[go: up one dir, main page]

JPH07284667A - Catalytic alloy for decomposition of fluorocarbon - Google Patents

Catalytic alloy for decomposition of fluorocarbon

Info

Publication number
JPH07284667A
JPH07284667A JP6077051A JP7705194A JPH07284667A JP H07284667 A JPH07284667 A JP H07284667A JP 6077051 A JP6077051 A JP 6077051A JP 7705194 A JP7705194 A JP 7705194A JP H07284667 A JPH07284667 A JP H07284667A
Authority
JP
Japan
Prior art keywords
alloy
catalyst
catalytic
atomic
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6077051A
Other languages
Japanese (ja)
Inventor
Koji Hashimoto
功二 橋本
Takeshi Ebizuka
健 海老塚
Asahi Kawashima
朝日 川嶋
Katsuhiko Asami
勝彦 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Gomme Kogyo Kk
Original Assignee
Daiki Gomme Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Gomme Kogyo Kk filed Critical Daiki Gomme Kogyo Kk
Priority to JP6077051A priority Critical patent/JPH07284667A/en
Publication of JPH07284667A publication Critical patent/JPH07284667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalytic alloy having high activity, proof against hot H2O, HCl and HF and undergoing no deterioration of the activity even by a catalytic reaction by using an alloy of a valve metal having catalytic activity and maintaining it with Co or Ni assisting the metal in exhibiting the catalytic activity and Mo and Cr promoting catalytic activity and remarkably improving durability. CONSTITUTION:This catalytic alloy is an alloy consisting of <=20at.% Mo, 25-80at.%, in total, of Ni and/or Co and the balance essentially one or more kinds of elements selected from among Ti, Zr and Nb or an alloy consisting of <=20at.%, in total, of Mo and Cr, 25-80at.%, in total, of Ni and/or Co and the balance essentially one or more kinds of elements selected from among Ti, Zr and Nb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用済みフロンを二酸
化炭素、フッ化水素および塩化水素に分解して無害化・
再利用する高活性触媒として、フロン分解によって、金
属を侵すフッ化水素酸および塩酸が生成しても、高活性
を持続し続ける金属材料に関するものである。
BACKGROUND OF THE INVENTION The present invention decomposes used CFCs into carbon dioxide, hydrogen fluoride and hydrogen chloride to render them harmless.
As a highly active catalyst to be reused, the present invention relates to a metal material that continues to have a high activity even if hydrofluoric acid and hydrochloric acid that attack metals are produced by CFC decomposition.

【0002】[0002]

【従来の技術】フロンはオゾン層を破壊するので、不用
になったフロンは分解・無害化しなければならない。フ
ロンの分解には、大量のメタンと混合して燃焼する方
法、高温・高圧で水と反応させる方法、プラズマ分解
法、超臨界加水分解法、還元法などが試みられている。
2. Description of the Related Art Freon destroys the ozone layer, and thus unnecessary freon must be decomposed and rendered harmless. For the decomposition of CFCs, a method of mixing with a large amount of methane and burning, a method of reacting with water at high temperature and high pressure, a plasma decomposition method, a supercritical hydrolysis method, a reduction method and the like have been tried.

【0003】一方、本発明者らは、アモルファス合金
が、異なる性質を備えた多種多量の元素を含む単相固溶
体であることに着目し、固溶体合金の形成によって新し
い特性を備えた材料を創製する研究を行い、種々の優れ
た性能を有する数々のアモルファス合金を見いだしてき
た。特に、本発明者の2人は、アモルファス合金電極触
媒に関する従来の研究成果を基に、低温でフロンを水と
反応させてフッ化水素、塩化水素および二酸化炭素を生
成する触媒に関する研究を行った結果、アモルファス合
金から高性能の触媒が得られることを見いだし、特願平
2−45661号として出願した。特願平2−4566
1号は下記の3つの発明からなる。
On the other hand, the present inventors have paid attention to the fact that the amorphous alloy is a single-phase solid solution containing various kinds of elements having different properties, and create a material having new characteristics by forming a solid solution alloy. Through research, we have found a number of amorphous alloys with various excellent properties. In particular, the two inventors of the present invention have conducted research on a catalyst for reacting CFCs with water at low temperature to produce hydrogen fluoride, hydrogen chloride and carbon dioxide based on the results of conventional research on amorphous alloy electrode catalysts. As a result, they found that a high-performance catalyst can be obtained from an amorphous alloy, and filed as Japanese Patent Application No. 2-45661. Japanese Patent Application No. 2-4566
No. 1 consists of the following three inventions.

【0004】(1)Nb及びTaの1種又は2種20〜
70原子%、Ru、Pd、Rh、Pt及びIrの群から
選ばれる1種以上の元素0.5〜20原子%、残部実質
的にNi及びCoの1種又は2種からなるアモルファス
合金にフッ化水素酸浸漬による活性化処理を施すことを
特徴とするフロン分解用アモルファス合金触媒。 (2)Ti及びZrの1種又は2種20〜80原子%、
Ru、Pd、Rh、Pt及びIrの群から選ばれる1種
以上の元素0.5〜20原子%、残部実質的にNi及び
Coの1種又は2種10原子%以上からなるアモルファ
ス合金にフッ化水素酸浸漬による活性化処理を施すこと
を特徴とするフロン分解用アモルファス合金触媒。 (3)Nb及びTaの1種又は2種70原子%以下とT
i及びZrの1種又は2種との合計量20〜80原子
(上記Nb及びTaの1種又は2種の量を含む)、R
u、Pd、Rh、Pt及びIrの群から選ばれる1種以
上の元素0.5〜20原子%、残部実質的にNi及びC
oの1種又は2種10原子%以上からなるアモルファス
合金にフッ化水素酸浸漬による活性化処理を施すことを
特徴とするフロン分解用アモルファス合金触媒。 本発明者らは、さらにこれらの研究を継続した結果、特
に白金族元素を含まなくても、金属あるいは合金が優れ
た触媒活性を示すことを見いだし、特願平2−2411
87号として出願した。特願平2−241187号(特
開平4−122443号)は下記の2つの発明からな
る。
(1) One or two of Nb and Ta 20-
70 atomic%, 0.5 to 20 atomic% of one or more elements selected from the group of Ru, Pd, Rh, Pt, and Ir, and the balance to an amorphous alloy consisting essentially of one or two elements of Ni and Co. An amorphous alloy catalyst for CFC decomposition, which is characterized by being activated by immersion in hydrofluoric acid. (2) One or two kinds of Ti and Zr, 20 to 80 atomic%,
An amorphous alloy containing 0.5 to 20 atomic% of one or more elements selected from the group of Ru, Pd, Rh, Pt, and Ir, and the balance substantially one or two elements of Ni and Co of 10 atomic% or more is used. An amorphous alloy catalyst for CFC decomposition, which is characterized by being activated by immersion in hydrofluoric acid. (3) One or two of Nb and Ta and 70 atomic% or less and T
A total amount of 20 to 80 atoms including one or two of i and Zr (including the amount of one or two of Nb and Ta described above), R
0.5 to 20 atomic% of one or more elements selected from the group consisting of u, Pd, Rh, Pt and Ir, the balance being substantially Ni and C
An amorphous alloy catalyst for CFC decomposition, which comprises subjecting an amorphous alloy consisting of 10% by atom or more of one or two kinds of o to an activation treatment by immersion in hydrofluoric acid. As a result of further continuing these studies, the present inventors have found that a metal or an alloy exhibits excellent catalytic activity even without containing a platinum group element, and Japanese Patent Application No. 2-2411.
Filed as No. 87. Japanese Patent Application No. 2-241187 (Japanese Patent Application Laid-Open No. 4-122443) comprises the following two inventions.

【0005】(1)Ti、ZrおよびNbの群から選ば
れる1種の金属および2種以上元素からなる合金である
ことを特徴とするフロン分解用触媒材料。 (2)NiおよびCoの1種または2種80原子%以下
と残部実質的にTi、ZrおよびNbの群から選ばれる
1種以上の元素からなる合金であることを特徴とするフ
ロン分解用触媒材料。
(1) A catalyst material for decomposing fluorocarbons, which is a metal selected from the group consisting of Ti, Zr and Nb and an alloy composed of two or more elements. (2) A catalyst for decomposing CFCs, which is an alloy consisting of 80% by atom or less of one or two kinds of Ni and Co and the balance substantially one or more elements selected from the group of Ti, Zr and Nb. material.

【0006】本発明者らは、これらフロン分解用触媒材
料の耐久性を向上させる研究を行なった結果、高温にお
ける酸化とハロゲン化に耐える元素を添加することによ
って、耐久性のみならず、活性も向上することを見いだ
し、本発明を達成した。
The present inventors have conducted research to improve the durability of these CFC-decomposing catalyst materials. As a result, by adding an element resistant to oxidation and halogenation at high temperature, not only the durability but also the activity can be improved. The present invention has been achieved by finding improvements.

【0007】[0007]

【発明が解決しようとする課題】有害な有機ハロゲン化
物を残さずに、フロンを無機物まで徹底的に分解する最
も容易で、単純で、安価な方法は水蒸気と反応させ、C
2 、HCl およびHFに分解することである。このため
には、性能の優れた触媒が必要であるが、高温のH
2 O、HCl およびHFに耐え、活性を維持し続ける触媒
は見いだされていない。したがって、高活性でかつ高温
のH2 O、HCl およびHFに耐える触媒の出現が待たれ
ている。
The easiest, simplest and cheapest way to thoroughly decompose CFCs to inorganics without leaving harmful organic halides is to react with water vapor,
It decomposes into O 2 , HCl and HF. For this purpose, a catalyst with excellent performance is required, but high temperature H
No catalyst has been found that survives 2 O, HCl and HF and remains active. Therefore, the advent of highly active and high temperature H 2 O, HCl and HF resistant catalysts is awaited.

【0008】[0008]

【課題を解決するための手段】本発明は、不用となった
フロンを水と反応させ、CO2 、HCl およびHFに変え
ることを原理とするフロン分解反応を、低い温度でも行
うことができ、高活性でかつ生成する高温のH2 O、HC
l およびHFに耐える触媒合金を開発したものであり、
本発明の技術的構成は: (1)、Moを20原子%以下とNiおよびCoの1種
または2種との合計で25−80原子%含み残部実質的
にTi、ZrおよびNbの群から選ばれる1種以上の元
素からなる合金であることを特徴とするフロン分解用触
媒合金及び(2)MoおよびCrの合計で20原子%以
下とNiおよびCoの1種または2種との合計で25−
80原子%含み残部実質的にTi、ZrおよびNbの群
から選ばれる1種以上の元素からなる合金であることを
特徴とするフロン分解用触媒合金にあり、本発明のフロ
ン分解触媒合金は、触媒活性を担い、かつ、それを持続
するバルブメタルと、触媒活性の発現を助けるCoある
いはNiおよび触媒活性を助長しかつ耐久性をいちじる
しく向上させるMoおよびCrとの合金からなり、高活
性でかつ高温のH2 O、HCl およびHFに耐え、触媒反
応によっても活性が損なわれない触媒合金を提供するも
のである。
According to the present invention, a CFC decomposition reaction based on the principle that waste CFC is reacted with water and converted into CO 2 , HCl and HF can be carried out at a low temperature. Highly active and high-temperature H 2 O and HC produced
We have developed a catalytic alloy that can withstand l and HF.
The technical constitution of the present invention is as follows: (1) The content of Mo is 20 atomic% or less and one or two kinds of Ni and Co in total of 25 to 80 atomic%, and the balance is substantially from the group of Ti, Zr and Nb. A catalyst alloy for decomposing CFCs, which is an alloy consisting of one or more elements selected, and (2) 20 atomic% or less in total of Mo and Cr and 1 or 2 kinds of Ni and Co in total. 25-
A CFC decomposition catalyst alloy characterized by being an alloy comprising 80 atomic% and the balance substantially consisting of one or more elements selected from the group consisting of Ti, Zr and Nb, and the CFC decomposition catalyst alloy of the present invention is It has a high activity and is composed of a valve metal that carries and sustains the catalytic activity, and an alloy of Co or Ni that aids the expression of the catalytic activity and Mo and Cr that promotes the catalytic activity and significantly improves the durability. It is intended to provide a catalyst alloy which withstands high temperature H 2 O, HCl and HF and whose activity is not impaired by catalytic reaction.

【0009】次の表1に本発明の構成元素および含有率
を示す。 金属触媒は製造が容易で、特定の化学反応に高活性なも
のがたくさんある。しかし、水蒸気との反応によるフロ
ンの分解に金属触媒を用いる最大の難点は、例え最初は
フロンと水蒸気とが接触分解しても、水蒸気と生成する
フッ化水素、塩化水素の作用によって、たちまち侵され
水に溶解するか、不活性なハロゲン化物に変わり、活性
を持続できないことである。これに対し、本発明合金の
主成分であるTi、ZrおよびNbは、ハロゲン化物に
変わっても、いずれもフロンと水蒸気との接触反応の触
媒活性を持続できる。さらにMoおよびCrは酸化とハ
ロゲン化が同時に作用する環境に対し抵抗性が優れてい
る。すなわち、フロンに水蒸気を作用させてフッ化水
素、塩化水素および二酸化炭素に分解する触媒合金とし
て、高性能で、かつハロゲン化水素が生成しても高活性
を持続できる触媒合金は、上記組成の金属および合金に
よって実現される。
Table 1 below shows the constituent elements and the content of the present invention. Many metal catalysts are easy to produce and are highly active in specific chemical reactions. However, the biggest difficulty in using a metal catalyst for the decomposition of CFCs by the reaction with steam is that even if the CFCs and steam are initially catalytically decomposed, the steam and the generated hydrogen fluoride and hydrogen chloride will quickly invade them. It dissolves in water or turns into an inactive halide and cannot maintain its activity. On the other hand, Ti, Zr, and Nb, which are the main components of the alloy of the present invention, can maintain the catalytic activity of the catalytic reaction between CFC and steam even if they are changed to halides. Furthermore, Mo and Cr have excellent resistance to an environment in which oxidation and halogenation act simultaneously. That is, as a catalyst alloy that decomposes fluorocarbons into hydrogen fluoride, hydrogen chloride, and carbon dioxide by causing water vapor to act thereon, a catalyst alloy having high performance and capable of sustaining high activity even when hydrogen halide is produced has the above composition. Realized by metals and alloys.

【0010】本発明における各成分組成を限定する理由
を述べる。
The reasons for limiting the composition of each component in the present invention will be described.

【0011】Ti、ZrおよびNbは、本発明の基礎と
なる金属であって、フロンと水蒸気との反応によって生
成するフッ化水素と塩化水素の作用によって、ハロゲン
化物に変わっても、フロンと水蒸気との接触反応の触媒
としての性能を失わない元素である。
[0011] Ti, Zr and Nb are the metals on which the present invention is based, and even if they are converted to halides by the action of hydrogen fluoride and hydrogen chloride produced by the reaction of freon and steam, they are freon and steam. It is an element that does not lose its performance as a catalyst for the catalytic reaction with.

【0012】NiおよびCoは、フロンと水蒸気との接
触反応の触媒として作用するが、これらのみでは生成す
るフッ化水素と塩化水素の作用によって、じょじょに侵
される。しかし、NiおよびCoは、アモルファス合金
を形成する必要元素であり、単相固溶体のアモルファス
合金を形成する触媒作用を助長し、かつ容易には侵され
なくなる。
[0012] Ni and Co act as a catalyst for the catalytic reaction of CFCs and water vapor, but they are slowly attacked by the action of hydrogen fluoride and hydrogen chloride produced by themselves. However, Ni and Co are necessary elements for forming an amorphous alloy, promote the catalytic action of forming an amorphous alloy of a single-phase solid solution, and are not easily attacked.

【0013】MoおよびCrは酸化とハロゲン化が同時
に作用する環境に対し抵抗性が優れ、これらを合金元素
として添加すると、水蒸気とフッ化水素、塩化水素の作
用に対する合金の抵抗力がいちじるしく増大し、その結
果、触媒活性をも向上させる元素である。したがって、
触媒活性の向上と耐久性の改善のために、Moあるいは
MoとCrの同時添加はきわめて有効であるが、これら
の合金においては、20原子%を越えて添加すると、ア
モルファス構造が、液体急冷法によっては得にくくなる
と共に、耐食表面皮膜の生成によって、触媒活性が発揮
されにくくなるため、MoあるいはMoとCrの合計
は、20原子%以下とする必要がある。
Mo and Cr have excellent resistance to the environment in which oxidation and halogenation simultaneously act, and when these are added as alloying elements, the resistance of the alloy to the action of water vapor, hydrogen fluoride and hydrogen chloride remarkably increases. As a result, it is an element that also improves the catalytic activity. Therefore,
Simultaneous addition of Mo or Mo and Cr is extremely effective for improving the catalytic activity and durability. However, in these alloys, when the content exceeds 20 atomic%, the amorphous structure becomes a liquid quenching method. In some cases, it becomes difficult to obtain the above, and it becomes difficult to exhibit the catalytic activity due to the formation of the corrosion resistant surface film. Therefore, the total content of Mo or Mo and Cr needs to be 20 atomic% or less.

【0014】NiおよびCoの1種以上の添加はアモル
ファス合金の作製に必須であるが、MoあるいはMoと
Crの合計とNiおよびCoのいずれか1種または2種
の合計が、25原子%未満あるいは80原子%を越える
と、本発明の必須金属であるTi、ZrおよびNbがア
モルファス単相合金の形成には過剰あるいは不足とな
り、アモルファス合金が形成しにくくなるため、Moあ
るいはMoとCrの合計とNiおよびCoのいずれか1
種または2種の合計は、25−80原子%とする必要が
ある。
The addition of one or more of Ni and Co is indispensable for producing an amorphous alloy, but the sum of Mo or Mo and Cr and the sum of one or two of Ni and Co is less than 25 atomic%. If it exceeds 80 atomic%, Ti, Zr, and Nb, which are the essential metals of the present invention, become excessive or insufficient for forming an amorphous single-phase alloy, making it difficult to form an amorphous alloy. Therefore, the total amount of Mo or Mo and Cr is increased. And any one of Ni and Co
The seed or the sum of the two must be 25-80 atomic%.

【0015】[0015]

【実施例】次に本発明を実施例によって説明する。 実施例1 試料金属の触媒性能を調べる目的には、リボンの形状が
好都合なため、アモルファス合金の作製に広く用いられ
ている液体合金を超急冷凝固させる方法を用いて試料を
作製した。用いた装置を図1に示す。点線で囲んだ部分
は真空にした後、不活性ガスで満たされる。図において
2は下方先端に垂直ノズル3を有する石英管で、この石
英管2の上端に設けられている送入口1より、原料4な
らびに原料の酸化を防止する不活性ガスを送入すること
ができる。前記原料4を加熱するため石英管2の周囲に
加熱炉5を設置する。ノズル3の垂直下方に高速回転ロ
ール7を置き、これをモーター6によって回転させる。
リボン状合金試料の作製には、所定の組成の原料4を石
英管2内に入れ、まず、装置を10-5Torr程度の真空に
した後、不活性ガスを満たす。次いで、原料4を加熱炉
5によって加熱溶融し、この溶融金属をモーター6によ
って1000−10000r.p.m.で高速回転しているロ
ール7の外周面上に加圧不活性ガスを用いて噴射させ
る。この方法によって、例えば厚さ0.1mm、幅10
mm、長さ数m程度の長い薄板として、本発明の合金を
得ることができる。
EXAMPLES The present invention will now be described with reference to examples. Example 1 For the purpose of investigating the catalytic performance of a sample metal, since the shape of the ribbon is convenient, a sample was prepared using a method of rapidly quenching and solidifying a liquid alloy that is widely used for preparing an amorphous alloy. The apparatus used is shown in FIG. The part surrounded by the dotted line is filled with an inert gas after being evacuated. In the figure, 2 is a quartz tube having a vertical nozzle 3 at its lower end, and a raw material 4 and an inert gas for preventing the raw material from being oxidized can be fed from an inlet 1 provided at the upper end of the quartz tube 2. it can. A heating furnace 5 is installed around the quartz tube 2 to heat the raw material 4. A high-speed rotation roll 7 is placed vertically below the nozzle 3 and rotated by a motor 6.
To prepare a ribbon-shaped alloy sample, a raw material 4 having a predetermined composition is placed in a quartz tube 2, the apparatus is first evacuated to about 10 −5 Torr, and then an inert gas is filled. Next, the raw material 4 is heated and melted by the heating furnace 5, and the molten metal is sprayed by the motor 6 onto the outer peripheral surface of the roll 7 which is rotating at a high speed of 1000-10000 rpm, by using a pressurized inert gas. By this method, for example, a thickness of 0.1 mm and a width of 10
The alloy of the present invention can be obtained as a long thin plate having a length of mm and a length of several meters.

【0016】Moを1,5,10,15原子%、Zrを
40原子%残部Niの組成となるように原料金属を混合
し、アルゴンアーク溶融により原料合金を作製した。こ
れらの合金をアルゴン雰囲気中で再溶融し、図1に示し
た単ロール法を用いて溶融急冷凝固させることにより、
厚さ約0.02mm、幅約1mm、長さ約6mのリボン
状触媒合金を得た。こうして得られた触媒合金0.28
gを内径8mmのステンレス鋼管中につめて反応管と
し、電気炉内に設置した。温水の底からCFC−12フ
ロンを吹き上げて、水分を含んだCFC−12フロンを
反応管に流し、反応管出口におけるCFC−12フロン
およびCO2 量をガスクロマトグラフで測定すると共に
HFおよびHCl を水の中に回収し測定した。得られた結
果を表2に示す。ただし240時間を過ぎても、触媒活
性が全く低下しないものは、0.28gの触媒の寿命は
240時間以上とし、実験を中止した。
Raw material metals were mixed so that the composition of Mo was 1, 5, 10, 15 atomic% and Zr was 40 atomic% and the balance was Ni, and a raw material alloy was prepared by argon arc melting. By remelting these alloys in an argon atmosphere and melting and quenching and solidifying using the single roll method shown in FIG. 1,
A ribbon-shaped catalyst alloy having a thickness of about 0.02 mm, a width of about 1 mm and a length of about 6 m was obtained. Catalyst alloy 0.28 thus obtained
g was packed in a stainless steel tube having an inner diameter of 8 mm to form a reaction tube, and the reaction tube was placed in an electric furnace. CFC-12 freon is blown up from the bottom of warm water, CFC-12 freon containing water is flown into the reaction tube, and CFC-12 freon and CO 2 amount at the outlet of the reaction tube are measured by gas chromatography and HF and HCl are measured by water chromatography. It was collected in and measured. The obtained results are shown in Table 2. However, if the catalyst activity did not decrease at all even after 240 hours, the life of the catalyst of 0.28 g was set to 240 hours or more, and the experiment was stopped.

【0017】 表2に示したように、本発明合金は、比較例の高活性合
金に比べて、活性が高く耐久性もいちじるしく高いこと
が明かとなった。
[0017] As shown in Table 2, it was revealed that the alloy of the present invention has high activity and extremely high durability as compared with the high activity alloy of the comparative example.

【0018】実施例2 表3に示す組成となるように原料金属を混合し、アルゴ
ンアーク溶融炉により原料合金を作製した。これらの合
金をアルゴン雰囲気中で再溶融し、図1に示した単ロー
ル法を用いて溶融急冷凝固させることにより、厚さ0.
01−0.05mm、幅1−3mm、長さ3−20mの
金属薄板を得た。また比較に用いたNiは、20段圧延
して作製した厚さ0.005mmの薄板を幅約1mmの
リボン状に切って用いた。こうして得られた触媒合金材
料0.2−0.5gを内径8mmのステンレス鋼管中に
つめて反応管とし、電気炉内に設置した。温水の底から
CFC−12フロンを吹き上げて、水分を含んだCFC
−12フロンを反応管に流し、反応管出口におけるCF
C−12フロンおよびCO2 量をガスクロマトグラフで
測定すると共に、HFおよびHCl を水の中に回収し測定
した。得られた結果を表3に示す。ただし240時間を
過ぎても、触媒活性が全く低下しないものは、0.28
gの触媒合金の寿命は240時間以上とし、実験を中止
した。
Example 2 Raw material metals were mixed so as to have the composition shown in Table 3, and a raw material alloy was prepared by an argon arc melting furnace. These alloys were remelted in an argon atmosphere and melt-quenched and solidified using the single roll method shown in FIG.
A metal thin plate having a length of 01-0.05 mm, a width of 1-3 mm and a length of 3-20 m was obtained. As the Ni used for comparison, a thin plate having a thickness of 0.005 mm produced by rolling 20 steps was cut into a ribbon having a width of about 1 mm and used. 0.2-0.5 g of the catalyst alloy material thus obtained was packed in a stainless steel tube having an inner diameter of 8 mm to form a reaction tube, which was placed in an electric furnace. CFC-12 freon is blown up from the bottom of warm water to contain water.
-12 CFC is flown into the reaction tube, and CF at the reaction tube outlet
The amounts of C-12 freon and CO 2 were measured by gas chromatography, and HF and HCl were recovered and measured in water. The results obtained are shown in Table 3. However, if the catalyst activity does not decrease even after 240 hours, 0.28
The life of the catalyst alloy of g was 240 hours or more, and the experiment was stopped.

【0019】 このように本発明のフロン分解用触媒合金は、何れも低
い温度でフロンを水蒸気と反応させて、CO2 、HFお
よびHCl に分解することができる高い活性を備え、これ
を持続できることが明かとなった。
[0019] As described above, it is clear that the catalyst alloy for decomposing CFCs of the present invention has a high activity that allows CFCs to react with water vapor at a low temperature and decompose into CO 2 , HF, and HCl, which can be sustained. became.

【0020】一方、リボン状Niを用いた場合、フッ化
水素と塩化水素に侵されて水に溶解するため、リボン状
Ni1g当り2.05gのフロンを分解するとリボン状
Niが失われた。
On the other hand, when ribbon-shaped Ni was used, it was attacked by hydrogen fluoride and hydrogen chloride and dissolved in water. Therefore, when 2.05 g of chlorofluorocarbon was decomposed per 1 g of ribbon-shaped Ni, the ribbon-shaped Ni was lost.

【0021】[0021]

【発明の効果】以上記述したとおり、本発明の触媒合金
は、フロンを比較的低い温度で分解できる高い触媒活性
を備え、かつ、H2 Oと反応生成物であるHFおよびHC
l による酸化とハロゲン化に優れた耐久性を備えたフロ
ン分解用触媒合金である。
INDUSTRIAL APPLICABILITY As described above, the catalyst alloy of the present invention has a high catalytic activity capable of decomposing CFC at a relatively low temperature, and is a reaction product of H 2 O with HF and HC.
It is a catalyst alloy for CFC decomposition that has excellent durability against oxidation and halogenation by l.

【0022】また、本発明の高活性高耐久性触媒合金
は、適当な担体にスパッターすることによって容易に作
られ実用性に優れている。
Further, the highly active and durable catalyst alloy of the present invention is easily made by sputtering on a suitable carrier and is excellent in practicality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合金を製造するための装置の一例を示
す断面図である。
FIG. 1 is a sectional view showing an example of an apparatus for producing an alloy of the present invention.

【符号の説明】[Explanation of symbols]

1 送入口 2 石英管 3 垂直ノズル 4 原料 5 加熱炉 6 モーター 7 高速回転ロール 1 Inlet 2 Quartz Tube 3 Vertical Nozzle 4 Raw Material 5 Heating Furnace 6 Motor 7 High Speed Rotating Roll

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川嶋 朝日 宮城県仙台市太白区ひより台37−17 (72)発明者 浅見 勝彦 宮城県仙台市太白区太白2丁目5−3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Asahi Kawashima 37-17 Hiyoridai, Taichiro-ku, Sendai-shi, Miyagi Prefecture (72) Inventor Katsuhiko Asami 2-5-3 Taichiro, Taihaku-ku, Sendai-shi, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Moを20原子%以下とNiおよびCo
の1種または2種との合計で25−80原子%含み残部
実質的にTi、ZrおよびNbの群から選ばれる1種以
上の元素からなる合金であることを特徴とするフロン分
解用触媒合金。
1. Mo and 20 atomic% or less and Ni and Co
The catalyst alloy for decomposing CFCs, characterized in that it is an alloy consisting of 25-80 atomic% in total with one or two of the above and the balance substantially consisting of one or more elements selected from the group of Ti, Zr and Nb. .
【請求項2】 MoおよびCrの合計で20原子%以下
とNiおよびCoの1種または2種との合計で25−8
0原子%含み残部実質的にTi、ZrおよびNbの群か
ら選ばれる1種以上の元素からなる合金であることを特
徴とするフロン分解用触媒合金。
2. The total of Mo and Cr is 20 atomic% or less and the total of one or two of Ni and Co is 25-8.
A catalyst alloy for decomposing CFCs, which is an alloy containing 0 atomic% and the balance consisting essentially of one or more elements selected from the group consisting of Ti, Zr and Nb.
JP6077051A 1994-04-15 1994-04-15 Catalytic alloy for decomposition of fluorocarbon Pending JPH07284667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6077051A JPH07284667A (en) 1994-04-15 1994-04-15 Catalytic alloy for decomposition of fluorocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6077051A JPH07284667A (en) 1994-04-15 1994-04-15 Catalytic alloy for decomposition of fluorocarbon

Publications (1)

Publication Number Publication Date
JPH07284667A true JPH07284667A (en) 1995-10-31

Family

ID=13622994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6077051A Pending JPH07284667A (en) 1994-04-15 1994-04-15 Catalytic alloy for decomposition of fluorocarbon

Country Status (1)

Country Link
JP (1) JPH07284667A (en)

Similar Documents

Publication Publication Date Title
TW201026857A (en) Process for isolating metallic ruthenium or ruthenium compounds from ruthenium-containing solids
US5245112A (en) Method for decomposition of chlorofluorocarbons
JPH08215576A (en) Composite ultrafine particles, method for producing the same, and catalyst for synthesis and reforming of methanol
JP2897958B2 (en) Amorphous alloy catalyst for exhaust gas purification
Roshan et al. The effect of the surface state on the hydrogen permeability and the catalytic activity of palladium alloy membranes
JPH0342015A (en) Decomposition treatment of fluorocarbon
US5220108A (en) Amorphous alloy catalysts for decomposition of flons
JPH0832305B2 (en) Freon decomposition catalyst
JPH07284667A (en) Catalytic alloy for decomposition of fluorocarbon
EP0494303A1 (en) Amorphous alloy catalyst for cleaning exhaust gas
EP0448976B1 (en) The use of an amorphous alloy catalyst for decomposition of chlorofluorocarbons
JPH10263400A (en) Amorphous alloy catalyst for hydrocarbon reformed gas and its use
JP3226571B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
JPH0468394B2 (en)
JPH08337542A (en) Method for producing 1,1,1,3,3-pentafluoropropane
JP2572142B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
JP3819516B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
US3956187A (en) Catalyst support and method for preparing the same
JP3819486B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
JPH0673631B2 (en) Hypochlorite decomposition catalyst and method for producing the same
JPH06279328A (en) Production of hexafluoropropane
JPH0512425B2 (en)
JP3066529B1 (en) Amorphous HfNi alloy-based hydrogen separation / dissociation membrane, method for producing the same, and method for activating the same
JP2009028583A (en) Catalyst for hydrogen production from methanol comprising Ni3 (Si, Ti) intermetallic compound, hydrogen production method, hydrogen production apparatus
JP2586129B2 (en) Method for producing 1,1,1,2-tetrafluoroethane