着磁面2aに対向するギ
ヤ7がない場合、N極着磁面平行成分ベクトルBX は図
5に示している方向Wとなる。ギヤ7がある場合、ギヤ
7の回転によりギヤ7の歯8に引かれるN極着磁面平行
成分ベクトルBX の方向Wは、W1からW2の範囲で変
化し、バイアス磁石2の中心を基準としたN極着磁面平
行成分ベクトルBX の振れ角(磁気抵抗素子4,5の配
置位置での磁気ベクトルBX の方向変化)は、Δθとな
る。尚、振れ角Δθは、バイアス磁石2と磁気抵抗素子
4,5との距離、および磁気抵抗素子4,5とギヤ7と
の距離に依存する。
Here, the principle of magnetic detection will be described. The magnetism detected by the magnetoresistive elements 4 and 5 in this embodiment is the N-pole magnetized surface parallel component vector B X in the magnetic vector B.
Is. When there is no gear 7 facing the N pole magnetized surface 2a of the bias magnet 2, the N pole magnetized surface parallel component vector B X becomes the direction W shown in FIG. When the gear 7 is present, the direction W of the N-pole magnetized surface parallel component vector B X , which is drawn by the teeth 8 of the gear 7 by the rotation of the gear 7, changes in the range of W1 to W2, and the center of the bias magnet 2 is used as a reference. The deflection angle of the N-pole magnetized surface parallel component vector B X (direction change of the magnetic vector B X at the arrangement position of the magnetoresistive elements 4 and 5) is Δθ. The deflection angle Δθ depends on the distance between the bias magnet 2 and the magnetic resistance elements 4 and 5, and the distance between the magnetic resistance elements 4 and 5 and the gear 7.

【0025】90°の角度(Wに対し45°ずつ)に配
置された一対の磁気抵抗素子4,5は、図6に示すよう
に、磁気ベクトルBにおけるN極着磁面平行成分ベクト
ルB X の振れ角Δθを検知してそれぞれ逆相に抵抗変化
をする。この抵抗変化が同一基板上に設置された波形処
理回路6にて二値化され、ギヤ7の歯8に見合ったパル
スを出力する。
It is arranged at an angle of 90 ° (each 45 ° with respect to W).
The paired magnetoresistive elements 4 and 5 are arranged as shown in FIG.
, The vector parallel to the N-pole magnetized surface in the magnetic vector
Le B XDetects the deflection angle Δθ of each and changes the resistance in opposite phase
do. This resistance change is caused by the waveform processing on the same substrate.
It is binarized by the logic circuit 6 and the pulse corresponding to the teeth 8 of the gear 7
Output.

【0026】このとき、実使用域でのギヤ7と磁気抵抗
素子4,5との距離においては抵抗変化波形に波形割れ
は発生しないことが確認できている。以下に、各種の実
験を行ったので、その結果について説明する。
At this time, it has been confirmed that no waveform crack occurs in the resistance change waveform at the distance between the gear 7 and the magnetic resistance elements 4 and 5 in the actual use range. Various experiments were conducted below, and the results will be described below.

【0027】図7に示すように、ギヤ7の回転方向と基
板3の磁気抵抗素子4,5とでなす反時計回りでの角度
をθとしたときに、このθを変えたときの磁気抵抗素子
4,5の抵抗変化率の測定を行った。その測定結果を、
図10,図11に示す。この測定条件としては、図9に
示すように、バイアス磁石2として希土類系のものを使
用し、径が7mm,厚さが4mmであり、又、バイアス
磁石2の外周面から0.5mm離れた位置に磁気抵抗素
子4,5を配置している。又、図10には、ギヤ7の径
を75mm、ギヤ7の歯8の数を「48」、ギヤ7の厚
さを10mmとした場合の測定結果を示す。又、図11
にはギヤ7の径を85mm、ギヤ7の歯8の数を「4
8」、ギヤ7の厚さを3mmとした場合の測定結果を示
す。さらに、図10,11においては、図1に示すよう
に、磁気抵抗素子4,5とギヤ7との距離Lを、0.5
mm,1.0mm,1.5mmと変えた実験結果を示
す。
As shown in FIG. 7, when the counterclockwise angle formed by the rotation direction of the gear 7 and the magnetic resistance elements 4 and 5 of the substrate 3 is θ, the magnetic resistance when this θ is changed. The resistance change rates of the elements 4 and 5 were measured. The measurement result
This is shown in FIGS. As for the measurement conditions, as shown in FIG. 9, a rare earth magnet was used as the bias magnet 2, the diameter was 7 mm, the thickness was 4 mm, and the bias magnet 2 was separated from the outer peripheral surface by 0.5 mm. Magnetoresistive elements 4 and 5 are arranged at the positions. Further, FIG. 10 shows the measurement results when the diameter of the gear 7 is 75 mm, the number of teeth 8 of the gear 7 is “48”, and the thickness of the gear 7 is 10 mm. Also, FIG.
The gear 7 has a diameter of 85 mm and the number of teeth 8 of the gear 7 is "4.
8 ”, the measurement result when the thickness of the gear 7 is 3 mm is shown. Further, in FIGS. 10 and 11, the distance L between the magnetoresistive elements 4 and 5 and the gear 7 is set to 0.5 as shown in FIG.
The experimental results obtained by changing the values to mm, 1.0 mm, and 1.5 mm are shown.

【0028】この図10,11から、θ=0〜360°
において0,180°,360°以外であれば、抵抗変
化率が得られる。又、波形処理回路6の検出限界が抵抗
変化率で0.2%程度とすると、約30°<θ<150
°及び約210°<θ<330°にてギヤ検出に必要な
抵抗変化率が得られることが分かった。さらに、抵抗変
化率が最も大きな値をとるのは、θ=90及び270°
であることが確認できた。つまり、図8に示すように、
θ=90°とすれば、最大の抵抗変化率を得ることがで
きる。
From these FIGS. 10 and 11, θ = 0 to 360 °
In the case of other than 0, 180 °, and 360 °, the resistance change rate is obtained. Further, assuming that the detection limit of the waveform processing circuit 6 is about 0.2% in resistance change rate, about 30 ° <θ <150
It was found that the resistance change rate required for gear detection can be obtained at 0 ° and about 210 ° <θ <330 °. Furthermore, the highest rate of resistance change is θ = 90 and 270 °.
It was confirmed that That is, as shown in FIG.
When θ = 90 °, the maximum resistance change rate can be obtained.

【0029】このように、パッケージングや組み付け時
のエアギャップ(磁気抵抗素子4,5とギヤ7との距離
L)の取付け誤差を考慮すると、約30°<θ<150
°あるいは約210°<θ<330°となるように、ギ
ヤ7に対し支持板1(磁気抵抗素子4,5)を配置とす
ればよいことが分かった。
In this way, considering the mounting error of the air gap (distance L between the magnetoresistive elements 4 and 5 and the gear 7) at the time of packaging and assembling, about 30 ° <θ <150.
It has been found that the support plate 1 (the magnetoresistive elements 4 and 5) may be arranged with respect to the gear 7 so that the angle becomes approximately 210 ° <θ <330 °.

【0030】従って、図2では、磁気抵抗素子4,5の
配置位置は、ギヤ回転方向に対し直角(θ=90°)と
しているが、30°<θ<150°あるいは210°<
θ<330°の範囲で実施してもよい。
Therefore, in FIG. 2, the magnetic resistance elements 4 and 5 are arranged at right angles (θ = 90 °) to the gear rotation direction, but 30 ° <θ <150 ° or 210 ° <.
It may be carried out in the range of θ <330 °.

【0031】次に、図12に示すように、バイアス磁石
2のN極着磁面から1.2mm離れた位置P2でのN極
着磁面平行成分ベクトルBX とN極着磁面垂直成分ベク
トルBY の測定結果を、図14に示す。ここで、図12
に示すように、バイアス磁石2として、外径が7mm、
厚さが4mmのものを使用している。そして、バイアス
磁石2の中心を基準位置とし、バイアス磁石2の中心か
ら半径方向の距離を図14の横軸にとり、N極着磁面平
行成分ベクトルBX の磁力とN極着磁面垂直成分ベクト
ルBY の磁力とを縦軸にとっている。
Next, as shown in FIG. 12, the N-pole magnetized surface parallel component vector B X and the N-pole magnetized surface perpendicular component at a position P2 1.2 mm away from the N-pole magnetized surface of the bias magnet 2. The measurement result of the vector B Y is shown in FIG. Here, FIG.
As shown in, the bias magnet 2 has an outer diameter of 7 mm,
It has a thickness of 4 mm. Then, with the center of the bias magnet 2 as the reference position and the radial distance from the center of the bias magnet 2 as the horizontal axis in FIG. 14, the magnetic force of the N-pole magnetized surface parallel component vector B X and the N-pole magnetized surface vertical component The vertical axis is the magnetic force of the vector B Y.

【0032】この図14から、N極着磁面平行成分ベク
トルBX の強さは、バイアス磁石2の中心で「0」とな
り最も弱く、中心から離れるにつれて強くなりバイアス
磁石2の外周面で最大値をとり、バイアス磁石2の外周
面よりも遠ざかると徐々に弱くなる。そして、N極着磁
面平行成分ベクトルBX の磁力が±100ガウスより小
さくなるのは、バイアス磁石2の中心から±0.25m
m以内の範囲である。換言すれば、バイアス磁石2の中
心から±0.25mm以内の範囲から外れれば、±10
0ガウス以上の磁力となる。
From FIG. 14, the strength of the N-pole magnetized surface parallel component vector B X becomes “0” at the center of the bias magnet 2 and is weakest, and becomes stronger as the distance from the center increases, and becomes maximum on the outer peripheral surface of the bias magnet 2. It takes a value and becomes gradually weaker as the distance from the outer peripheral surface of the bias magnet 2 increases. The magnetic force of the N-pole magnetized surface parallel component vector B X becomes smaller than ± 100 gauss because it is ± 0.25 m from the center of the bias magnet 2.
The range is within m. In other words, if it is out of the range of ± 0.25 mm from the center of the bias magnet 2, ± 10
The magnetic force is 0 Gauss or more.

【0033】一方、N極着磁面垂直成分ベクトルBY
磁力は、バイアス磁石2の中心で最大値をとり、中心か
ら離れるにつれて弱くなる。そして、バイアス磁石2の
中心から+5.0mm以上離れると+100ガウスより
小さくなる。
On the other hand, the magnetic force of the N-pole magnetized surface vertical component vector B Y has a maximum value at the center of the bias magnet 2 and becomes weaker as the distance from the center increases. When the distance from the center of the bias magnet 2 is +5.0 mm or more, it becomes smaller than +100 gauss.

【0034】よって、N極着磁面平行成分ベクトルBX
とN極着磁面垂直成分ベクトルBYが共に100ガウス
以上となり、磁気抵抗素子4,5が飽和磁界強度以上と
なるためには、磁気抵抗素子4,5をバイアス磁石2の
中心から0.25mm以上離し、かつ、バイアス磁石2
の外周面から1.5mm以内にする必要がある。
Therefore, the N-pole magnetized surface parallel component vector B X
And the N-pole magnetized surface vertical component vector B Y both become 100 gauss or more and the magnetoresistive elements 4 and 5 have the saturation magnetic field strength or more, the magnetoresistive elements 4 and 5 are set to 0. Separated by 25 mm or more and bias magnet 2
Must be within 1.5 mm from the outer peripheral surface of.

【0035】さらに、図15には、図13に示すように
バイアス磁石2の外周面を基準位置とし、ギヤ7の径を
85mm、ギヤ7の歯8の数を「48」、θ=0とした
場合において、バイアス磁石2のN極着磁面から距離
(エアギャップ)を横軸にとり、抵抗変化率を縦軸にと
り、磁気抵抗素子4,5を基準位置から半径方向に距離
を変えた場合の測定結果を示す。
Further, in FIG. 15, the outer peripheral surface of the bias magnet 2 is used as a reference position as shown in FIG. 13, the diameter of the gear 7 is 85 mm, the number of teeth 8 of the gear 7 is “48”, and θ = 0. In this case, when the distance (air gap) from the N pole magnetized surface of the bias magnet 2 is plotted on the horizontal axis and the resistance change rate is plotted on the vertical axis, the magnetic resistance elements 4 and 5 are varied in the radial direction from the reference position. The measurement result of is shown.

【0036】この図15から、磁気抵抗素子4,5の取
付け位置としてバイアス磁石2の外周面付近(+0.5
mm〜−1.5mm)であれば十分に必要な抵抗変化率
を得ることができ、取付けの許容範囲が広いことがわか
った。
From FIG. 15, as the mounting position of the magnetoresistive elements 4 and 5, the vicinity of the outer peripheral surface of the bias magnet 2 (+0.5
(mm to -1.5 mm), it was found that a sufficient resistance change rate could be obtained, and the mounting allowable range was wide.

【0037】従って、図2においては、磁気抵抗素子
4,5の設置位置はバイアス磁石2(直径7mm)の中
心から0.25〜5mmという範囲にしたが、バイアス
磁石2の中心から3.5mmのバイアス磁石2の外周面
付近に規定してもよい。この場合には、その位置が多少
ズレても必要とされる抵抗変化率を得ることができる。
Therefore, in FIG. 2, the installation positions of the magnetoresistive elements 4 and 5 are set to a range of 0.25 to 5 mm from the center of the bias magnet 2 (diameter 7 mm), but 3.5 mm from the center of the bias magnet 2. The bias magnet 2 may be defined near the outer peripheral surface. In this case, the required rate of resistance change can be obtained even if the position is slightly displaced.

【0038】図16,17には、各種のバイアス磁石を
用いた場合におけるN極着磁面平行成分ベクトルB
X (図16)およびN極着磁面垂直成分ベクトルB
Y (図17)の磁力の測定結果を示す。尚、その測定条
件は、図14の測定結果を得る際の条件と同一であり、
図16,17における横軸にはバイアス磁石の中心から
の距離をとっている。
16 and 17, the N-pole magnetized surface parallel component vector B when various bias magnets are used.
X (Fig. 16) and N pole magnetized surface vertical component vector B
The measurement result of the magnetic force of Y (FIG. 17) is shown. The measurement conditions are the same as the conditions for obtaining the measurement results of FIG.
The horizontal axis in FIGS. 16 and 17 indicates the distance from the center of the bias magnet.

【0039】このように本実施例によれば、磁気抵抗素
子4,5を、バイアス磁石2のN極着磁面に平行に配置
するとともに、バイアス磁界におけるバイアス磁石2の
N極着磁面に平行であって、かつ外周側へ向かう磁気ベ
クトルBX に対して所定角度(略90度)傾けて配置
し、磁気ベクトルBX の変化を検出するようにした。よ
って、基板3をバイアス磁石2のN極着磁面に垂直に配
置する場合には構造上センサが着磁面に垂直な方向に大
きくなってしまっていたが、磁気抵抗素子4,5をバイ
アス磁石2のN極着磁面に平行に配置したので、小型化
を図ることができる。つまり、基板3をN極着磁面に平
行に配置することにより基板3をN極着磁面に垂直に配
置するものよりも、構造上、着磁面に垂直な方向に小さ
くすることができる。又、図21に示した従来の装置に
おいては、基板20をバイアス磁石23の着磁面23a
に垂直に保持するための工夫が必要であったが、本実施
例ではバイアス磁石2と支持板1と基板3をそれぞれ平
行に配置するので接着剤などで容易に保持でき、組み付
けも簡単に精度もよくすることができる。
As described above, according to this embodiment, the magnetoresistive elements 4 and 5 are arranged in parallel with the N pole magnetized surface of the bias magnet 2 and are arranged on the N pole magnetized surface of the bias magnet 2 in the bias magnetic field. The magnets are arranged parallel to each other and inclined at a predetermined angle (approximately 90 degrees) with respect to the magnetic vector B X toward the outer peripheral side, and changes in the magnetic vector B X are detected. Therefore, when the substrate 3 is arranged perpendicular to the magnetized surface of the N pole of the bias magnet 2, the sensor is structurally large in the direction perpendicular to the magnetized surface, but the magnetoresistive elements 4 and 5 are biased. Since the magnet 2 is arranged parallel to the magnetized surface of the N pole, the size can be reduced. That is, by arranging the substrate 3 in parallel with the N-polarized surface, the substrate 3 can be structurally made smaller in the direction perpendicular to the N-polarized surface than in the case where the substrate 3 is arranged perpendicularly with the N-polarized surface. . Further, in the conventional apparatus shown in FIG. 21, the substrate 20 is attached to the magnetized surface 23a of the bias magnet 23.
However, in the present embodiment, since the bias magnet 2, the support plate 1 and the substrate 3 are arranged in parallel to each other, they can be easily held with an adhesive or the like, and the assembling can be easily performed with high accuracy. Can also be good.

【0040】さらに、磁気抵抗素子4,5をバイアス磁
界におけるバイアス磁石2のN極着磁面に平行かつ外周
側へ向かう磁気ベクトルBX に対して所定角度(略90
度)傾けて配置したので、抵抗変化波形の波形割れが防
止される。特に、磁気抵抗素子4,5を磁気ベクトルB
X に対して略45度傾けて配置したので、抵抗変化率が
ベクトルの振れに対して最大値を示すこととなり、抵抗
変化率を大きくすることができる。
Further, the magnetoresistive elements 4 and 5 are parallel to the magnetized surface of the N pole of the bias magnet 2 in the bias magnetic field and are at a predetermined angle (approximately 90) with respect to the magnetic vector B X directed toward the outer peripheral side.
Since it is arranged so as to be inclined, the resistance change waveform is prevented from being broken. In particular, the magnetic resistance elements 4 and 5 are connected to the magnetic vector B.
Since they are arranged at an angle of approximately 45 degrees with respect to X , the resistance change rate has the maximum value with respect to the vector fluctuation, and the resistance change rate can be increased.

【0041】又、ギヤ7の回転方向に対し磁気抵抗素子
4,5を30〜150度あるいは210〜330度回転
した位置に配置したので、抵抗変化率が大きくなり、確
実に抵抗変化率を確保することができる。
Further, since the magnetoresistive elements 4 and 5 are arranged at the positions rotated by 30 to 150 degrees or 210 to 330 degrees with respect to the rotation direction of the gear 7, the rate of resistance change becomes large and the rate of resistance change is surely secured. can do.

【0042】さらに、ギヤ7の回転方向に対し磁気抵抗
素子4,5を90度あるいは270度回転した位置に配
置したので、さらに抵抗変化率が大きくなる。又、磁気
抵抗素子4,5の配置位置として、バイアス磁石2の中
心から必要なベクトルBX が得られるだけ離れて、かつ
バイアス磁石2の外周から必要なベクトルBY が得られ
るように離れすぎない範囲、即ち、バイアス磁石2の中
心から0.25mm以上離れて外周面から1.5mm以
上離れない範囲とした。よって、磁界強度が磁気抵抗素
子4,5の飽和磁界強度以上(BX ,BY とも100ガ
ウス以上)あり、ギヤ7の回転による磁気ベクトルBX
の変化が得られる。
Further, since the magnetoresistive elements 4 and 5 are arranged at positions rotated by 90 degrees or 270 degrees with respect to the rotation direction of the gear 7, the rate of resistance change is further increased. Further, the magnetoresistive elements 4 and 5 are arranged so that the necessary vector B X is obtained from the center of the bias magnet 2 and the required vector B Y is obtained from the outer circumference of the bias magnet 2 too far. The range was set to be 0.25 mm or more from the center of the bias magnet 2 and not more than 1.5 mm from the outer peripheral surface. Accordingly, the magnetic field strength is equal to or higher than the saturation magnetic field strength of the magnetoresistive elements 4 and 5 (both B X and BY are 100 Gauss or more), and the magnetic vector B X due to the rotation of the gear 7 is increased.
Can be obtained.

【0043】特に、バイアス磁石2の外周面付近に磁気
抵抗素子4,5を配置することにより取付けの際に多少
の位置ズレがあっても十分な抵抗変化率が得られる。
又、図5に示すように、2つの磁気抵抗素子4,5を所
定の磁気ベクトルに対して近接配置して所定の磁気ベク
トルの変化を検出するようにしているので、磁気ベクト
ルの変化を安定して検出することができるとともに、一
つの基板上に磁気抵抗素子を形成する場合に基板面積を
小さくできる。
In particular, by disposing the magnetoresistive elements 4 and 5 near the outer peripheral surface of the bias magnet 2, a sufficient resistance change rate can be obtained even if there is some positional deviation during mounting.
Further, as shown in FIG. 5, the two magnetoresistive elements 4 and 5 are arranged close to a predetermined magnetic vector to detect a change in the predetermined magnetic vector, so that the change in the magnetic vector is stabilized. In addition to the above, the substrate area can be reduced when the magnetoresistive element is formed on one substrate.

【0044】この発明の他の態様を以下に説明する。上
記実施例では図5に示したように磁気抵抗素子4,5を
磁気ベクトルBX の方向(W)に対し略プラス・マイナ
ス45°の方向に延びるように配置したが、45°でな
くてもよく、例えば、図18に示すように、磁気ベクト
ルBX の方向(W)に対し磁気抵抗素子4,5をプラス
・マイナス60°の方向に延びるように配置したり、図
19に示すように、磁気ベクトルBX の方向(W)に対
し磁気抵抗素子4,5をプラス・マイナス135°の方
向に延びるように配置したり、さらには、図20に示す
ように、磁気ベクトルBX の方向(W)に対し磁気抵抗
素子4,5を互いに異なる角度で配置してもよい(図2
0では磁気抵抗素子4を45°で、磁気抵抗素子5を6
0°で配置している)。尚、図19に示すように、磁気
ベクトルBX の方向(W)に対し磁気抵抗素子4,5を
プラス・マイナス135°の方向に延びるように配置す
るということは、磁気ベクトルBX と磁気抵抗素子4,
5とでなす角度が45°となっていることを意味し、磁
気抵抗素子4,5を磁気ベクトルBX に対して45度傾
けて配置したこととなる。
Another aspect of the present invention will be described below. In the above embodiment, the magnetoresistive elements 4 and 5 are arranged so as to extend in the direction of approximately plus / minus 45 ° with respect to the direction (W) of the magnetic vector B X as shown in FIG. 5, but not 45 °. Alternatively, for example, as shown in FIG. 18, the magnetoresistive elements 4 and 5 may be arranged so as to extend in the plus / minus 60 ° direction with respect to the direction (W) of the magnetic vector B X , or as shown in FIG. in, or arranged to extend the magneto-resistance elements 4 and 5 in the direction of plus or minus 135 ° to the direction of the magnetic vector B X (W), further, as shown in FIG. 20, the magnetic vector B X The magnetoresistive elements 4 and 5 may be arranged at different angles with respect to the direction (W) (see FIG. 2).
At 0, the magnetoresistive element 4 is at 45 ° and the magnetoresistive element 5 is at 6 °.
It is placed at 0 °). As shown in FIG. 19, that is disposed so as to extend the magneto-resistance elements 4 and 5 in the direction of plus or minus 135 ° to the direction of the magnetic vector B X (W), the magnetic vector B X and the magnetic Resistance element 4,
This means that the angle formed by 5 and 45 is 45 °, and the magnetoresistive elements 4 and 5 are arranged at an angle of 45 ° with respect to the magnetic vector B X.

【0045】即ち、本発明は、特開平3−195970
号公報に示されている磁気検出装置と同等の思想を適用
したものであって、磁気抵抗素子の形成面に平行な面内
にて変化する磁気ベクトルを検出するようにすること
で、抵抗変化によって得られる検出信号を波形処理回路
6にて2値化するとき、被検出体と磁気検出素子との間
のエアギャップが狭まった際に出力パルスが倍になって
しまうという波形割れ現象を防止できるようにしたもの
である。従って、上記実施例において、磁気抵抗素子
4,5と磁気ベクトルBX の方向(同一径方向)との角
度が45°でなくてもよく、被検出体の動きに応じて変
化する磁気ベクトルとなす角度が異なるように、磁気抵
抗素子4と5を配置するようにすればよい。ただ、上記
公報にもあるように、図5に示すように方向Wを中心と
して磁気ベクトルBX がW1からW2の範囲で振れる場
合、前記角度を45°(あるいは135°)とすると、
磁気抵抗素子の抵抗変化率が最も大きいため、45°配
置にすることが最もよい。さらに、磁気抵抗素子4と5
とのなす角度が90°となるため、2つの磁気抵抗素子
の抵抗変化の方向が逆位相となり、出力電圧が最も大き
くとれるようになる。
That is, the present invention is disclosed in JP-A-3-195970.
The idea equivalent to the magnetic detection device shown in the publication is applied, and the resistance change is detected by detecting the magnetic vector changing in the plane parallel to the formation surface of the magnetoresistive element. When the detection signal obtained by the above is binarized by the waveform processing circuit 6, the waveform breaking phenomenon in which the output pulse is doubled when the air gap between the object to be detected and the magnetic detection element is narrowed is prevented. It was made possible. Therefore, in the above embodiment, the angle between the magnetoresistive elements 4 and 5 and the direction of the magnetic vector B X (the same radial direction) does not have to be 45 °, and the magnetic vector that changes according to the movement of the detected object The magnetoresistive elements 4 and 5 may be arranged so that the formed angles are different. However, as described in the above publication, when the magnetic vector B X swings in the range of W1 to W2 around the direction W as shown in FIG. 5, when the angle is 45 ° (or 135 °),
Since the magnetoresistive element has the highest rate of resistance change, it is best to arrange it at 45 °. Further, the magnetoresistive elements 4 and 5
Since the angle formed by and is 90 °, the directions of resistance changes of the two magnetoresistive elements are in opposite phases, and the output voltage can be maximized.

【0046】又、上記実施例ではバイアス磁石2のN極
着磁面をギヤ1に対向させ、バイアス磁石2の外周側へ
向かう磁気ベクトルBX を用いて磁気検出を行ったが、
バイアス磁石2のS極着磁面を被検出対象(ギヤ1)に
対向させ、バイアス磁石2の外周側から着磁面の中央へ
向かう磁気ベクトルを用いて磁気検出を行ってもよい。
即ち、磁気抵抗素子4,5を、バイアス磁石2の着磁面
に平行に配置するとともに、被検出対象に対向するバイ
アス磁石の着磁面に平行でかつ外周側から内方へ向かう
磁気ベクトルに対して所定角度傾けて配置し、前記磁気
ベクトルの変化を検出するようにしてもよい。
In the above embodiment, the N pole magnetized surface of the bias magnet 2 is opposed to the gear 1 and the magnetic vector B X toward the outer circumference of the bias magnet 2 is used for magnetic detection.
The S pole magnetized surface of the bias magnet 2 may be opposed to the object to be detected (gear 1) and magnetic detection may be performed using a magnetic vector from the outer peripheral side of the bias magnet 2 toward the center of the magnetized surface.
That is, the magnetoresistive elements 4 and 5 are arranged parallel to the magnetized surface of the bias magnet 2, and the magnetic vector parallel to the magnetized surface of the bias magnet facing the object to be detected and directed inward from the outer peripheral side is provided. Alternatively, they may be arranged at a predetermined angle to detect a change in the magnetic vector.

【0047】又、上記実施例ではバイアス磁石として、
円柱形のものを用いたが、バイアス磁石の形状として他
の形状のものでもよく、磁石中心から外周側に磁気ベク
トルが発生しているものならばよい。
Further, in the above embodiment, as the bias magnet,
Although the cylindrical shape is used, the bias magnet may have another shape as long as a magnetic vector is generated from the magnet center to the outer peripheral side.

【0048】[0048]

【発明の効果】以上詳述したように請求項1に記載の発
明によれば、小型化することができるとともに抵抗変化
波形の波形割れを防止できる。
As described in detail above, according to the invention described in claim 1, it is possible to reduce the size and prevent the waveform breakage of the resistance change waveform.

【0049】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、抵抗変化率を大きくするこ
とができる。請求項3に記載の発明によれば、請求項1
に記載の発明の効果に加え、抵抗変化率を大きくでき
る。
According to the invention of claim 2, claim 1
In addition to the effect of the invention described in (1), the rate of resistance change can be increased. According to the invention of claim 3, claim 1
In addition to the effect of the invention described in (1), the rate of resistance change can be increased.

【0050】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の効果に加え、さらに
抵抗変化率を大きくできる。請求項5に記載の発明によ
れば、請求項1〜4のいずれか1項に記載の発明の効果
に加え、磁気抵抗素子の設置位置が多少ズレても十分な
抵抗変化率が得られる。
According to the invention of claim 4, claim 1
In addition to the effect of the invention described in any one of 1 to 3, the rate of resistance change can be further increased. According to the invention described in claim 5, in addition to the effect of the invention described in any one of claims 1 to 4, a sufficient resistance change rate can be obtained even if the installation position of the magnetoresistive element is slightly deviated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の磁気回転検出装置の平面図。FIG. 1 is a plan view of a magnetic rotation detection device according to an embodiment.

【図2】図1のA矢視図。FIG. 2 is a view on arrow A in FIG.

【図3】バイアス磁石の磁力線を示す側面図。FIG. 3 is a side view showing magnetic lines of force of a bias magnet.

【図4】図3のB矢視図。FIG. 4 is a view on arrow B of FIG.

【図5】基板の平面図。FIG. 5 is a plan view of a substrate.

【図6】作用を説明するための波形図。FIG. 6 is a waveform chart for explaining the operation.

【図7】ギヤと磁気抵抗素子との配置関係を説明するた
めの説明図。
FIG. 7 is an explanatory diagram for explaining a positional relationship between a gear and a magnetoresistive element.

【図8】ギヤと磁気抵抗素子との配置関係を説明するた
めの説明図。
FIG. 8 is an explanatory diagram for explaining a positional relationship between a gear and a magnetoresistive element.

【図9】バイアス磁石と磁気抵抗素子との配置を示す配
置図。
FIG. 9 is an arrangement diagram showing an arrangement of a bias magnet and a magnetoresistive element.

【図10】素子配置角θに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 10 is a graph showing the measurement results of the resistance change rate with respect to the element arrangement angle θ.

【図11】素子配置角θに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 11 is a graph showing the measurement results of the resistance change rate with respect to the element arrangement angle θ.

【図12】バイアス磁石の側面図。FIG. 12 is a side view of a bias magnet.

【図13】バイアス磁石の側面図。FIG. 13 is a side view of a bias magnet.

【図14】磁石中心からの距離に対する磁力の測定結果
を示すグラフ。
FIG. 14 is a graph showing the measurement results of the magnetic force with respect to the distance from the center of the magnet.

【図15】エアギャップに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 15 is a graph showing the measurement results of the resistance change rate with respect to the air gap.

【図16】磁石中心からの距離に対するBX 磁力の測定
結果を示すグラフ。
FIG. 16 is a graph showing the measurement results of B X magnetic force with respect to the distance from the magnet center.

【図17】磁石中心からの距離に対するBY 磁力の測定
結果を示すグラフ。
FIG. 17 is a graph showing the measurement results of the B Y magnetic force with respect to the distance from the magnet center.

【図18】別例の基板平面図。FIG. 18 is a plan view of another example of the substrate.

【図19】別例の基板平面図。FIG. 19 is a plan view of another example of the substrate.

【図20】別例の基板平面図。FIG. 20 is a plan view of another example of the substrate.

【図21】従来の回転センサの平面図。FIG. 21 is a plan view of a conventional rotation sensor.

【符号の説明】[Explanation of symbols]

2…バイアス磁石、3…基板、4,5…磁気抵抗素子、
7…被検出対象としてのギヤ
2 ... Bias magnet, 3 ... Substrate, 4, 5 ... Magnetoresistive element,
7 ... Gear to be detected

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 泰明 愛知県刈谷市昭和町1丁目1番地 日本電 装 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuaki Makino 1-1-1, Showa-cho, Kariya city, Aichi prefecture Nihon Denso Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 着磁面が磁性材料を有する被検出対象に
対向し、当該被検出対象に向けてバイアス磁界を発生す
るバイアス磁石と、 前記バイアス磁界中に配置された磁気抵抗素子とを備
え、 前記磁気抵抗素子にて前記被検出対象の運動に伴う前記
バイアス磁石から前記被検出対象へのバイアス磁界の変
化により抵抗変化を生じさせるようにした磁気検出装置
において、 前記磁気抵抗素子を、前記バイアス磁石の着磁面に平行
に配置するとともに、前記バイアス磁界における前記バ
イアス磁石の着磁面に平行であって、かつ外周側へ向か
う磁気ベクトルあるいは外周側から内方へ向かう磁気ベ
クトルに対して所定角度傾けて配置し、前記磁気ベクト
ルの変化を検出するようにしたことを特徴とする磁気検
出装置。
1. A bias magnet, which has a magnetized surface facing a detection target having a magnetic material, generates a bias magnetic field toward the detection target, and a magnetoresistive element arranged in the bias magnetic field. A magnetic detection device configured to generate a resistance change by a change of a bias magnetic field from the bias magnet to the detection target with the movement of the detection target in the magnetic resistance element, For the magnetic vector that is arranged parallel to the magnetized surface of the bias magnet and that is parallel to the magnetized surface of the bias magnet in the bias magnetic field and that is directed toward the outer circumference side or toward the inner side from the outer circumference side. A magnetic detection device, wherein the magnetic detection device is arranged at a predetermined angle so as to detect a change in the magnetic vector.
【請求項2】 前記磁気抵抗素子を前記磁気ベクトルに
対して略45度傾けて配置したことを特徴とする請求項
1に記載の磁気検出装置。
2. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged so as to be inclined by about 45 degrees with respect to the magnetic vector.
【請求項3】 前記被検出対象の運動方向に対し前記磁
気抵抗素子を30〜150度あるいは210〜330度
回転した位置に配置したことを特徴とする請求項1また
は2に記載の磁気検出装置。
3. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged at a position rotated by 30 to 150 degrees or 210 to 330 degrees with respect to the movement direction of the object to be detected. .
【請求項4】 前記被検出対象の運動方向に対し前記磁
気抵抗素子を90度あるいは270度回転した位置に配
置したことを特徴とする請求項1〜3のいずれか1項に
記載の磁気検出装置。
4. The magnetic detection according to claim 1, wherein the magnetoresistive element is arranged at a position rotated by 90 degrees or 270 degrees with respect to the movement direction of the object to be detected. apparatus.
【請求項5】 前記磁気抵抗素子をバイアス磁石の外周
面付近に配置したことを特徴とする請求項1〜4のいず
れか1項に記載の磁気検出装置。
5. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged near an outer peripheral surface of a bias magnet.
JP04325595A 1994-03-02 1995-03-02 Magnetic detector Expired - Lifetime JP3341518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04325595A JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-32693 1994-03-02
JP3269394 1994-03-02
JP04325595A JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Publications (2)

Publication Number Publication Date
JPH07294540A true JPH07294540A (en) 1995-11-10
JP3341518B2 JP3341518B2 (en) 2002-11-05

Family

ID=26371273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04325595A Expired - Lifetime JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Country Status (1)

Country Link
JP (1) JP3341518B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042259A (en) * 2010-08-17 2012-03-01 Hamamatsu Koden Kk Correction method for magnetic sensor and evaluation method of magnetic sensor
WO2015174409A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Magnetic sensor device
WO2015190468A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Magnetic sensor device
WO2016013650A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Magnetic sensor device
WO2016170887A1 (en) * 2015-04-24 2016-10-27 日本電産サンキョー株式会社 Magnetic sensor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042259A (en) * 2010-08-17 2012-03-01 Hamamatsu Koden Kk Correction method for magnetic sensor and evaluation method of magnetic sensor
WO2015174409A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Magnetic sensor device
US10001532B2 (en) 2014-05-13 2018-06-19 Mitsubishi Electric Corporation Magnetic sensor device
CN106461740A (en) * 2014-05-13 2017-02-22 三菱电机株式会社 Magnetic sensor device
JPWO2015174409A1 (en) * 2014-05-13 2017-04-20 三菱電機株式会社 Magnetic sensor device
JPWO2015190468A1 (en) * 2014-06-11 2017-04-20 三菱電機株式会社 Magnetic sensor device
WO2015190468A1 (en) * 2014-06-11 2015-12-17 三菱電機株式会社 Magnetic sensor device
US10019863B2 (en) 2014-06-11 2018-07-10 Mitsubishi Electric Corporation Magnetic sensor device
WO2016013650A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Magnetic sensor device
JPWO2016013650A1 (en) * 2014-07-25 2017-04-27 三菱電機株式会社 Magnetic sensor device
US10353021B2 (en) 2014-07-25 2019-07-16 Mitsubishi Electric Corporation Magnetic sensor device
JP2016206070A (en) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 Magnetic sensor device
WO2016170887A1 (en) * 2015-04-24 2016-10-27 日本電産サンキョー株式会社 Magnetic sensor device

Also Published As

Publication number Publication date
JP3341518B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US10175062B2 (en) Out of shaft magnetic angle sensing system
KR100810784B1 (en) Sensor for the detection of the direction of a magnetic field
US5644226A (en) Magnetic detector having a bias magnet and magnetoresistive elements shifted away from the center of the magnet
US20150061654A1 (en) Rotation detector
US9052185B2 (en) Rotation detecting device
JPH08178937A (en) Magnetism detecting device
JPH07294540A (en) Magnetism detection device
JP3102268B2 (en) Magnetic detector
JP2002357454A (en) Rotation detector
JP6455314B2 (en) Rotation detector
WO2016171059A1 (en) Position detecting device and structure for using position detecting device
JPH01244314A (en) rotary positioner
US7042209B2 (en) Measuring device for detecting a rotation angle in a contactless manner
JP2006250580A (en) Magnetic detection device
JP2006084416A (en) Moving body position detection device
WO2022259462A1 (en) Magnetic detection device
JP2004037236A (en) Rotation angle detecting device
JPH09287911A (en) Apparatus for detecting rotational shift
JP2007093532A (en) Magnetic sensor device
US20240248157A1 (en) Magnetic sensor and magnetic detection system
JP2003004412A (en) Rotary angle detector
JP5454204B2 (en) Angle sensor
JPS59157514A (en) Magnetic rotation sensor
JP5012424B2 (en) Rotation angle detection device and rotation angle detection method
JP4992641B2 (en) Rotation angle detection device and rotation angle detection method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term