JPH01244314A - rotary positioner - Google Patents
rotary positionerInfo
- Publication number
- JPH01244314A JPH01244314A JP7264588A JP7264588A JPH01244314A JP H01244314 A JPH01244314 A JP H01244314A JP 7264588 A JP7264588 A JP 7264588A JP 7264588 A JP7264588 A JP 7264588A JP H01244314 A JPH01244314 A JP H01244314A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- rotary positioner
- path structure
- leakage
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
円環形状の磁性部材に永久磁石を設けた閉磁路構造体と
、その閉磁路構造体からの漏洩磁界を検知する磁気セン
サとを具えた回転ポジショナの構成に関し、
漏洩磁界を検知する磁気センサの検知出力を増大し安定
にさせる高性能化を目的とし、磁性部材が、永久磁石か
ら離れるに従って連続的に断面積を減少する形状とした
ことを特徴とし、並びに、磁気センサの磁気検出用磁性
体パターンの内部磁化方向が、検出角度範囲内において
、漏洩磁界と同一方向であることを特徴とし、さらには
、回転ポジショナを磁気シールド部材で覆ったことを特
徴とし構成する。[Detailed Description of the Invention] [Summary] Configuration of a rotary positioner that includes a closed magnetic path structure in which a permanent magnet is provided in an annular magnetic member, and a magnetic sensor that detects a leakage magnetic field from the closed magnetic path structure. Regarding this, the magnetic member is characterized by having a shape in which the cross-sectional area continuously decreases as it moves away from the permanent magnet, with the aim of increasing and stabilizing the detection output of the magnetic sensor that detects leakage magnetic fields. Furthermore, the magnetic sensor is characterized in that the internal magnetization direction of the magnetic material pattern for magnetic detection is in the same direction as the leakage magnetic field within the detection angle range, and further characterized in that the rotating positioner is covered with a magnetic shielding member. and configure it.
本発明は、被測定物の回転角度を検出する回転ポジショ
ナに係わり、特には漏洩磁界と回転角度との対応関係を
利用した漏洩磁界型回転ポジショナに関する。The present invention relates to a rotary positioner that detects the rotation angle of an object to be measured, and particularly to a leakage magnetic field type rotary positioner that utilizes the correspondence between a leakage magnetic field and a rotation angle.
第9図は本出願人が昭和61年12月10日に出願した
漏洩磁界型の回転ポジショナ(特願昭6l−29258
7)の主要構成を示す斜視図である。Figure 9 shows a leakage magnetic field type rotary positioner (patent application No. 6l-29258) filed by the present applicant on December 10, 1985.
FIG. 7) is a perspective view showing the main configuration of FIG.
第9図において、回転ポジショナ1は円環形状の磁性部
材2の一部に永久磁石3を設けた閉磁路構造体4と、磁
性部材2からの漏洩磁界を検知する磁気センサ5と、円
板形状の磁性部材6と、磁気センサ5を支持するアーム
7が側方に突出する回転軸8を具え、磁性部材6と回転
軸8は磁性部材2の中心軸と同軸であり、磁気センサ5
は回転軸8の回転によって磁性部材2と磁性部材6との
間を回動自在である。In FIG. 9, the rotary positioner 1 includes a closed magnetic path structure 4 in which a permanent magnet 3 is provided in a part of an annular magnetic member 2, a magnetic sensor 5 that detects a leakage magnetic field from the magnetic member 2, and a circular plate. The arm 7 that supports the magnetic member 6 and the magnetic sensor 5 has a rotating shaft 8 projecting laterally, the magnetic member 6 and the rotating shaft 8 are coaxial with the central axis of the magnetic member 2, and the arm 7 that supports the magnetic sensor 5
is rotatable between the magnetic member 2 and the magnetic member 6 by the rotation of the rotating shaft 8 .
このような回転ポジショナ1は、磁性部材2の内側に生
じた漏洩磁界Mを磁気センサ5が検知し、漏洩磁界Mは
永久磁石3に近づくに連れて太き(なり、磁気センサ5
の検知出力もその回転角度に応じて変化するため、該検
知出力に基づいて回転軸8の回転角度を検出することが
できる。In such a rotary positioner 1, the magnetic sensor 5 detects a leakage magnetic field M generated inside the magnetic member 2, and the leakage magnetic field M becomes thicker as it approaches the permanent magnet 3.
Since the detection output also changes according to the rotation angle, the rotation angle of the rotating shaft 8 can be detected based on the detection output.
第10図は回転ポジショナ1の出力特性の一例を示す図
である。永久磁石3に対し磁気センサ5が最も離れた位
置(第9図の矢印A方向の位置)を回転角度の原点(0
度)とし、回転軸8の回転角度(度)を横軸とし、漏洩
磁界Mの強さ(Oe;ただし磁気センサ5の出力より得
た計測値)を縦軸とした第10図において、磁気センサ
5の出力と回転軸8の回転角度とは一対一に対応し、永
久磁石3の近傍を除き良好な直線性を示すようになる。FIG. 10 is a diagram showing an example of the output characteristics of the rotary positioner 1. The position where the magnetic sensor 5 is farthest from the permanent magnet 3 (the position in the direction of arrow A in Fig. 9) is the origin of the rotation angle (0
In Fig. 10, the horizontal axis is the rotation angle (degrees) of the rotating shaft 8, and the vertical axis is the strength of the leakage magnetic field M (Oe; however, the measured value obtained from the output of the magnetic sensor 5). The output of the sensor 5 and the rotation angle of the rotating shaft 8 correspond one-to-one, and exhibit good linearity except in the vicinity of the permanent magnet 3.
±150度に渡る広い回転範囲に適応する上記従来の回
転ポジショナ1は、例えば±60度のように狭(限定さ
れた回転範囲で高精度に使用する用途に対し、該範囲に
おける漏洩磁界Mの強さが強力な永久磁石3を使用する
も不十分であり、永久磁石3の極性によって方向性を有
する漏洩磁界Mに対し、予め一軸に磁化せしめた内部磁
化Miを有する磁性体パターンを利用した磁気センサ5
では、その出力が最大となるように該磁性体パターンの
磁化方向を限定することが望ましいと共に、地磁気等の
外部からの擾乱磁界に影響され難い構成が必要である。The above-described conventional rotary positioner 1, which is applicable to a wide rotation range of ±150 degrees, is suitable for use with high accuracy in a narrow rotation range, such as ±60 degrees. Although using a strong permanent magnet 3 was insufficient, a magnetic material pattern having an internal magnetization Mi that was previously magnetized uniaxially was used to deal with the leakage magnetic field M which has directionality depending on the polarity of the permanent magnet 3. Magnetic sensor 5
In this case, it is desirable to limit the magnetization direction of the magnetic material pattern so that its output is maximized, and a configuration that is not easily influenced by external disturbance magnetic fields such as terrestrial magnetism is required.
なお、漏洩磁界型回転ポジショナにおいて、磁気センサ
の位置情報として発生する漏洩磁界は40e8程度であ
り、10eの外来磁界による漏洩磁界の変動があると、
ポジショナの出力特性は2.5χ程度変動し、±1%以
下を目標とした回転ポジショナの精度は達成困難である
。In addition, in a leakage magnetic field type rotary positioner, the leakage magnetic field generated as position information of the magnetic sensor is about 40e8, and if there is a change in the leakage magnetic field due to an external magnetic field of 10e,
The output characteristics of the positioner fluctuate by about 2.5χ, and it is difficult to achieve the target accuracy of the rotary positioner of less than ±1%.
本発明は、FA用制御機器等における回転角度の測定用
とし、無摺動形、アナログ出力である回転ポジショナ、
特に従来より狭く限定された測定範囲における検出能力
および精度を高めると共に、検出出力を安定化せしめ、
高性能にすることを目的とする。The present invention is a non-sliding, analog output rotary positioner for measuring rotation angles in FA control equipment, etc.
In particular, it improves detection ability and accuracy in a measurement range narrower than conventional methods, and stabilizes detection output.
The purpose is to achieve high performance.
第1図(a) 、 (b)は本発明の基本構成例を示す
平面図である。FIGS. 1(a) and 1(b) are plan views showing an example of the basic configuration of the present invention.
第1図(a)の回転ポジショナ1)は、円環形状の磁性
部材12の一部に永久磁石13を設けた閉磁路構造体1
4と、閉磁路構造体14からの漏洩磁界Mを検知する磁
気センサ15とを具え、閉磁路構造体14または磁気セ
ンサ15の少なくとも一方が閉磁路構造体14の中心軸
Cを回転中心として回転可能であり、磁気センサ15の
検知出力に基づいてその回転角度を検出する構成であり
、
磁性部材12が、幅Wの変化により永久磁石13から離
れるに従って連続的に断面積を減少する形状としたこと
を特徴とする。The rotary positioner 1) shown in FIG.
4 and a magnetic sensor 15 that detects a leakage magnetic field M from the closed magnetic path structure 14, and at least one of the closed magnetic path structure 14 or the magnetic sensor 15 rotates about the central axis C of the closed magnetic path structure 14. The magnetic member 12 has a configuration in which the rotation angle is detected based on the detection output of the magnetic sensor 15, and the cross-sectional area of the magnetic member 12 continuously decreases as it moves away from the permanent magnet 13 due to a change in the width W. It is characterized by
第1図(b)の回転ポジショナ21は、円環形状の磁性
部材22の一部に永久磁石23を設けた閉磁路構造体2
4と、閉磁路構造体24からの漏洩磁界Mを検知する磁
気センサ25とを具え、閉磁路構造体24または磁気セ
ンサ25の少なくとも一方が閉磁路構造体24の中心軸
Cを回転中心として回転可能であり、磁気センサ25の
検知出力に基づいてその回転角度を検出する構成とし、
磁気センサ25の磁気検出用磁性体パターンの内部磁化
方向Miが、検出角度範囲内において漏洩磁界Mと同一
方向に形成してなることを特徴とし、さらに、前記回転
ポジショナ1)および21の少な(とも外周を磁気シー
ルド部材で覆ってなることを特徴とするものである。The rotary positioner 21 in FIG. 1(b) is a closed magnetic circuit structure 2 in which a permanent magnet 23 is provided in a part of an annular magnetic member 22.
4 and a magnetic sensor 25 that detects a leakage magnetic field M from the closed magnetic path structure 24, and at least one of the closed magnetic path structure 24 or the magnetic sensor 25 rotates about the central axis C of the closed magnetic path structure 24. The rotation angle is detected based on the detection output of the magnetic sensor 25, and the internal magnetization direction Mi of the magnetic material pattern for magnetic detection of the magnetic sensor 25 is in the same direction as the leakage magnetic field M within the detection angle range. The rotary positioner 1) and 21 are further characterized in that the outer peripheries of both the rotary positioners 1) and 21 are covered with a magnetic shielding member.
上記手段によれば、閉磁路構造体の断面積を永久磁石か
ら離れる方向に小さ(することによって、±30度また
は±60度の如く限定した角度範囲の用途に対し、漏洩
磁界は直線性を損なうことなく該角度範囲で増加するた
め、従来より高精度の測定が実現し、磁気センサに磁気
検出用磁性体パターンを利用したものを使用するときは
、該磁性体パターンの内部磁化方向を上記手段の如くし
て、漏洩磁界の検出が効率的となり測定精度の向上およ
び安定化が図れるようになる。さらに、磁気シールド部
材で回転ポジショナを覆うことによって、外部からの擾
乱磁界に対し回転ポジショナを安定化させる。According to the above means, by reducing the cross-sectional area of the closed magnetic circuit structure in the direction away from the permanent magnet, the leakage magnetic field has linearity for applications in a limited angular range such as ±30 degrees or ±60 degrees. Since the increase occurs in this angle range without damage, it is possible to achieve higher precision measurement than before. When using a magnetic sensor that uses a magnetic pattern for magnetic detection, the internal magnetization direction of the magnetic pattern is By using this method, leakage magnetic fields can be detected efficiently, and measurement accuracy can be improved and stabilized.Furthermore, by covering the rotary positioner with a magnetic shielding member, the rotary positioner can be protected against external disturbance magnetic fields. Stabilize.
以下に、図面を用いて本発明の実施例による回転ポジシ
ョナを説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Rotary positioners according to embodiments of the present invention will be described below with reference to the drawings.
第2図は第1図(a)に示す本発明の第1の実施例にな
る回転ポジショナ、即ち永久磁石を設けた円環形状の磁
性部材の断面積を第1の手段によって減少させた回転ポ
ジショナの主要構成を示す斜視図である。FIG. 2 shows a rotary positioner according to a first embodiment of the present invention shown in FIG. FIG. 2 is a perspective view showing the main configuration of a positioner.
第1図(a)および第2図において、永久磁石13を一
部に設けた円環形状の磁性部材12は、外円の中心に対
し内円の中心が、永久磁石13と離れる方向(矢印Aと
反対方向)にずれた偏心円環形状、例えば外円の直径が
30mm、内円の直径が25mm、外円と内円の中心の
ずれが2m―である偏心円環形状であり、そのことによ
って磁性部材12は、永久磁石13から離れるに従って
断面積が連続的に減少し、永久磁石13より離れた領域
の漏洩磁界Mは、該断面積の減少に伴って従来の磁性部
材2のそれより大きくなる。In FIGS. 1(a) and 2, the annular magnetic member 12 partially provided with a permanent magnet 13 is arranged in a direction in which the center of the inner circle is separated from the permanent magnet 13 with respect to the center of the outer circle (arrow For example, the diameter of the outer circle is 30 mm, the diameter of the inner circle is 25 mm, and the deviation between the centers of the outer circle and the inner circle is 2 m. As a result, the cross-sectional area of the magnetic member 12 decreases continuously as it moves away from the permanent magnet 13, and the leakage magnetic field M in the area away from the permanent magnet 13 becomes smaller than that of the conventional magnetic member 2 as the cross-sectional area decreases. Become bigger.
このような回転ポジショナ1)は、例えば閉磁路構造体
14と、閉磁路構造体14の内円に対し同心に配設され
た円板形状の磁性部材16とを固定したとき、L字形の
アーム7を介して回転軸8に支持せしめ磁性部材12と
磁性部材16との間に配設された磁気センサ15は、そ
の位置に応じて変化する漏洩磁界Mを検知し、該検知出
力に基づいて回転軸8の回転角度を検出することができ
る。Such a rotary positioner 1) has an L-shaped arm when, for example, the closed magnetic path structure 14 and the disc-shaped magnetic member 16 arranged concentrically with respect to the inner circle of the closed magnetic path structure 14 are fixed. A magnetic sensor 15 supported on a rotating shaft 8 via a magnetic sensor 7 and disposed between a magnetic member 12 and a magnetic member 16 detects a leakage magnetic field M that changes depending on its position, and detects a leakage magnetic field M based on the detection output. The rotation angle of the rotating shaft 8 can be detected.
第3図は本発明の第2の実施例による回転ポジショナ、
即ち永久磁石を設けた円環形状の磁性部材の断面積を第
2の手段によって減少させた回転ポジショナの一部分を
破断した側面図(a)とその斜視図(b)である。FIG. 3 shows a rotary positioner according to a second embodiment of the present invention;
That is, they are a partially cutaway side view (a) and a perspective view (b) of a rotary positioner in which the cross-sectional area of an annular magnetic member provided with a permanent magnet is reduced by the second means.
第3図に示す回転ポジショナ31において、円環形状の
磁性部材32の一部に永久磁石33を設けた閉磁路構造
体34の磁性部材32は、永久磁石33と離れる方向(
矢印Aと反対方向)に連続的に薄くなる円環形状であり
、そのことによって磁性部材32は、永久磁石33から
離れるに従って断面積が連続的に減少し、永久磁石33
より離れた領域の漏洩磁界Mは、該断面積の減少に伴っ
て従来の磁性部材2のそれより大きくなる。In the rotary positioner 31 shown in FIG. 3, the magnetic member 32 of the closed magnetic circuit structure 34 has the permanent magnet 33 provided in a part of the annular magnetic member 32 in the direction away from the permanent magnet 33 (
The magnetic member 32 has an annular shape that becomes thinner continuously in the direction opposite to the arrow A), and as a result, the cross-sectional area of the magnetic member 32 continuously decreases as it moves away from the permanent magnet 33.
The leakage magnetic field M in a more distant region becomes larger than that of the conventional magnetic member 2 as the cross-sectional area decreases.
このような回転ポジショナ31は、例えば閉磁路構造体
34と、閉磁路構造体34の内円に対し同心に配設され
た円板形状の磁性部材36とを固定したとき、L字形の
アーム7を介して回転軸8に支持せしめ磁性部材32と
磁性部材36との間に配設された磁気センサ35は、そ
の位置に応じて変化する漏洩磁界Mを検知し、該検知出
力に基づいて回転軸8の回転角度を検出することができ
る。Such a rotary positioner 31 has an L-shaped arm 7 when, for example, a closed magnetic path structure 34 and a disk-shaped magnetic member 36 disposed concentrically with respect to the inner circle of the closed magnetic path structure 34 are fixed. The magnetic sensor 35, which is supported by the rotating shaft 8 via the magnetic member 32 and the magnetic member 36 and is disposed between the magnetic member 32 and the magnetic member 36, detects the leakage magnetic field M that changes depending on its position, and rotates based on the detected output. The rotation angle of the shaft 8 can be detected.
第4図は円環形状の磁性部材の断面積を連続的に減少せ
しめた回転ポジショナの出力特性の一例を示す図である
。FIG. 4 is a diagram showing an example of the output characteristics of a rotary positioner in which the cross-sectional area of an annular magnetic member is continuously reduced.
第2図に示す回転ポジショナ1)を使用し、永久磁石1
3に対し磁気センサ15が最も離れた位置(第1図の矢
印A方向の位置)を回転角度の原点(0度)とし、回転
軸8の回転角度(度)を横軸とし、漏洩磁界Mの強さ(
Oe:ただし磁気センサ15の出力より得た計測値)を
縦軸とした第4図において、磁気センサ15の出力と回
転軸8の回転角度とは、少なくとも回転角度±60度の
範囲で一対一に対応し、図中に実線で示すように良好な
直線性を示す漏洩磁界の強さは、図中に破線で示す従来
の回転ポジショナ1の漏洩磁界の約3程度度になる。そ
して、このような出力特性は回転ポジショナ31におい
てもほぼ同等である。Using the rotary positioner 1) shown in Figure 2, the permanent magnet 1
3, the position where the magnetic sensor 15 is farthest (position in the direction of arrow A in Fig. 1) is the origin of the rotation angle (0 degree), and the rotation angle (degrees) of the rotation shaft 8 is the horizontal axis, and the leakage magnetic field M The strength of (
In FIG. 4, where the vertical axis is Oe (measured value obtained from the output of the magnetic sensor 15), the output of the magnetic sensor 15 and the rotation angle of the rotation shaft 8 are in a one-to-one relationship at least within the rotation angle range of ±60 degrees. Corresponding to this, the strength of the leakage magnetic field exhibiting good linearity as shown by the solid line in the figure is approximately three degrees higher than the leakage magnetic field of the conventional rotary positioner 1 shown by the broken line in the figure. Further, such output characteristics are almost the same in the rotary positioner 31 as well.
第5図は磁気センサの磁性体パターンの内部磁化の変化
を説明するための図、第6図はバーバーポール型磁気抵
抗素子のパターン形状を示す平面図である。FIG. 5 is a diagram for explaining changes in internal magnetization of a magnetic material pattern of a magnetic sensor, and FIG. 6 is a plan view showing a pattern shape of a barber pole type magnetoresistive element.
第5図において、前出の磁気センサ15,35が内部磁
化された磁性体パターンを利用したセンサ、例えばバー
バーポール型磁気抵抗素子を利用したものであるとき、
内部磁化Miの方向と漏洩磁界Mの方向が一致すると(
a)に示すように内部磁化Miは変化しないが、内部磁
化Miの方向と漏洩磁界Mの方向が逆向きであると(b
)に示すように内部磁化MiはMi’のように減磁され
る。In FIG. 5, when the magnetic sensors 15 and 35 described above are sensors that utilize internally magnetized magnetic material patterns, for example, barber pole type magnetoresistive elements,
When the direction of internal magnetization Mi and the direction of leakage magnetic field M match (
As shown in a), the internal magnetization Mi does not change, but if the direction of the internal magnetization Mi and the direction of the leakage magnetic field M are opposite, (b)
), the internal magnetization Mi is demagnetized like Mi'.
第6図において、バーバーポール型磁気抵抗素子は、シ
リコン等からなる基板にSiO2等からなる絶縁層を形
成し、該絶縁層の上につづら折り形状の磁性体パターン
41を形成し、次いで磁性体パターン41の長手方向に
一軸磁気異方性(内部磁化)Miを付与せしめたのち、
Au等にてなる導電膜42を一定間隔で斜めに形成して
なる。In FIG. 6, the barber pole type magnetoresistive element is formed by forming an insulating layer made of SiO2 or the like on a substrate made of silicon or the like, forming a meandering magnetic material pattern 41 on the insulating layer, and then forming the magnetic material pattern 41 on the insulating layer. After imparting uniaxial magnetic anisotropy (internal magnetization) Mi in the longitudinal direction of 41,
Conductive films 42 made of Au or the like are formed diagonally at regular intervals.
このような抵抗素子を利用した磁気センサは、磁性体パ
ターン41の内部磁化Miの方向と、導電膜42を流れ
る電流iの成す角度θが、π/4+nπ(または7/4
π−nyn (n=o、1・・=)であれば、出力を
増大させることができる。In a magnetic sensor using such a resistive element, the angle θ formed by the direction of internal magnetization Mi of the magnetic material pattern 41 and the current i flowing through the conductive film 42 is π/4+nπ (or 7/4
If π-nyn (n=o, 1...=), the output can be increased.
そこで、第1図(b)に示すような第3の実施例の回転
ポジショナ21において、内部磁化された磁性体パター
ンを利用した磁気センサ25が永久磁石22より最も離
れた位置で、内部磁化Miの方向と漏洩磁界Mの方向と
が一致するように磁気センサ25を組み込むと、磁気セ
ンサ25からの出力は、最大かつ士の回転方向に対し最
も安定する。Therefore, in the rotary positioner 21 of the third embodiment as shown in FIG. If the magnetic sensor 25 is installed in such a way that the direction of M coincides with the direction of the leakage magnetic field M, the output from the magnetic sensor 25 will be maximum and most stable in the two rotational directions.
第7図は外部からの擾乱磁界(外来磁界)を遮断する回
転ポジショナの構成例を示すため一部分を破断した側面
図である。FIG. 7 is a partially cutaway side view showing an example of the configuration of a rotary positioner that blocks external disturbance magnetic fields (external magnetic fields).
第7図(a)において、回転ポジショナ1)(または2
1.31)の外周を覆う筒形状の磁気シールド部材51
は、6.5χ珪素鋼やアモルファス金属およびパーマロ
イ等の磁性材料にてなり、その高さhは回転ポジショナ
1)の厚さtよりも10倍程度に大きく、例えば外径が
30mmである回転ポジショナ1)の厚さ寸法がtであ
るときh=10を程度に形成する。In FIG. 7(a), rotation positioner 1) (or 2
1.31) Cylindrical magnetic shielding member 51 covering the outer periphery of
is made of a magnetic material such as 6.5χ silicon steel, amorphous metal, or permalloy, and its height h is about 10 times larger than the thickness t of the rotary positioner 1), for example, a rotary positioner with an outer diameter of 30 mm. When the thickness dimension of 1) is t, h=10 is formed.
第7図(b)において、回転ポジショナ1)(または2
1.31)を覆う筐体形状の磁気シールド部材52は、
6.5χ珪素鋼やアモルファス金属およびパーマロイ等
の磁性材料にてなり、回転ポジショナ1)の外周と上面
および下面を外部からの擾乱磁界から保護するようにな
る。In FIG. 7(b), the rotary positioner 1) (or 2
1.31) The housing-shaped magnetic shielding member 52 that covers the
It is made of a magnetic material such as 6.5x silicon steel, amorphous metal, and permalloy, and protects the outer periphery, upper surface, and lower surface of the rotary positioner 1) from external disturbance magnetic fields.
このような磁気シールド部材51および52において、
回転ポジショナの磁性部材12(または22.32)の
透磁率μが200程度であるとき、磁気シールド部材5
1.52は透磁率μが50000以上の磁性材料を使用
し、磁気シールド部材51.52が固定されるときその
磁気回路は動磁見回路となるため、保磁力Hcが0.0
10e以下の材料を使用することが望ましく、磁気シー
ルド部材51.52が漏洩磁界Mに影響しないようにす
るため、磁性部材12と磁気シールド部材51.52と
は41以上離す必要がある。In such magnetic shielding members 51 and 52,
When the magnetic permeability μ of the magnetic member 12 (or 22.32) of the rotary positioner is about 200, the magnetic shield member 5
1.52 uses a magnetic material with a magnetic permeability μ of 50,000 or more, and when the magnetic shield member 51.52 is fixed, its magnetic circuit becomes a dynamic magnetic field circuit, so the coercive force Hc is 0.0.
It is desirable to use a material with a diameter of 10e or less, and in order to prevent the magnetic shielding members 51.52 from affecting the leakage magnetic field M, the magnetic member 12 and the magnetic shielding members 51.52 must be separated by at least 41°.
第8図は本発明による磁気シールド部材の効果を説明す
るための図であり、横軸は擾乱磁界Hex(Oe)、縦
軸は回転ポジショナ内の設定点における漏洩磁界Mの測
定値(Oe)であり、0〜400eの擾乱磁界Hexを
付与したとき、本発明による磁気シールド部材52を具
えた回転ポジショナは、予め設定した定点における漏洩
磁界Mが一定値を保つのに対し、磁気シールドを具えな
い回転ポジショナは、擾乱磁界Hexの影響を受けて磁
界測定値が変化するようになる。FIG. 8 is a diagram for explaining the effect of the magnetic shielding member according to the present invention, where the horizontal axis is the disturbance magnetic field Hex (Oe), and the vertical axis is the measured value of the leakage magnetic field M at the set point in the rotary positioner (Oe). When a disturbance magnetic field Hex of 0 to 400e is applied, the rotary positioner equipped with the magnetic shield member 52 according to the present invention maintains a constant value of the leakage magnetic field M at a preset fixed point, while A rotary positioner that does not have the magnetic field measurement value will change under the influence of the disturbing magnetic field Hex.
以上説明したように本発明によれば、閉磁路構造体の断
面積を永久磁石から離れる方向に小さくすることによっ
て、±30度または±60度の如(限定した角度範囲の
用途に対し、漏洩磁界は直線性を損なうことなく該角度
範囲で増加するため、従来より高精度の測定が実現し、
磁気センサに磁気検出用磁性体パターンを利用したもの
を使用するときは、該磁性体パターンの内部磁化方向を
上記手段の如くして、漏洩磁界の検出が効率的となり測
定精度の向上および安定化が図れるようになる。さらに
、磁気シールド部材で回転ポジショナを覆うことによっ
て、外部からの擾乱磁界に対し回転ポジショナを安定化
させた効果がある。As explained above, according to the present invention, by reducing the cross-sectional area of the closed magnetic circuit structure in the direction away from the permanent magnet, leakage can be reduced by reducing the cross-sectional area of the closed magnetic circuit structure in the direction away from the permanent magnet. The magnetic field increases over the angular range without loss of linearity, resulting in more accurate measurements than before.
When using a magnetic sensor that utilizes a magnetic material pattern for magnetic detection, the internal magnetization direction of the magnetic material pattern is set as in the above-mentioned means to efficiently detect leakage magnetic fields and improve and stabilize measurement accuracy. will be able to achieve this. Furthermore, by covering the rotary positioner with the magnetic shielding member, the rotary positioner is stabilized against external disturbance magnetic fields.
その結果、FA用制御機器等における回転角度の測定用
とし、無摺動形、アナログ出力である回転ポジショナの
検出精度を高めると共に、検出出力を安定化せしめ、高
性能化が実現された。As a result, the detection accuracy of a non-sliding, analog output rotary positioner for measuring rotation angles in FA control equipment, etc. has been improved, the detection output has been stabilized, and high performance has been achieved.
第1図は本発明の基本構成例を示す平面図、第2図は本
発明の第1の実施例になる回転ポジショナ、
第3図は本発明の第2の実施例による回転ポジショナ、
第4図は本発明による回転ポジショナの出力特性の一例
、
第5図は磁気センサの内部磁化の変化の説明図、第6図
はバーバーポール型磁気抵抗素子のパターン形状、
第7図は磁気シールド部材を具えた本発明の実施例、
第8図は磁気シールド部材の効果の説明図、第9図は従
来の回転ポジショナ、
第10図は従来の回転ポジショナの出力特性の一例、
である。
図中において、
1).21.31は回転ポジショナ、
12、22.32は磁性部材、
13、23.33は永久磁石、
14.24.34は閉磁路構造体、
15.25.35は磁気センサ、
51.52は磁気シールド部材、
Cは回転中心、
Mは漏洩磁界、
Miは内部磁化、
を示す。
<a>
^4
氷肥明の基本橋成伊1)示オ平面ロ
第 j 圓
本発明の#1の笈堤、イ列((づろ回転ヤジシ;す第
2 図
木)%咽の第2の火先例による回転ポジ゛ン3す(Oe
)
第4図
(O)/”7のデイヒtjシ(b)Hの変化胸石仏kX
ヒンサの内舒石旗イ乙の変イLハ名ν月図・幌ち 5
図
パーバー汁ζ−ノし梨右呆気低坑赤、壬のパターン形夫
惰 6 図
(0ン
Cb)石tχシーツしF郁ネ1左−堝、えたi
免θ月の男と先碕弓惟q図
+f;L 基α5序 (Oe)磁気シール
ド部材の効果の沌明囚
第8図
従来の回転ボジショ六
笥9図FIG. 1 is a plan view showing a basic configuration example of the present invention, FIG. 2 is a rotary positioner according to a first embodiment of the present invention, FIG. 3 is a rotary positioner according to a second embodiment of the present invention, and FIG. The figure shows an example of the output characteristics of the rotary positioner according to the present invention, Figure 5 is an explanatory diagram of changes in the internal magnetization of the magnetic sensor, Figure 6 is the pattern shape of the barber pole magnetoresistive element, and Figure 7 is the magnetic shield member. FIG. 8 is an explanatory diagram of the effect of the magnetic shielding member, FIG. 9 is a conventional rotary positioner, and FIG. 10 is an example of the output characteristics of the conventional rotary positioner. In the figure: 1). 21.31 is a rotating positioner, 12, 22.32 are magnetic members, 13, 23.33 are permanent magnets, 14.24.34 are closed magnetic circuit structures, 15.25.35 are magnetic sensors, 51.52 are magnetic Indicates the shield member, C is the center of rotation, M is the leakage magnetic field, and Mi is the internal magnetization. <a> ^4 Hyohiaki's basic bridge construction 1) Display plane B No. 1
2) Rotating position 3 (Oe
) Fig. 4 (O)/”7 Deich tj shi (b) Change of H Chest stone Buddha kX
Hinsa's Inner Shoseki Flag I Otsu's Change L Han Name ν Moon Map/Horochi 5
Diagram perver juice
Cb) stone tχ sheet shi F Ikune 1 left - Bo, Eta i
Figure 8 of the effect of the magnetic shielding member Figure 9 of the conventional rotating position
Claims (3)
13)を設けた閉磁路構造体(14)と、 該閉磁路構造体(14)からの漏洩磁界(M)を検知す
る磁気センサ(15)とを具え、 該閉磁路構造体(14)または該磁気センサ(15)の
少なくとも一方が該閉磁路構造体(14)の中心軸(C
)を回転中心として回転可能であり、該磁気センサ(1
5)の検知出力に基づいてその回転角度を検出する回転
ポジショナにおいて、 該磁性部材(12)が、該永久磁石(13)から離れる
に従って連続的に断面積を減少する形状としたことを特
徴とする回転ポジショナ。(1) A permanent magnet (
13), and a magnetic sensor (15) that detects a leakage magnetic field (M) from the closed magnetic path structure (14), the closed magnetic path structure (14) or At least one of the magnetic sensors (15) is aligned with the central axis (C) of the closed magnetic path structure (14).
) around the rotation center, and the magnetic sensor (1
5) A rotary positioner that detects its rotation angle based on the detection output, characterized in that the magnetic member (12) has a shape whose cross-sectional area continuously decreases as it moves away from the permanent magnet (13). rotary positioner.
23)を設けた閉磁路構造体(24)と、 該閉磁路構造体(24)からの漏洩磁界(M)を検知す
る磁気センサ(25)とを具え、 該閉磁路構造体(24)または該磁気センサ(25)の
少なくとも一方が該閉磁路構造体(24)の中心軸(C
)を回転中心として回転可能であり、該磁気センサ(2
5)の検知出力に基づいてその回転角度を検出する回転
ポジショナにおいて、 該磁気センサ(25)の磁気検出用磁性体パターンの内
部磁化(Mi)方向が、検出角度範囲内において、該漏
洩磁界(M)と同一方向であることを特徴とした回転ポ
ジショナ。(2) A permanent magnet (
23), and a magnetic sensor (25) for detecting a leakage magnetic field (M) from the closed magnetic path structure (24), the closed magnetic path structure (24) or At least one of the magnetic sensors (25) is aligned with the central axis (C) of the closed magnetic path structure (24).
) around the rotation center, and the magnetic sensor (2
5), in which the internal magnetization (Mi) direction of the magnetic material pattern for magnetic detection of the magnetic sensor (25) is within the detection angle range, the leakage magnetic field ( A rotary positioner characterized by being in the same direction as M).
の少なくとも外周を磁気シールド部材(51、52)で
覆ってなることを特徴とする回転ポジショナ。(3) A rotary positioner characterized in that at least the outer periphery of the rotary positioner according to claim 1 or 2 is covered with a magnetic shielding member (51, 52).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7264588A JPH07107486B2 (en) | 1988-03-25 | 1988-03-25 | Rotary positioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7264588A JPH07107486B2 (en) | 1988-03-25 | 1988-03-25 | Rotary positioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01244314A true JPH01244314A (en) | 1989-09-28 |
JPH07107486B2 JPH07107486B2 (en) | 1995-11-15 |
Family
ID=13495326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7264588A Expired - Fee Related JPH07107486B2 (en) | 1988-03-25 | 1988-03-25 | Rotary positioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07107486B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501265B2 (en) | 2000-04-04 | 2002-12-31 | Denso Corporation | Angular position detection device having linear output characteristics |
WO2009044629A1 (en) * | 2007-10-03 | 2009-04-09 | Nippon Seiki Co., Ltd. | Position detector |
US7671584B2 (en) | 2006-03-29 | 2010-03-02 | Mitsubishi Denki Kabushiki Kaisha | Rotation angle detection device |
JP2010107378A (en) * | 2008-10-30 | 2010-05-13 | Denso Corp | Rotation angle detection device |
JP2019211327A (en) * | 2018-06-05 | 2019-12-12 | 日本電産サンキョー株式会社 | Magnetic encoder |
CN114207383A (en) * | 2019-08-09 | 2022-03-18 | Smc 株式会社 | Magnetic encoder |
-
1988
- 1988-03-25 JP JP7264588A patent/JPH07107486B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501265B2 (en) | 2000-04-04 | 2002-12-31 | Denso Corporation | Angular position detection device having linear output characteristics |
US7671584B2 (en) | 2006-03-29 | 2010-03-02 | Mitsubishi Denki Kabushiki Kaisha | Rotation angle detection device |
WO2009044629A1 (en) * | 2007-10-03 | 2009-04-09 | Nippon Seiki Co., Ltd. | Position detector |
JP2010107378A (en) * | 2008-10-30 | 2010-05-13 | Denso Corp | Rotation angle detection device |
JP2019211327A (en) * | 2018-06-05 | 2019-12-12 | 日本電産サンキョー株式会社 | Magnetic encoder |
CN114207383A (en) * | 2019-08-09 | 2022-03-18 | Smc 株式会社 | Magnetic encoder |
Also Published As
Publication number | Publication date |
---|---|
JPH07107486B2 (en) | 1995-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4234004B2 (en) | Device for measuring the angular position of an object | |
US10690515B2 (en) | Dual Z-axis magnetoresistive angle sensor | |
EP0419040B1 (en) | Speed/position sensor based upon magnetoresistive effect | |
US5148106A (en) | Angle detection sensor with setting of ratio of magnetic forces of rotating magnet and bias magnet | |
JP4052671B2 (en) | Micromachined integrated surface magnetometer | |
JP4900835B2 (en) | Angle detection device, valve device and non-contact volume | |
JP2012168047A (en) | Rotational angle detecting device | |
JPS61142782A (en) | position detection device | |
US20130293220A1 (en) | Methods and apparatus for magnetic sensors having highly uniform magnetic fields | |
JP5187538B2 (en) | Magnetic sensor | |
JPH08178937A (en) | Magnetism detecting device | |
JPH01244314A (en) | rotary positioner | |
JPH10170212A (en) | Absolute value type magnetic displacement detecting device | |
JPH05126513A (en) | Angle detector | |
JPH07294540A (en) | Magnetism detection device | |
JPH0529242B2 (en) | ||
JP2005043209A (en) | Magnetic detector | |
JPH03226625A (en) | rotary positioner | |
JPH04248403A (en) | Angle detector using hall element | |
JPH06177454A (en) | Ferromagnetic thin film magnetoresistive element and magnetic sensor using the same | |
JP2003240602A (en) | Rotation angle sensor | |
JPS6211032Y2 (en) | ||
JP2025034431A (en) | Rotation angle measuring device | |
JPS60233561A (en) | Rotation speed measuring device | |
JP2003214898A (en) | Rotation angle detecting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |