JPH07258736A - Production of nonoriented silicon steel sheet excellent in magnetic property - Google Patents
Production of nonoriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH07258736A JPH07258736A JP6053611A JP5361194A JPH07258736A JP H07258736 A JPH07258736 A JP H07258736A JP 6053611 A JP6053611 A JP 6053611A JP 5361194 A JP5361194 A JP 5361194A JP H07258736 A JPH07258736 A JP H07258736A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- rolling
- hot rolling
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電動機、発電機等の回
転機器の鉄心材料として用いられる磁気特性の優れた無
方向性電磁鋼板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core material for rotating equipment such as electric motors and generators.
【0002】[0002]
【従来の技術】電磁鋼板に対しては機器の電力損失低減
および小型化のため、低鉄損化・高磁束密度化という磁
気特性改善が強く求められている。2. Description of the Related Art For magnetic steel sheets, there is a strong demand for improvement of magnetic characteristics such as reduction of iron loss and high magnetic flux density in order to reduce power loss and downsize equipment.
【0003】なかでも回転機では、板面のあらゆる方向
に磁化されることから、磁気特性の異方性は極めて小さ
くなければならない。従って、回転機器用電磁鋼板とし
ては磁気特性の異方性が少なく、板面のあらゆる方向の
平均値としての磁気特性が低鉄損、高磁束密度であるこ
とが求められる。Above all, in a rotating machine, the magnetism is magnetized in all directions of the plate surface, and therefore the anisotropy of magnetic properties must be extremely small. Therefore, an electromagnetic steel sheet for rotating equipment is required to have low anisotropy in magnetic properties and low iron loss and high magnetic flux density as an average value in all directions of the plate surface.
【0004】鉄損および磁束密度の測定は、無方向性電
磁鋼の場合、通常JIS-C-2550に定められているように、
圧延方向と圧延直角方向とから短冊状試料を採取して行
われるが、この方法では回転機器の鉄芯のように板面の
あらゆる方向に磁化される性能を正当に評価することが
できない。回転機器用を対象とする場合には、その励磁
状態に近いリング試料での磁気特性の評価が適切であ
り、この試験法で良好な特性が得られることが重要であ
る。In the case of non-oriented electrical steel, the measurement of iron loss and magnetic flux density is usually as specified in JIS-C-2550,
Although strip-shaped samples are taken from the rolling direction and the direction perpendicular to the rolling, this method cannot properly evaluate the ability to magnetize in any direction of the plate surface like the iron core of a rotating machine. When used for rotating equipment, it is important to evaluate the magnetic characteristics of a ring sample close to its excited state, and it is important that good characteristics be obtained by this test method.
【0005】このようなことから近年、リング試料で測
定しても良好な鉄損と磁束密度が得られる、板面内無方
向に磁気特性の良好な無方向性電磁鋼板の開発が進めら
れるようになり、この製造方法についていくつかの提案
がなされている。For these reasons, in recent years, development of a non-oriented electrical steel sheet having good magnetic properties in in-plane non-direction, which can obtain good iron loss and magnetic flux density even when measured with a ring sample, is expected to proceed. Therefore, some proposals have been made regarding this manufacturing method.
【0006】例えば、特開昭64−55338 号公報には、
C:0.005 %以下、Si:4.0 %以下、Mn:0.2 %以下、
sol.Al:0.002 %未満の素材鋼を、熱延仕上温度を700
℃以上のフェライト域とし、600 ℃以下の低温で巻取る
ことを特徴とする無方向性電磁鋼板の製造方法が示され
ている。For example, Japanese Laid-Open Patent Publication No. 64-55338 discloses that
C: 0.005% or less, Si: 4.0% or less, Mn: 0.2% or less,
sol.Al: Raw steel less than 0.002%, hot rolling finish temperature 700
It describes a method for producing a non-oriented electrical steel sheet which is characterized in that it is wound in a ferrite region of ℃ or higher and at a low temperature of 600 ℃ or lower.
【0007】特開平2−107719号公報には、Si+Al:4.
5 %以下、Mn:1.0 %以下を主成分とするスラブと、ス
ラブ加熱温度1300〜1500℃、熱延仕上温度 600〜800 ℃
および冷延圧下率40〜85%を組み合わせた、リング試料
での磁束密度が高い無方向性電磁鋼板の製造方法が示さ
れている。In Japanese Patent Laid-Open No. 2-107719, Si + Al: 4.
Slabs containing 5% or less and Mn: 1.0% or less as main components, slab heating temperature 1300 to 1500 ° C, hot rolling finishing temperature 600 to 800 ° C
A method for producing a non-oriented electrical steel sheet having a high magnetic flux density in a ring sample by combining a cold rolling reduction of 40 to 85% is shown.
【0008】特開平3−24251 号公報には、Si:3.3 %
以下、Mn:0.2 %以下、Al: 1.5〜8%を主成分とする
素材鋼に中間焼鈍をはさんで2回の冷間圧延を加える方
法による磁心鋼板が示されている。In Japanese Patent Laid-Open No. 3-24251, Si: 3.3%
Hereinafter, a magnetic steel sheet is shown by a method in which a material steel mainly containing Mn: 0.2% or less and Al: 1.5 to 8% is cold-rolled twice with intermediate annealing.
【0009】[0009]
【発明が解決しようとする課題】特開昭64−55338 号公
報の方法では、熱延板焼鈍を施すことが必須となるため
工程およびコストがかかり、経済的に不利となるという
問題がある。In the method disclosed in Japanese Patent Laid-Open No. 64-55338, it is necessary to perform hot-rolled sheet annealing, which requires steps and costs and is economically disadvantageous.
【0010】特開平2−107719号公報の方法では、スラ
ブを1300〜1500℃という高温で加熱しなければならない
ため、スラブの表面が低融点のスケールに覆われて融け
落ちが生じ、また熱延板のスケール除去が困難となる。
さらにこの方法は経済的にも不利である。In the method disclosed in Japanese Unexamined Patent Publication No. 2-107719, since the slab must be heated at a high temperature of 1300 to 1500 ° C., the surface of the slab is covered with a scale having a low melting point and melts down. It becomes difficult to remove the scale of the plate.
Furthermore, this method is economically disadvantageous.
【0011】特開平3−24251 号公報の方法では、中間
焼鈍をはさんで2回の冷間圧延を行うため、行程が煩雑
になる上に経済的にも不利である。According to the method disclosed in Japanese Patent Laid-Open No. 3-24251, since cold rolling is performed twice with intermediate annealing, the process becomes complicated and it is economically disadvantageous.
【0012】本発明は上記の課題を解決するためになさ
れたものである。本発明の目的は、簡略な工程で、回転
機器の鉄心材料として用いられる磁気特性の優れた無方
向性電磁鋼板を製造することができる方法を提供するこ
とにある。The present invention has been made to solve the above problems. An object of the present invention is to provide a method capable of producing a non-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core material of a rotating machine, by a simple process.
【0013】[0013]
【課題を解決するための手段】本発明の要旨は次の無方
向性電磁鋼板の製造方法にある。The gist of the present invention resides in the following method for manufacturing a non-oriented electrical steel sheet.
【0014】重量%で、Si:4%以下、Mn:0.2%未満お
よびsol.Al:0.1〜4%を含み、かつ下記式と式とを
満足し、残部はFeおよび不可避的不純物からなり、不純
物中のCは0.003 %以下、Nは0.003 %以下およびSは
0.002 %以下である鋼素材を仕上温度900 ℃以上1000℃
以下、巻取温度700 ℃以上で熱間圧延を行い、次いで脱
スケール後、圧下率80%以上で冷間圧延を行い、その後
焼鈍することを特徴とする磁気特性の優れた無方向性電
磁鋼板の製造方法。In weight%, Si: 4% or less, Mn: less than 0.2% and sol.Al: 0.1 to 4% are satisfied, and the following formulas are satisfied, and the balance is Fe and inevitable impurities, C in the impurities is 0.003% or less, N is 0.003% or less, and S is
Steel material with 0.002% or less finishing temperature 900 ℃ to 1000 ℃
The non-oriented electrical steel sheet with excellent magnetic properties is characterized by hot rolling at a coiling temperature of 700 ° C or higher, descaling, cold rolling at a rolling reduction of 80% or higher, and subsequent annealing. Manufacturing method.
【0015】 〔(FT−900)/40〕%≦(Si+sol.Al) ≦6% ・・・ Mn/S≧10 ・・・・・・・・・・・・・ ただし、FTは熱間圧延の仕上温度(℃) 本発明者等は、磁気特性に及ぼすMn、Sおよび(Si+Al)
の含有量、熱延の仕上温度の影響を詳細に検討した結
果、上記の各条件とすることにより、熱延板焼鈍を行う
ことなしに磁気特性が一段と改善されることを知見し
た。[(FT-900) / 40]% ≦ (Si + sol.Al) ≦ 6% ・ ・ ・ Mn / S ≧ 10 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ However, FT is heat Finishing temperature of hot rolling (° C) The present inventors have found that Mn, S and (Si + Al) which affect the magnetic properties.
As a result of detailed examination of the effect of the content of Al and the finishing temperature of hot rolling, it was found that the magnetic properties were further improved by performing the above-mentioned conditions without performing hot-rolled sheet annealing.
【0016】上記知見を図1〜図3に基づいて説明す
る。The above knowledge will be described with reference to FIGS.
【0017】図1は熱延仕上温度と磁気特性との関係を
示す図である。これは、ベース組成として、C:0.002
%、Si:3.2 %、Mn:0.17%、P:0.01%、sol.Al:0.
3 %、S:0.0013%の鋼素材に対し、加熱温度1200℃、
仕上温度 750〜1050℃、巻取温度720 ℃で熱間圧延を行
い、脱スケール後、圧下率83%で厚さ0.5 mmまで冷間圧
延し、次に1000℃で30秒の連続焼鈍を施し、得られた鋼
板をJIS リング(外径45mm、内径33mm)に加工し、リン
グ状での磁気特性を調査した結果である。FIG. 1 is a diagram showing the relationship between hot rolling finish temperature and magnetic properties. This has a base composition of C: 0.002.
%, Si: 3.2%, Mn: 0.17%, P: 0.01%, sol.Al: 0.
3%, S: 0.0013% steel material, heating temperature 1200 ℃,
Hot rolling is performed at a finishing temperature of 750 to 1050 ° C and a coiling temperature of 720 ° C. After descaling, cold rolling is performed at a reduction rate of 83% to a thickness of 0.5 mm, and then continuous annealing is performed at 1000 ° C for 30 seconds. The obtained steel plate was processed into a JIS ring (outer diameter 45 mm, inner diameter 33 mm) and the magnetic properties in the ring shape were investigated.
【0018】磁気特性は、周波数50Hz 、磁束密度1.5
Tにおける鉄損W15/50 および磁化力5000A/m におけ
る磁束密度B50で評価した。The magnetic characteristics are a frequency of 50 Hz and a magnetic flux density of 1.5.
The evaluation was made by iron loss W 15/50 at T and magnetic flux density B 50 at a magnetizing force of 5000 A / m.
【0019】図示するように、鉄損は熱間圧延の仕上温
度が 900〜1000℃の範囲で著しく低くなる。磁束密度は
熱間圧延の仕上温度が 900〜1000℃の範囲で著しく大き
くなるが、900 ℃未満あるいは1000℃を越える温度で
は、小さくなる。すなわち、熱間圧延の仕上温度が 900
〜1000℃の範囲で磁気特性のバランスが良くなることが
わかった。As shown in the figure, the iron loss is remarkably low when the finishing temperature of hot rolling is in the range of 900 to 1000 ° C. The magnetic flux density increases remarkably when the finishing temperature of hot rolling is in the range of 900 to 1000 ° C, but it decreases at temperatures below 900 ° C or above 1000 ° C. That is, the hot rolling finishing temperature is 900
It was found that the magnetic properties were well balanced in the range of up to 1000 ° C.
【0020】図2は熱延巻取温度と磁気特性との関係を
示す図である。これは、ベース組成として、C:0.002
%、Si:2.2 %、Mn:0.11%、P:0.007 %、sol.Al:
0.14%、S:0.0011%の鋼素材に対し、加熱温度1180
℃、仕上温度950 ℃、巻取温度600 〜 800℃で熱間圧延
を行い、脱スケール後、圧下率85%で厚さ0.5 mmまで冷
間圧延し、次に970 ℃で30秒の連続焼鈍を施し、得られ
た鋼板をJIS リング(外径45mm、内径33mm)に加工し、
リング状での磁気特性を調査した結果である。磁気特性
の評価は図1の場合と同じとした。FIG. 2 is a diagram showing the relationship between hot rolling temperature and magnetic characteristics. This has a base composition of C: 0.002.
%, Si: 2.2%, Mn: 0.11%, P: 0.007%, sol.Al:
0.14%, S: 0.0011% steel material, heating temperature 1180
℃, finishing temperature 950 ℃, coiling temperature 600 ~ 800 ℃ hot rolling, after descaling, cold rolling to a thickness of 0.5 mm at a reduction of 85%, then continuous annealing at 970 ℃ for 30 seconds. The resulting steel plate was processed into a JIS ring (outer diameter 45 mm, inner diameter 33 mm),
This is the result of investigating the magnetic characteristics in the ring shape. The evaluation of the magnetic properties was the same as in the case of FIG.
【0021】図示するように、鉄損は熱間圧延の巻取温
度が700 ℃以上で著しく低くなる。As shown in the figure, iron loss is significantly reduced when the coiling temperature in hot rolling is 700 ° C. or higher.
【0022】磁束密度は熱間圧延の巻取温度が、700 ℃
以上で著しく大きくなる。すなわち、熱間圧延の巻取温
度が700 ℃以上の範囲で磁気特性のバランスが良くなる
ことがわかった。The magnetic flux density is such that the coiling temperature in hot rolling is 700 ° C.
With the above, it becomes significantly large. That is, it was found that the magnetic properties were well balanced when the coiling temperature in hot rolling was in the range of 700 ° C or higher.
【0023】図3は、2種類のSレベルの場合におい
て、Mn含有量と磁気特性との関係を示す図である。これ
は、ベース組成として、C:0.002 %、Si:1.4 %、
P:0.011 %、sol.Al:0.6 %で、Sが0.0004%と0.00
37%の2水準において、Mn含有量を0.02〜0.38%の範囲
で変化させた鋼素材に対し、加熱温度1150℃、仕上温度
1000℃、巻取り温度750 ℃の熱間圧延を行い、酸洗によ
る脱スケール後、圧下率87%で厚さ0.5 mmまで冷間圧延
し、その後950 ℃で30秒の連続焼鈍を施し、得られた鋼
板をJIS リング(外径45mm、内径33mm)に加工し、リン
グ状での磁気特性を調査した結果である。磁気特性の評
価は図1および図2の場合と同じとした。FIG. 3 is a diagram showing the relationship between the Mn content and the magnetic characteristics in the case of two types of S levels. This has a base composition of C: 0.002%, Si: 1.4%,
P: 0.011%, sol.Al: 0.6%, S 0.0004% and 0.00
At 2 levels of 37%, heating temperature 1150 ℃, finishing temperature for steel materials with Mn content changed in the range of 0.02 to 0.38%
After hot rolling at 1000 ℃ and coiling temperature of 750 ℃, descaling by pickling, cold rolling to a thickness of 0.5 mm with a reduction of 87%, and then continuous annealing at 950 ℃ for 30 seconds to obtain The obtained steel plate was processed into a JIS ring (outer diameter 45 mm, inner diameter 33 mm) and the magnetic properties of the ring were investigated. The evaluation of the magnetic properties was the same as in the case of FIGS.
【0024】図示するように、鉄損はMn含有量の増加と
ともに増加する傾向にあり、またS含有量が増えると増
大する。磁束密度は低Sの場合にはMnが0.2 %まではほ
とんど変化しないが、Mnが0.2 %を超えると減少する傾
向にある。高Sの場合の磁束密度は、低Sの場合に比べ
小さい。As shown in the figure, iron loss tends to increase as the Mn content increases, and also increases as the S content increases. When the magnetic flux density is low S, Mn hardly changes up to 0.2%, but when Mn exceeds 0.2%, it tends to decrease. The magnetic flux density in the case of high S is smaller than that in the case of low S.
【0025】以上のようにMnおよびSの含有量を低減
し、熱間圧延の仕上温度を 900〜1000℃、かつ巻取温度
を700 ℃以上の範囲にすることにより、磁気特性の優れ
た電磁鋼板が得られる。この理由については次のように
考えられる。As described above, the contents of Mn and S are reduced, the finishing temperature of hot rolling is set in the range of 900 to 1000 ° C., and the winding temperature is set in the range of 700 ° C. or more. A steel plate is obtained. The reason for this is considered as follows.
【0026】熱間圧延の仕上温度を 900〜1000℃の範
囲にすることにより、熱延板の再結晶・粒成長が進行す
る。By setting the finishing temperature of hot rolling within the range of 900 to 1000 ° C., recrystallization and grain growth of the hot rolled sheet proceed.
【0027】スラブ加熱時にMnSが固溶するが、Mnお
よびSの含有量を低減したことにより、熱間圧延の仕上
温度までMnSが析出せず、仕上げ後の熱延板の結晶粒成
長が容易に進行する。MnS forms a solid solution when the slab is heated, but since the contents of Mn and S are reduced, MnS does not precipitate up to the finishing temperature of hot rolling, and the grain growth of the hot-rolled sheet after finishing is easy. Proceed to.
【0028】巻取温度を700 ℃以上に設定することに
より、熱延板の結晶粒成長が容易に進行する。By setting the coiling temperature to 700 ° C. or higher, the crystal grain growth of the hot rolled sheet easily proceeds.
【0029】[0029]
【作用】まず、本発明方法を適用する素材鋼の化学組成
を前記のように限定した理由について説明する。%は重
量%を意味する。First, the reason why the chemical composition of the material steel to which the method of the present invention is applied is limited as described above will be explained. % Means% by weight.
【0030】Si:4%以下 Siは固有抵抗を増加させ、渦電流損の低下による鉄損低
下に有効に寄与する元素である。特に低鉄損が要求され
る大型回転機用に対しては積極的に添加する必要があ
る。これらの効果を得ることができる望ましい下限は0.
1 %である。Si: 4% or less Si is an element that increases the specific resistance and effectively contributes to the reduction of iron loss due to the reduction of eddy current loss. Especially for large rotating machines for which low iron loss is required, it is necessary to add it positively. The desired lower limit for obtaining these effects is 0.
It is 1%.
【0031】しかし、Si含有量が4%を超えると、鋼板
が脆くなって冷間圧延時に割れ等の問題が生じることか
ら4%以下とした。However, if the Si content exceeds 4%, the steel sheet becomes brittle and problems such as cracking occur during cold rolling, so the content was made 4% or less.
【0032】Mn:0.2 %未満 Mnは本発明において重要な意味をもつ元素のひとつであ
る。従来は後述するSによる熱間脆性の防止及びMnSの
粗大化の観点から、0.2 %を超えて添加するのが普通で
あったが、本発明ではMn含有量は0.2 %よりも少なくす
る。この理由は次のとおりである。Mn: less than 0.2% Mn is one of the important elements in the present invention. Conventionally, from the viewpoint of preventing hot embrittlement due to S and coarsening of MnS described later, it was usual to add more than 0.2%, but in the present invention, the Mn content is made less than 0.2%. The reason for this is as follows.
【0033】低Sの条件下において、Mn含有量を0.2 %
未満とすれば、熱延の加熱から仕上げを通してMnSの析
出が抑えられ、熱延板の粒成長が容易に行われる。冷間
圧延前の結晶粒を粗大化すれば、冷間圧延・焼鈍を通し
て磁気特性に有利な集合組織が形成され、磁気特性が改
善される。従って、望ましいMn含有量の下限は後述する
Mn/Sによって決定される。Under a low S condition, the Mn content is 0.2%.
When the amount is less than the above, precipitation of MnS is suppressed through heating and finishing of hot rolling, and grain growth of the hot rolled sheet is easily performed. By coarsening the crystal grains before cold rolling, a texture advantageous for magnetic properties is formed through cold rolling and annealing, and magnetic properties are improved. Therefore, the lower limit of the desirable Mn content will be described later.
Determined by Mn / S.
【0034】一方、Mn含有量が0.2 %以上では、熱延の
仕上げまでにMnSが析出し、熱延板の粒成長が抑制さ
れ、磁気特性が悪化する。よって、Mn含有量は0.2 %未
満とした。On the other hand, when the Mn content is 0.2% or more, MnS is precipitated by the time hot-rolling is finished, grain growth of the hot-rolled sheet is suppressed, and the magnetic properties deteriorate. Therefore, the Mn content is set to less than 0.2%.
【0035】sol.Al: 0.1〜4% sol.Alは、Siと同様に固有抵抗を増加させ鉄損低下に寄
与する元素であるが、その一方でAlN を形成し焼鈍時の
粒成長性を悪化させ、鉄損を高める方向に作用する。た
だし、0.1 %以上含有させAlN を粗大化してやれば、AI
N の粒成長性に対する悪影響をなくすることができる。Sol.Al: 0.1 to 4% sol.Al is an element that increases the specific resistance and contributes to the reduction of iron loss like Si, but on the other hand, it forms AlN to improve the grain growth during annealing. It worsens and acts to increase iron loss. However, if AlN is coarsened by containing 0.1% or more, AI
It is possible to eliminate the adverse effect of N on the grain growth.
【0036】しかし、sol.Alが4%を超えると鋼板が脆
くなって、冷間圧延時に割れ等の問題が生じることから
4%以下とした。However, if sol.Al exceeds 4%, the steel sheet becomes brittle and problems such as cracking occur during cold rolling, so the content was made 4% or less.
【0037】Si+sol.Al:〔(FT−900)/40〕〜6% 本発明方法においては、熱間圧延の仕上げ後に再結晶・
粒成長させることが不可欠である。この場合、熱延の仕
上げ後にγ/α変態が生じると、熱延板の結晶粒が細か
くなり、製品の磁気特性が悪化する。そこで、γ/α変
態点が熱間圧延の仕上温度(FT)よりも高いことが必
要である。SiとAlは、いずれもγ/α変態点に影響を与
える元素であるため、Siとsol.Alの合計含有量を(FT
−900)/40%以上とした。この(FT−900)/40は、F
Tとγ/α変態点との関係を実験的に決定した結果から
得られたものである。Si + sol.Al: [(FT-900) / 40] -6% In the method of the present invention, recrystallization after finishing hot rolling.
Grain growth is essential. In this case, if the γ / α transformation occurs after the hot rolling finish, the crystal grains of the hot rolled sheet become fine, and the magnetic properties of the product deteriorate. Therefore, it is necessary that the γ / α transformation point is higher than the finishing temperature (FT) of hot rolling. Since Si and Al are both elements that affect the γ / α transformation point, the total content of Si and sol.Al is (FT
-900) / 40% or more. This (FT-900) / 40 is F
It is obtained from the result of experimentally determining the relationship between T and the γ / α transformation point.
【0038】一方、Si+sol.Alの合計含有量が6%を超
えると加工性が悪化するため、その上限は6%とした。On the other hand, if the total content of Si + sol.Al exceeds 6%, the workability deteriorates, so the upper limit was made 6%.
【0039】C:0.003 %以下 Cは鉄損低減の観点から少ない方がよい不純物である。
C含有量が0.003 %を超えると磁気時効による鉄損増加
が生じることから、上限は0.003 %とした。C: 0.003% or less C is an impurity that is preferably contained from the viewpoint of reducing iron loss.
When the C content exceeds 0.003%, iron loss increases due to magnetic aging, so the upper limit was made 0.003%.
【0040】N:0.003 %以下 Nも鉄損低減の観点から少ない方がよい不純物である。
N含有量が0.003 %を超えるとAIN などの窒化物の量が
増加し、磁気特性が劣化することから、上限は0.003 %
とした。N: 0.003% or less N is also an impurity that should be reduced from the viewpoint of reducing iron loss.
If the N content exceeds 0.003%, the amount of nitride such as AIN increases and the magnetic properties deteriorate, so the upper limit is 0.003%.
And
【0041】S:0.002 %以下 S含有量が0.002 %を超えるとMnとの間でMnSを形成
し、仕上焼鈍後の熱延板の粒成長を抑制する。また、焼
鈍時の粒成長も妨げ、鉄損の低下を阻む方向に作用する
とともに、熱間脆性を引き起こす。よって、S含有量は
0.002 %以下とした。なお、Sについては、特性上、下
限の限定は不要である。S: 0.002% or less When the S content exceeds 0.002%, MnS is formed between Mn and Mn to suppress grain growth of the hot rolled sheet after finish annealing. In addition, grain growth during annealing is also hindered, which acts to prevent reduction of iron loss and causes hot brittleness. Therefore, the S content is
It was set to 0.002% or less. Note that S does not require a lower limit because of its characteristics.
【0042】Mn/S:10以上 MnおよびSは前記の範囲に限定する必要があるが、Mn/
Sが10未満では熱間脆性が発生する。熱間脆性を防止す
る観点から、さらにMnとSとの関係をMn/Sで10以上と
した。Mn / S: 10 or more Mn and S must be limited to the above range.
If S is less than 10, hot brittleness occurs. From the viewpoint of preventing hot brittleness, the relationship between Mn and S was set to 10 or more in Mn / S.
【0043】なお、Pは不可避的に含まれる不純物元素
であり、特に添加する必要はない。Incidentally, P is an impurity element contained inevitably, and it is not necessary to add it in particular.
【0044】ただし、0.1 %を超えると鋼板が脆化し、
冷延破断が生じやすくなるため、P含有量は 0.1%以下
とするのが望ましい。However, if it exceeds 0.1%, the steel sheet becomes brittle,
It is desirable that the P content be 0.1% or less because cold rolling breakage easily occurs.
【0045】次に、製造工程と条件の限定理由について
述べる。Next, the reasons for limiting the manufacturing process and conditions will be described.
【0046】上記の化学組成の素材鋼は、常法に従って
転炉等で溶製され、連続鋳造または造塊−分塊圧延を経
てスラブとされる。The material steel having the above chemical composition is melted in a converter or the like according to a conventional method, and is continuously cast or ingot-slab-rolled into a slab.
【0047】次いでこのスラブを常法により加熱し、仕
上温度 900〜1000℃、巻取温度 700℃以上で熱間圧延を
行い、次いで脱スケール後、圧下率80%以上で1回の冷
間圧延を行い、その後焼鈍を施す。熱間圧延以降の各行
程について以下に詳述する。Next, this slab is heated by a conventional method and hot-rolled at a finishing temperature of 900 to 1000 ° C. and a coiling temperature of 700 ° C. or higher, then after descaling, it is cold-rolled once at a rolling reduction of 80% or more. And then annealing. Each process after hot rolling will be described in detail below.
【0048】(1)熱間圧延時の仕上温度 この行程は、仕上温度を900 ℃以上1000℃以下とするこ
とを条件とする。本発明方法では、熱間圧延の仕上げ後
に熱延板の再結晶及び粒成長を促進させることにより、
磁気特性を向上させることが不可欠である。仕上温度が
900 ℃未満では、特に鋼板の中心部に未再結晶部が生
じ、所望の再結晶状態が得られなくなる。(1) Finishing temperature during hot rolling This step is conditioned on the finishing temperature being 900 ° C. or more and 1000 ° C. or less. In the method of the present invention, by promoting the recrystallization and grain growth of the hot rolled sheet after finishing the hot rolling,
Improving magnetic properties is essential. The finishing temperature is
If the temperature is lower than 900 ° C., a non-recrystallized part is formed especially in the central part of the steel sheet, and a desired recrystallized state cannot be obtained.
【0049】一方、仕上温度が1000℃を超えると、圧延
時に十分な歪みエネルギーが蓄積されず回復のみが起こ
り、再結晶が生じない。すなわち、仕上温度が900 ℃以
上1000℃以下の場合のみ、望ましい再結晶が生じる。On the other hand, when the finishing temperature exceeds 1000 ° C., sufficient strain energy is not accumulated during rolling, only recovery occurs, and recrystallization does not occur. That is, desirable recrystallization occurs only when the finishing temperature is 900 ° C or higher and 1000 ° C or lower.
【0050】(2)熱間圧延後の巻取温度 この行程は、巻取温度を700 ℃以上とすることを条件と
する。巻取温度が 700℃未満であると、粒成長を十分に
行わせることができない。(2) Winding temperature after hot rolling This step is conditioned on the winding temperature being 700 ° C. or higher. If the winding temperature is lower than 700 ° C, grain growth cannot be sufficiently performed.
【0051】(3)脱スケール 脱スケールは、冷延性の向上および冷延後の焼鈍の際の
内部酸化防止を目的として施す。これは酸洗いで行う場
合が多いが、種々の機械的な脱スケール法、例えばショ
ットブラストやロールベンダ等の組み合わせで行っても
よい。(3) Descaling Descaling is performed for the purpose of improving cold rolling property and preventing internal oxidation during annealing after cold rolling. This is often done by pickling, but it may be done by various mechanical descaling methods, such as a combination of shot blasting and roll bending.
【0052】(4)冷間圧延 冷間圧延の圧下率は本発明の重要な条件の一つであり、
80%以上とする必要がある。このような高圧下率で冷間
圧延を行うことにより、製品での磁気特性の板面内異方
性が減少する。上限は、もっぱら操業上の制約から決ま
るので限定しない。例えば、最も一般的な板厚0.5 mmの
製品の場合、95%の圧下率では熱延板の板厚が10mmにも
なり、実操業においては、これ以上の圧下率とするのは
実質上不可能である。(4) Cold rolling The cold rolling reduction is one of the important conditions of the present invention.
Must be 80% or higher. By performing cold rolling at such a high pressure reduction rate, the in-plane anisotropy of the magnetic properties of the product is reduced. The upper limit is not limited because it is determined solely by operational constraints. For example, in the case of the most common product with a plate thickness of 0.5 mm, at a reduction rate of 95%, the sheet thickness of the hot-rolled sheet is as high as 10 mm, and in actual operation it is virtually impossible to achieve a reduction rate higher than this. It is possible.
【0053】(5)冷延後の焼鈍 この焼鈍は、上記冷延後の加工組織を再結晶させるとと
もに、再結晶粒を十分に粒成長させることを目的として
施すものであり、通常、連続焼鈍を用いて一般的な条件
で行えばよい。(5) Annealing after cold rolling This annealing is performed for the purpose of recrystallizing the worked structure after cold rolling and sufficiently growing the recrystallized grains, and is usually continuous annealing. Can be used under general conditions.
【0054】無方向性電磁鋼板には、所定の磁気特性を
付与して出荷されるフルプロセス品と、出荷後ユーザー
側で打ち抜き等の加工後に歪み取り焼鈍(750℃×2hr程
度 )が施されて所定の磁気特性を付与させるに至るセミ
プロセス品とがある。しかし、フルプロセス品において
も、当然ユーザー側において歪み取り焼鈍が施される場
合もあり、フルプロセス品としては出荷時はもとより、
ユーザー側での歪み取り焼鈍実施時にも規定の磁気特性
を示すことが要求される。The non-oriented electrical steel sheet is a full-process product which is shipped with given magnetic characteristics, and a strain relief anneal (750 ° C. × 2 hr) after shipping and after processing such as punching by the user side. There is a semi-processed product that gives a predetermined magnetic property. However, even in the case of full process products, there are cases in which distortion relief annealing is naturally performed on the user side, and as a full process product, not only at the time of shipment,
It is required for the user to exhibit specified magnetic characteristics even when performing strain relief annealing.
【0055】本発明方法は、このようなフルプロセス
品、セミプロセス品の両方を対象とするものであるが、
冷延後の焼鈍は一般に、フルプロセス品では 700〜1000
℃×5秒以上程度、セミプロセス品では 650〜900 ℃×
5秒以上程度とされ、本発明方法の場合にもこれに準ず
る条件としてよい。The method of the present invention is intended for both such full-process products and semi-process products.
Annealing after cold rolling is generally 700-1000 for full process products.
℃ × 5 seconds or more, 650-900 ℃ × for semi-processed products ×
It is set to about 5 seconds or more, and the conditions according to this may be applied to the method of the present invention.
【0056】電磁鋼板を製造する場合、通常はさらに絶
縁コーティングを付与する行程が入ってくるが、本発明
方法の場合にも、製造の最終行程としてコーティング行
程を追加することは可能である。When a magnetic steel sheet is manufactured, a step of applying an insulating coating is usually added, but in the case of the method of the present invention, it is possible to add a coating step as a final step of manufacturing.
【0057】[0057]
【実施例】表1に示す各組成の鋼を真空溶製し、50kgイ
ンゴットとした。続いて加熱温度を1200℃とし、表2に
示す条件で熱間圧延を行った。その後、脱スケールを行
い次いで表2に示す条件で冷間圧延を行ったが、No.11
とNo.21 については途中で破断してしまい、その後の工
程を打ち切った。冷間圧延が可能であった場合の最終板
厚は0.5 mmである。EXAMPLE Steels having the respective compositions shown in Table 1 were vacuum-melted into 50 kg ingots. Then, the heating temperature was set to 1200 ° C., and hot rolling was performed under the conditions shown in Table 2. After that, descaling was performed and then cold rolling was performed under the conditions shown in Table 2.
No. 21 and No. 21 broke in the middle, and the subsequent process was terminated. If cold rolling was possible, the final strip thickness is 0.5 mm.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】冷間圧延後、No.1〜10については1050℃×
20s の連続焼鈍、No.12 〜20については 900℃×20s の
連続焼鈍を行った。After cold rolling, No. 1 to 10 were 1050 ° C. ×
20 s continuous annealing, No. 12 to 20 was 900 ℃ × 20 s continuous annealing.
【0061】このようにして得た各供試鋼板について、
外径80mm、内径60mmの打ち抜きリング試験片を採取し
て、磁気特性を調査した。磁気特性は、周波数50Hz 、
磁束密度1.5 Tにおける鉄損W15/50 および磁化力5000
A/m における磁束密度B50で評価した。結果を表2に
併せて示す。For each test steel plate thus obtained,
A punching ring test piece having an outer diameter of 80 mm and an inner diameter of 60 mm was sampled to investigate the magnetic properties. Magnetic characteristics are frequency 50Hz,
Iron loss W 15/50 and magnetizing force 5000 at magnetic flux density of 1.5 T
The magnetic flux density B 50 at A / m was used for evaluation. The results are also shown in Table 2.
【0062】表2から明らかなように、No.1〜4、No.1
2 〜15は本発明で定める条件を満たして製造された場合
であるが、いずれも鉄損・磁束密度バランスに優れた良
好な磁気特性が得られた。As is clear from Table 2, Nos. 1 to 4 and No. 1
Nos. 2 to 15 are cases in which the magnetic recording medium was manufactured under the conditions defined in the present invention, and in all cases, good magnetic characteristics excellent in iron loss / magnetic flux density balance were obtained.
【0063】一方、No.5ではC含有量が本発明範囲より
も高いため、特に鉄損がNo.1〜4と比較して悪い。No.6
ではMn含有量が本発明範囲よりも高いため、熱間圧延時
にMnSが析出して熱延板の粒成長が起こっておらず、鉄
損、磁束密度ともにNo.1〜4と比較して悪くなってい
る。No.7ではS含有量が本発明範囲よりも高いため、熱
間圧延時にMnSが析出して熱延板の粒成長が起こってお
らず、鉄損、磁束密度ともにNo.1〜4 と比較して悪くな
っている。No.8ではN含有量が本発明範囲よりも高いた
め、特に鉄損についてNo.1〜4 と比較して悪くなってい
る。On the other hand, in No. 5, since the C content is higher than the range of the present invention, the iron loss is particularly bad as compared with Nos. 1 to 4. No.6
However, since the Mn content is higher than the range of the present invention, MnS is precipitated during hot rolling and grain growth of the hot rolled sheet does not occur, and both core loss and magnetic flux density are worse than Nos. 1 to 4. Has become. In No. 7, since the S content is higher than the range of the present invention, MnS is precipitated during hot rolling and grain growth of the hot rolled sheet does not occur, and both iron loss and magnetic flux density are compared with No. 1 to 4. And is getting worse. In No. 8, since the N content is higher than the range of the present invention, the iron loss in particular is worse than Nos. 1 to 4.
【0064】No.9では熱間圧延の仕上温度が本発明範囲
よりも高いため、仕上げ後に熱延板の再結晶が起こら
ず、No.1〜4 と比較して鉄損、磁束密度ともに悪化して
いる。In No. 9, since the finishing temperature of hot rolling is higher than the range of the present invention, recrystallization of the hot rolled sheet does not occur after finishing, and both iron loss and magnetic flux density are worse than Nos. 1 to 4. is doing.
【0065】No.10 では冷間圧延の圧下率が低すぎるた
め、鉄損、磁束密度ともに悪くなってる。In No. 10, the reduction ratio of cold rolling was too low, so that both iron loss and magnetic flux density were poor.
【0066】No.11 ではSi+sol.Alの含有量が本発明範
囲よりも高すぎるため、冷間圧延時に破断した。No.16
、No.17 ではSi+sol.Alの含有量が本発明範囲よりも
低すぎ、熱間圧延の仕上げ後にγ/α変態が生じ、熱延
板が細粒となったため、No.12〜15と比較して鉄損が悪
くなっている。In No. 11, since the content of Si + sol.Al was too high than the range of the present invention, it fractured during cold rolling. No.16
, No. 17, the content of Si + sol.Al was too low than the range of the present invention, γ / α transformation occurred after hot rolling finishing, and the hot-rolled sheet became fine-grained, so compared with No. 12-15. And iron loss is getting worse.
【0067】No.18 ではsol.Al含有量が本発明範囲より
も低すぎてAlN が微細に析出したため、No.12 〜15と比
較して鉄損、磁束密度ともに悪くなっている。In No. 18, the sol.Al content was too lower than the range of the present invention and AlN was finely precipitated, so that the iron loss and the magnetic flux density were worse than those of Nos. 12 to 15.
【0068】No.19 では熱間圧延の仕上温度が本発明範
囲よりも低すぎて熱延板の再結晶が起こっていないた
め、また、No.20 では熱間圧延の巻取温度が本発明範囲
よりも低すぎて熱延板の粒成長が十分でないために、い
ずれもNo.12 〜15と比較して鉄損、磁束密度ともに悪化
した。No.21 ではMn/S比が本発明範囲よりも低すぎる
ため、熱間圧延時に割れが発生した。In No. 19, the finishing temperature of hot rolling was lower than the range of the present invention and recrystallization of the hot rolled sheet did not occur, and in No. 20, the winding temperature of hot rolling was the present invention. Since the grain growth of the hot-rolled sheet was not sufficient because it was lower than the range, both iron loss and magnetic flux density were worse than those of Nos. 12 to 15. In No. 21, since the Mn / S ratio was too low than the range of the present invention, cracking occurred during hot rolling.
【0069】[0069]
【発明の効果】本発明方法によれば、回転機用の鉄心材
料として好適な、低鉄損かつ高磁束密度の無方向性電磁
鋼板を製造することが可能であり、しかも従来技術のよ
うに高温のスラブ加熱、2回冷延あるいは熱延板焼鈍な
どの煩雑な工程をとる必要がない。According to the method of the present invention, it is possible to manufacture a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density, which is suitable as an iron core material for a rotating machine, and moreover, as in the prior art. There is no need to take complicated steps such as high temperature slab heating, double cold rolling or hot rolled sheet annealing.
【図1】熱延仕上温度と磁気特性との関係を示す図であ
る。FIG. 1 is a diagram showing the relationship between hot rolling finish temperature and magnetic properties.
【図2】熱延巻取温度と磁気特性との関係を示す図であ
る。FIG. 2 is a diagram showing a relationship between hot rolling temperature and magnetic characteristics.
【図3】2種類のSレベルの場合における、Mn含有量と
磁気特性との関係を示す図である。FIG. 3 is a diagram showing the relationship between Mn content and magnetic characteristics in the case of two types of S levels.
Claims (1)
よびsol.Al:0.1〜4%を含み、かつ下記式と式とを
満足し、残部はFeおよび不可避的不純物からなり、不純
物中のCは0.003 %以下、Nは0.003 %以下およびSは
0.002 %以下である鋼素材を仕上温度900 ℃以上1000℃
以下、巻取温度700 ℃以上で熱間圧延を行い、次いで脱
スケール後、圧下率80%以上で冷間圧延を行い、その後
焼鈍することを特徴とする磁気特性の優れた無方向性電
磁鋼板の製造方法。 〔(FT−900)/40〕%≦(Si+sol.Al) ≦6% ・・・ Mn/S≧10 ・・・・・・・・・・・・・ ただし、FTは熱間圧延の仕上温度(℃)1. By weight, Si: 4% or less, Mn: less than 0.2% and sol.Al: 0.1 to 4% are satisfied, and the following formulas and formulas are satisfied, and the balance is Fe and inevitable impurities. C in the impurities is 0.003% or less, N is 0.003% or less, and S is
Steel material with 0.002% or less finishing temperature 900 ℃ to 1000 ℃
The non-oriented electrical steel sheet with excellent magnetic properties is characterized by hot rolling at a coiling temperature of 700 ° C or higher, descaling, cold rolling at a rolling reduction of 80% or higher, and subsequent annealing. Manufacturing method. [(FT-900) / 40]% ≦ (Si + sol.Al) ≦ 6% ・ ・ ・ Mn / S ≧ 10 ・ ・ ・ ・ ・ ・ ・ ・ However, FT is the value of hot rolling. Finishing temperature (℃)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6053611A JPH07258736A (en) | 1994-03-24 | 1994-03-24 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6053611A JPH07258736A (en) | 1994-03-24 | 1994-03-24 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07258736A true JPH07258736A (en) | 1995-10-09 |
Family
ID=12947704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6053611A Pending JPH07258736A (en) | 1994-03-24 | 1994-03-24 | Production of nonoriented silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07258736A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171650A (en) * | 1997-06-27 | 1999-03-16 | Nkk Corp | Non-oriented electrical steel sheet with low iron loss |
JP2007217744A (en) * | 2006-02-16 | 2007-08-30 | Jfe Steel Kk | Non-oriented electrical steel sheet and manufacturing method thereof |
JP2008260996A (en) * | 2007-04-11 | 2008-10-30 | Nippon Steel Corp | Non-oriented electrical steel sheet having excellent magnetic properties in the rolling direction and method for producing the same |
-
1994
- 1994-03-24 JP JP6053611A patent/JPH07258736A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171650A (en) * | 1997-06-27 | 1999-03-16 | Nkk Corp | Non-oriented electrical steel sheet with low iron loss |
JP2007217744A (en) * | 2006-02-16 | 2007-08-30 | Jfe Steel Kk | Non-oriented electrical steel sheet and manufacturing method thereof |
JP2008260996A (en) * | 2007-04-11 | 2008-10-30 | Nippon Steel Corp | Non-oriented electrical steel sheet having excellent magnetic properties in the rolling direction and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2700505B2 (en) | Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same | |
JP2000129409A (en) | Non-oriented electrical steel sheet excellent in actual machine characteristics of rotating machine and method of manufacturing the same | |
JP2000219917A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP4218077B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP7268803B1 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2004332042A (en) | Method for producing non-oriented electrical steel sheet with excellent rolling direction and in-plane perpendicular magnetic properties | |
KR19990023587A (en) | Electronic steel sheet with excellent magnetic properties and its manufacturing method | |
JP3375998B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP4337146B2 (en) | Method for producing non-oriented electrical steel sheet | |
JPH055126A (en) | Non-oriented electrical steel sheet manufacturing method | |
JPH07258736A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property | |
JP3397277B2 (en) | Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip | |
JP2874564B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JP2001181806A (en) | Non-oriented electrical steel sheet excellent in magnetic permeability, hot-rolled sheet thereof and method for producing the same | |
JPH032323A (en) | Manufacture of nonoriented silicon steel sheet having high magnetic flux density | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP2002220643A (en) | Low iron loss non-oriented electrical steel sheet with good workability and method of manufacturing the same | |
JPH1161357A (en) | Electromagnetic steel hot rolled sheet excellent in magnetic properties in the rolling direction and method for producing the same | |
JP4320794B2 (en) | Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction | |
KR20010039572A (en) | Non-oriented electrical steel sheet excellent in permeability and method of producing the same | |
JP2666626B2 (en) | Low iron loss non-oriented electrical steel sheet and its manufacturing method | |
JP4269138B2 (en) | Non-oriented electrical steel sheet for semi-process | |
JPH09125145A (en) | Method of manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP3531779B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
JPH06104865B2 (en) | Non-oriented electrical steel sheet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040817 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050208 |