JP3819486B2 - Amorphous alloy catalysts for methanation of carbon dioxide - Google Patents
Amorphous alloy catalysts for methanation of carbon dioxide Download PDFInfo
- Publication number
- JP3819486B2 JP3819486B2 JP20454396A JP20454396A JP3819486B2 JP 3819486 B2 JP3819486 B2 JP 3819486B2 JP 20454396 A JP20454396 A JP 20454396A JP 20454396 A JP20454396 A JP 20454396A JP 3819486 B2 JP3819486 B2 JP 3819486B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- carbon dioxide
- atomic
- methanation
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 72
- 229910000808 amorphous metal alloy Inorganic materials 0.000 title claims description 45
- 239000001569 carbon dioxide Substances 0.000 title claims description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 36
- 239000003054 catalyst Substances 0.000 title claims description 34
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 18
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 230000033116 oxidation-reduction process Effects 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 6
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000636 Ce alloy Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 iron group metals Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は二酸化炭素のメタン化用アモルファス合金触媒に係り、特に、二酸化炭素を効率的にメタンに変換し得る高活性アモルファス合金触媒に関するものである。
【0002】
【従来の技術】
現在、世界中で大量に放出される二酸化炭素による地球の温暖化が社会問題となっている。しかし、現在の産業活動や市民生活の水準を維持しながら二酸化炭素の放出量を減らすことは困難である。従って、生成した二酸化炭素を大気に放出せずに回収し、メタン等の有効物質に変換して再利用するための技術の開発が要望されている。
【0003】
従来、二酸化炭素の処理法としては、触媒の存在下、二酸化炭素を数十気圧の圧力で水素と反応させてメタノールに変換する研究が行われている。
【0004】
一方、本出願人らは、アモルファス合金に酸化還元処理を施したものの中に、二酸化炭素と水素との反応で大気圧でも高速でメタンを生成させる触媒として機能するものとして、従来、鉄族金属とZr,Ti,Nb,Taなどのバルブメタルからなるアモルファス合金に酸化還元処理を施した二酸化炭素のメタン化用アモルファス合金触媒を開発した。
【0005】
【発明が解決しようとする課題】
大量に発生する二酸化炭素を効率的に処理するためには、大量の二酸化炭素を迅速にメタン等に変換することができるより高活性な触媒の出現が望まれる。
【0006】
本発明は上記従来の実情に鑑みてなされたものであって、二酸化炭素を大気圧下における水素との反応でメタンに変換する反応の促進作用に優れ、大量の二酸化炭素を高速でメタンに変換することができる高活性な触媒を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の二酸化炭素のメタン化用アモルファス合金触媒は、アモルファス合金よりなる前駆体に酸化還元処理を施してなる二酸化炭素のメタン化用アモルファス合金触媒であって、該アモルファス合金が、Zrと、Y,La,Ce,Nd,Sm,Gd,Tb及びDyよりなる群から選ばれる1種又は2種以上の希土類元素とを含み、残部がCo及び/又はNiよりなり、Zrの含有量が8原子%以上、希土類元素の含有量が5原子%以下で、Zrと希土類元素との合計の含有量が80原子%以下であることを特徴とする。
【0008】
請求項2の二酸化炭素のメタン化用アモルファス合金触媒は、アモルファス合金よりなる前駆体に酸化還元処理を施してなる二酸化炭素のメタン化用アモルファス合金触媒であって、該アモルファス合金が、Ti,Nb及びTaよりなる群から選ばれる1種又は2種以上と、Zrと、Y,La,Ce,Nd,Sm,Gd,Tb及びDyよりなる群から選ばれる1種又は2種以上の希土類元素とを含み、残部がCo及び/又はNiよりなり、Zrの含有量が8原子%以上、希土類元素の含有量が5原子%以下で、Ti,Nb及びTaよりなる群から選ばれる1種又は2種以上とZrと希土類元素との合計の含有量が80原子%以下であることを特徴とする。
【0009】
即ち、本出願人らは、アモルファス合金の特性について鋭意研究を重ねた結果、従来の鉄族金属とZr,Ti,Nb,Taなどのバルブメタルからなるアモルファス合金に、更に酸素との親和力が高い希土類元素を加えたアモルファス合金を作製し、これに酸化還元処理を施すと、従来の鉄族金属−バルブメタルアモルファス合金に酸化還元処理を施したものより、二酸化炭素と水素との反応によるメタン生成に対して更に高い活性を備えた触媒が得られることを見出し本発明を完成させた。
【0010】
特定の化学反応に対する高い選択的触媒活性を備えた触媒を得るためには、アルミナ、チタニア、シリカなどのセラミックスに白金族元素などを担持するよりは、有効元素を必要量含む合金を前駆体として用いる方が有利である。しかし、通常の方法で作られる結晶質金属の場合、多種多量の合金金属を添加すると、しばしば、化学的性質の異なる多相構造となることが多く、所定の特性を備えることができないだけでなく、また脆いために触媒として必要な比表面積の大きな材料が得難い。
【0011】
これに対し、本発明組成のアモルファス合金は、構成元素が局在することを許さず所定の元素を均一に固溶している。このようなアモルファス合金を液体急冷法、スパッター法、メカニカルアロイイング法などを用いて作製すると、従来では実現しなかった本発明のアモルファス合金固有の優れた触媒活性を備え、二酸化炭素を迅速にメタンに変換し得る触媒が得られる。
【0012】
上記組成のアモルファス合金に酸化還元処理を施して得られる本発明の触媒によれば、大気圧で高速に二酸化炭素をメタンに変換することができる。
【0013】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0014】
本発明において、触媒の前駆体となるアモルファス合金の組成は下記表に示す通りである。
【0015】
【表1】
【0016】
以下に、本発明に係るアモルファス合金の各成分組成の限定理由を述べる。
【0017】
Ni及びCoは、本発明に係るアモルファス合金の基礎となる元素であって、バルブメタルであるZr又はZrの一部を他のバルブメタルであるTa,Ti,Nbの1種以上で置換したものとの共存で、アモルファス構造を形成する元素である。このアモルファス構造の形成のためには、Ni及び/又はCoは20原子%以上必要であるため、他の元素の合計を80原子%以下とする。
【0018】
また、Ni及びCoは活性元素として触媒反応に寄与する元素でもある。
【0019】
ZrはZrO2 を生じてNi及びCoに対する担体として働く必須元素である。Zrの含有量が8原子%未満であると、この担体機能が十分に得られないため、Zrの含有量は8原子%以上、好ましくは25〜75原子%とする。
【0020】
希土類元素は触媒の多孔性を向上させて触媒活性を高める元素であるが、アモルファス合金作製の過程でも酸化され易いため、合金作製工程における取り扱い性や作業性等の面から、希土類元素の含有量は5原子%以下とする。なお、希土類元素はその添加効果を十分に得るために0.1原子%以上含有されていることが好ましく、特に0.3〜5原子%とするのが好ましい。
【0021】
Ti,Nb,TaはZrを置換してNi及び/又はCoとアモルファス構造を形成する有効元素であるが、酸化物となって担体として機能する際、触媒活性に対するZrO2 の作用をしのぐことはないため、Ti,Nb,Taを含む場合、その含有量は、8原子%以上のZrと5原子%以下の希土類元素との合計で80原子%以下の範囲とする必要がある。Ti,Nb,Taの1種又は2種以上を含む場合、その含有量は特に50原子%以下、とりわけ10〜40原子%であることが好ましい。
【0023】
本発明の二酸化炭素のメタン化用アモルファス合金触媒は、液体急冷法、スパッター法、メカニカルアロイイング法等により得られた上記組成のアモルファス合金を前駆体とし、これを酸化還元処理することにより得られる。
【0024】
このアモルファス合金の酸化還元処理は、例えば、アモルファス合金を酸素雰囲気中300〜700℃で1〜12時間加熱して酸化した後、水素雰囲気中100〜500℃で1〜24時間加熱して還元することにより行うことができる。
【0025】
このようにして得られる本発明の二酸化炭素のメタン化用アモルファス合金触媒は、二酸化炭素と水素とを所定のモル比で反応させるメタン化反応の触媒として高い触媒活性を示す。
【0026】
なお、本発明の二酸化炭素のメタン化用アモルファス合金触媒を用いて、二酸化炭素のメタン化を行なうには、例えば、本発明の二酸化炭素のメタン化用アモルファス合金触媒1gを充填した反応管に、二酸化炭素と水素とをCO2 :H2 =1:1〜4(モル比)の割合で混合したガスを100〜300℃で15〜300ml/minで流通させて反応させれば良い。
【0027】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0028】
実施例1,2,比較例1
表2に示す組成となるように原料金属を混合し、アルゴンアーク溶融により原料合金を作製した。この合金をアルゴン雰囲気中で再溶融し、図1に示す単ロール法で超急冷凝固させることにより、厚さ0.01〜0.05mm、幅1〜3mm、長さ3〜20mのアモルファス合金薄板を得た。
【0029】
図1において、1は石英管であり、高周波コイル2の加熱機構を備える。この石英管1内に入れた原料合金をアルゴンガス雰囲気中で加熱溶融させ、溶融合金3を高速回転させた銅ロール4の表面に高圧のアルゴンガスで吹きつけてアモルファス合金薄板5を得る。
【0030】
得られた薄板5のアモルファス構造形成の確認はX線回析によって行なった。
【0031】
次いで、得られたアモルファス合金薄板の試料を、酸素雰囲気中にて500℃で3時間酸化した後、水素雰囲気中にて300℃で1時間還元して触媒を得た。
【0032】
得られた触媒1gを内径8mmのガラス管に5cmの長さにつめて反応管とし、これを電気炉内に設置した。この反応管に、所定の温度にてCO2 とH2 をモル比で1:4含むガスを流速60ml/minで流し、反応管出口におけるCO2 ,H2 ,CH4 ,その他検出される物質の量をガスクロマトグラフで測定した。その結果、検出される物質はCO2 ,H2 ,CH4 のみであって、選択率100%でCH4 が生じることが確認された。各反応温度におけるCO2 からCH4 への変換率を表2に示す。
【0033】
【表2】
【0034】
表2より、Ni−40原子%Zr−1.6原子%Sm及びNi−40原子%Zr−3.5原子%Ce合金に酸化還元処理を施して得られる本発明の触媒はCO2 からCH4 への変換用高活性触媒であることが明らかである。
【0035】
実施例3〜16
実施例1において、合金組成を表3に示す組成としたこと以外は同様にして触媒を調製し、同様に二酸化炭素のメタン化反応を行い、その時のCO2 からCH4 への変換率を調べ、結果を表3に示した。
【0036】
【表3】
【0037】
表3より、本発明の二酸化炭素のメタン化用アモルファス合金触媒は極めて高活性であることが明らかである。
【0038】
【発明の効果】
以上詳述した通り、本発明の二酸化炭素のメタン化用アモルファス合金触媒によれば、大気圧下の反応で大量の二酸化炭素を効率的にメタンに変換することが可能とされている。
【図面の簡単な説明】
【図1】本発明に係るアモルファス合金を製造するための装置の一例を示す断面図である。
【符号の説明】
1 石英管
2 高周波コイル
3 溶融合金
4 銅ロール
5 アモルファス合金薄板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amorphous alloy catalyst for methanation of carbon dioxide, and more particularly to a highly active amorphous alloy catalyst capable of efficiently converting carbon dioxide to methane.
[0002]
[Prior art]
Currently, global warming due to carbon dioxide released in large quantities all over the world is a social problem. However, it is difficult to reduce carbon dioxide emissions while maintaining the current level of industrial activities and civic life. Accordingly, there is a demand for the development of a technique for recovering the generated carbon dioxide without releasing it into the atmosphere, converting it into an effective substance such as methane, and reusing it.
[0003]
Conventionally, as a method for treating carbon dioxide, research has been conducted in which carbon dioxide is reacted with hydrogen at a pressure of several tens of atmospheres to convert it into methanol in the presence of a catalyst.
[0004]
On the other hand, the applicants of the present invention have previously proposed that among the alloys obtained by subjecting an amorphous alloy to oxidation / reduction treatment, they function as a catalyst for generating methane at high speed even at atmospheric pressure by the reaction of carbon dioxide and hydrogen. And an amorphous alloy catalyst for methanation of carbon dioxide, in which an amorphous alloy made of valve metal such as Zr, Ti, Nb, and Ta is subjected to redox treatment.
[0005]
[Problems to be solved by the invention]
In order to efficiently process a large amount of carbon dioxide, the appearance of a more highly active catalyst capable of rapidly converting a large amount of carbon dioxide into methane or the like is desired.
[0006]
The present invention has been made in view of the above-described conventional situation, and is excellent in promoting the reaction of converting carbon dioxide into methane by reaction with hydrogen under atmospheric pressure, and converts a large amount of carbon dioxide into methane at high speed. It is an object of the present invention to provide a highly active catalyst that can be used.
[0007]
[Means for Solving the Problems]
The amorphous alloy catalyst for methanation of carbon dioxide according to claim 1 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to oxidation-reduction treatment, and the amorphous alloy contains Zr, One or two or more rare earth elements selected from the group consisting of Y, La, Ce, Nd, Sm, Gd, Tb, and Dy, the balance being made of Co and / or Ni, and the content of Zr being It is characterized in that it is 8 atomic% or more, the rare earth element content is 5 atomic% or less, and the total content of Zr and rare earth elements is 80 atomic% or less.
[0008]
The amorphous alloy catalyst for methanation of carbon dioxide according to claim 2 is an amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to oxidation-reduction treatment, wherein the amorphous alloy is Ti, Nb. And one or more selected from the group consisting of Ta, and one or more rare earth elements selected from the group consisting of Zr, Y, La, Ce, Nd, Sm, Gd, Tb and Dy And the balance is made of Co and / or Ni, the Zr content is 8 atomic% or more, the rare earth element content is 5 atomic% or less, and one selected from the group consisting of Ti, Nb and Ta The total content of two or more, Zr and rare earth elements is 80 atomic% or less.
[0009]
That is, as a result of intensive studies on the characteristics of amorphous alloys, the present applicants have a higher affinity for oxygen than conventional amorphous alloys composed of iron group metals and valve metals such as Zr, Ti, Nb, and Ta. When an amorphous alloy containing rare earth elements is prepared and subjected to redox treatment, methane is produced by the reaction of carbon dioxide and hydrogen, compared to the conventional iron group metal-valve metal amorphous alloy. The present invention was completed by finding that a catalyst having higher activity was obtained.
[0010]
In order to obtain a catalyst having a high selective catalytic activity for a specific chemical reaction, an alloy containing a necessary amount of an effective element is used as a precursor rather than supporting a platinum group element on ceramics such as alumina, titania and silica. It is advantageous to use it. However, in the case of a crystalline metal made by a normal method, adding a large amount of alloy metal often results in a multiphase structure with different chemical properties, and not only can not have a predetermined property. Moreover, since it is brittle, it is difficult to obtain a material having a large specific surface area necessary as a catalyst.
[0011]
On the other hand, the amorphous alloy of the composition of the present invention does not allow the constituent elements to be localized and dissolves the predetermined elements uniformly. When such an amorphous alloy is produced using a liquid quenching method, a sputtering method, a mechanical alloying method, etc., it has excellent catalytic activity inherent to the amorphous alloy of the present invention that has not been realized in the past, and carbon dioxide can be rapidly methaneated. A catalyst which can be converted to is obtained.
[0012]
According to the catalyst of the present invention obtained by subjecting an amorphous alloy having the above composition to oxidation-reduction treatment, carbon dioxide can be converted to methane at high speed at atmospheric pressure.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0014]
In the present invention, the composition of the amorphous alloy serving as the catalyst precursor is as shown in the following table.
[0015]
[Table 1]
[0016]
The reasons for limiting the composition of each component of the amorphous alloy according to the present invention will be described below.
[0017]
Ni and Co are elements that form the basis of the amorphous alloy according to the present invention, in which Zr which is a valve metal or a part of Zr is replaced with one or more of Ta, Ti and Nb which are other valve metals. Is an element that forms an amorphous structure. In order to form this amorphous structure, Ni and / or Co needs to be 20 atomic% or more, so the total of other elements is 80 atomic% or less.
[0018]
Ni and Co are also elements that contribute to the catalytic reaction as active elements.
[0019]
Zr is an essential element that generates ZrO 2 and serves as a carrier for Ni and Co. If the Zr content is less than 8 atomic%, this carrier function cannot be sufficiently obtained. Therefore, the Zr content is 8 atomic% or more, preferably 25 to 75 atomic%.
[0020]
Rare earth elements are elements that improve the porosity of the catalyst and increase the catalytic activity. However, since rare earth elements are easily oxidized in the process of making amorphous alloys, the content of rare earth elements in terms of handling and workability in the alloy production process. Is 5 atomic% or less. The rare earth element is preferably contained in an amount of 0.1 atomic% or more in order to sufficiently obtain the effect of addition, and particularly preferably 0.3 to 5 atomic%.
[0021]
Ti, Nb, and Ta are effective elements that substitute for Zr to form an amorphous structure with Ni and / or Co, but when acting as a support as an oxide, the action of ZrO 2 on the catalytic activity is surpassed. Therefore, when Ti, Nb, and Ta are contained, the content thereof needs to be in a range of 80 atomic% or less in total of 8 atomic% or more of Zr and 5 atomic% or less of rare earth elements. When 1 type or 2 types or more of Ti, Nb, and Ta are included, it is preferable that the content is 50 atomic% or less especially 10-40 atomic%.
[0023]
The amorphous alloy catalyst for methanation of carbon dioxide according to the present invention is obtained by using an amorphous alloy having the above composition obtained by a liquid quenching method, a sputtering method, a mechanical alloying method, or the like as a precursor, and subjecting this to an oxidation-reduction treatment. .
[0024]
This oxidation-reduction treatment of the amorphous alloy is performed by, for example, oxidizing the amorphous alloy at 300 to 700 ° C. for 1 to 12 hours in an oxygen atmosphere and then reducing it by heating at 100 to 500 ° C. for 1 to 24 hours in a hydrogen atmosphere. Can be done.
[0025]
The amorphous alloy catalyst for methanation of carbon dioxide of the present invention thus obtained exhibits high catalytic activity as a catalyst for methanation reaction in which carbon dioxide and hydrogen are reacted at a predetermined molar ratio.
[0026]
In order to perform methanation of carbon dioxide using the amorphous alloy catalyst for methanation of carbon dioxide of the present invention, for example, in a reaction tube filled with 1 g of the amorphous alloy catalyst for methanation of carbon dioxide of the present invention, carbon dioxide and hydrogen CO 2: H 2 = 1: 1~4 the mixed gas at a ratio (molar ratio) may be reacted by circulated in 15~300ml / min at 100 to 300 ° C..
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0028]
Examples 1 and 2 and Comparative Example 1
Raw material metals were mixed so as to have the composition shown in Table 2, and a raw material alloy was produced by argon arc melting. This alloy is remelted in an argon atmosphere, and is ultra-rapidly cooled and solidified by the single roll method shown in FIG. 1, so that an amorphous alloy thin plate having a thickness of 0.01 to 0.05 mm, a width of 1 to 3 mm, and a length of 3 to 20 m is obtained. Got.
[0029]
In FIG. 1, reference numeral 1 denotes a quartz tube, which has a heating mechanism for the high-frequency coil 2. The raw material alloy placed in the quartz tube 1 is heated and melted in an argon gas atmosphere, and the molten alloy 3 is sprayed onto the surface of the copper roll 4 rotated at a high speed with high-pressure argon gas to obtain an amorphous alloy
[0030]
Confirmation of amorphous structure formation of the obtained
[0031]
Next, the obtained amorphous alloy thin plate sample was oxidized at 500 ° C. for 3 hours in an oxygen atmosphere, and then reduced at 300 ° C. for 1 hour in a hydrogen atmosphere to obtain a catalyst.
[0032]
1 g of the obtained catalyst was packed into a glass tube having an inner diameter of 8 mm to a length of 5 cm to form a reaction tube, which was installed in an electric furnace. To the reaction tube, 1 molar ratio of CO 2 and H 2 at a predetermined temperature flowing 4 containing gas at a flow rate of 60ml / min, CO 2, H 2, CH 4 in the reaction tube outlet, are other detected substances The amount of was measured with a gas chromatograph. As a result, it was confirmed that the detected substances were only CO 2 , H 2 and CH 4 , and CH 4 was produced at a selectivity of 100%. Table 2 shows the conversion rate from CO 2 to CH 4 at each reaction temperature.
[0033]
[Table 2]
[0034]
From Table 2, the catalyst of the present invention obtained by subjecting a Ni-40 atomic% Zr-1.6 atomic% Sm and Ni-40 atomic% Zr-3.5 atomic% Ce alloy to oxidation-reduction treatment is obtained from CO 2 to CH. It is clear that this is a highly active catalyst for conversion to 4 .
[0035]
Examples 3-16
In Example 1, except that the alloy composition was changed to the composition shown in Table 3, a catalyst was prepared in the same manner, and the methanation reaction of carbon dioxide was performed in the same manner, and the conversion rate from CO 2 to CH 4 at that time was examined. The results are shown in Table 3.
[0036]
[Table 3]
[0037]
From Table 3, it is clear that the amorphous alloy catalyst for methanation of carbon dioxide of the present invention is extremely high activity.
[0038]
【The invention's effect】
As described above in detail, according to the amorphous alloy catalyst for methanation of carbon dioxide of the present invention, it is possible to efficiently convert a large amount of carbon dioxide into methane by a reaction under atmospheric pressure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an apparatus for producing an amorphous alloy according to the present invention.
[Explanation of symbols]
1 Quartz tube 2 High frequency coil 3 Molten alloy 4
Claims (2)
該アモルファス合金が、Zrと、Y,La,Ce,Nd,Sm,Gd,Tb及びDyよりなる群から選ばれる1種又は2種以上の希土類元素とを含み、残部がCo及び/又はNiよりなり、Zrの含有量が8原子%以上、希土類元素の含有量が5原子%以下で、Zrと希土類元素との合計の含有量が80原子%以下であることを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to oxidation-reduction treatment,
The amorphous alloy contains Zr and one or more rare earth elements selected from the group consisting of Y, La, Ce, Nd, Sm, Gd, Tb and Dy, with the balance being Co and / or Ni. Carbon dioxide, wherein the Zr content is 8 atomic% or more, the rare earth element content is 5 atomic% or less, and the total content of Zr and rare earth elements is 80 atomic% or less. Amorphous alloy catalyst for methanation.
該アモルファス合金が、Ti,Nb及びTaよりなる群から選ばれる1種又は2種以上と、Zrと、Y,La,Ce,Nd,Sm,Gd,Tb及びDyよりなる群から選ばれる1種又は2種以上の希土類元素とを含み、残部がCo及び/又はNiよりなり、Zrの含有量が8原子%以上、希土類元素の含有量が5原子%以下で、Ti,Nb及びTaよりなる群から選ばれる1種又は2種以上とZrと希土類元素との合計の含有量が80原子%以下であることを特徴とする二酸化炭素のメタン化用アモルファス合金触媒。An amorphous alloy catalyst for methanation of carbon dioxide obtained by subjecting a precursor made of an amorphous alloy to oxidation-reduction treatment,
The amorphous alloy is one or more selected from the group consisting of Ti, Nb and Ta, and one selected from the group consisting of Zr, Y, La, Ce, Nd, Sm, Gd, Tb and Dy. Or two or more kinds of rare earth elements, the balance is made of Co and / or Ni, the content of Zr is 8 atomic% or more, the content of rare earth elements is 5 atomic% or less, and Ti, Nb and Ta An amorphous alloy catalyst for methanation of carbon dioxide, characterized in that the total content of one or more selected from the group consisting of Zr and rare earth elements is 80 atomic% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20454396A JP3819486B2 (en) | 1996-08-02 | 1996-08-02 | Amorphous alloy catalysts for methanation of carbon dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20454396A JP3819486B2 (en) | 1996-08-02 | 1996-08-02 | Amorphous alloy catalysts for methanation of carbon dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1043594A JPH1043594A (en) | 1998-02-17 |
JP3819486B2 true JP3819486B2 (en) | 2006-09-06 |
Family
ID=16492266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20454396A Expired - Lifetime JP3819486B2 (en) | 1996-08-02 | 1996-08-02 | Amorphous alloy catalysts for methanation of carbon dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819486B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5358909B2 (en) * | 2007-08-03 | 2013-12-04 | アタカ大機株式会社 | Method for producing carbon oxide methanation catalyst and methanation method |
US9617196B2 (en) | 2007-08-03 | 2017-04-11 | Hitachi Zosen Corporation | Catalyst for methanation of carbon oxides, preparation method of the catalyst and process for the methanation |
CA2954973C (en) | 2014-07-19 | 2022-07-26 | Hitachi Zosen Corporation | Methanation reaction catalyst, method for producing methanation reaction catalyst and method for producing methane |
CN111116346B (en) * | 2019-12-31 | 2021-10-22 | 上海师范大学 | A process for supercritical CO2 hydrogenation based on amorphous alloys |
-
1996
- 1996-08-02 JP JP20454396A patent/JP3819486B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1043594A (en) | 1998-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hara et al. | An amorphous alloy membrane without noble metals for gaseous hydrogen separation | |
Keuler et al. | Developing a heating procedure to optimise hydrogen permeance through Pd–Ag membranes of thickness less than 2.2 μm | |
RU2008129663A (en) | METHOD FOR METAL NITRATES CONVERSION | |
EP0650762A1 (en) | Catalyst for methanol reforming, process for producing the same and method for reforming methanol | |
Kimura et al. | The oxidation of amorphous Zr-base binary alloys in air | |
JP3819516B2 (en) | Amorphous alloy catalysts for methanation of carbon dioxide | |
JP3819486B2 (en) | Amorphous alloy catalysts for methanation of carbon dioxide | |
JP3932494B2 (en) | Amorphous alloy catalyst for methanation reaction of carbon monoxide contained in hydrocarbon reformed gas, amorphous alloy catalyst for methanation reaction used in hydrocarbon reformed gas, and method of use thereof | |
JP4185952B2 (en) | Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus | |
Xue et al. | Amorphous Ni–B alloy membrane: preparation and application in ethanol dehydrogenation | |
JP2897958B2 (en) | Amorphous alloy catalyst for exhaust gas purification | |
US5220108A (en) | Amorphous alloy catalysts for decomposition of flons | |
JP4772561B2 (en) | Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst | |
EP0448976B1 (en) | The use of an amorphous alloy catalyst for decomposition of chlorofluorocarbons | |
EP0446710B1 (en) | The use of an amorphous alloy catalyst for conversion of carbon dioxide | |
JP3226571B2 (en) | Amorphous alloy catalyst for carbon dioxide conversion | |
JPH0824845B2 (en) | Alloy catalyst for hydrogen oxidation | |
Szummer et al. | Effect of hydrogenation under high pressure on the structure and catalytic properties of Cu–Zr amorphous alloys | |
Pisarek et al. | Effect of cathodic hydrogen charging on catalytic activity of Cu–Hf amorphous alloys | |
WO1991004790A1 (en) | Amorphous alloy catalyst for cleaning exhaust gas | |
JP4386662B2 (en) | Method for producing compound catalyst ultrafine particles using quasicrystalline Al alloy particles as carrier | |
JP5798425B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4029122B2 (en) | Hydrogen dissociation / separation composite membrane coated with an auxiliary membrane for improving hydrogen dissociation / separation performance | |
JP4029123B2 (en) | Hydrogen dissociation / separation membrane | |
JP2010137131A (en) | Co oxidation catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060615 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140623 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |