JP2000129409A - Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production - Google Patents
Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its productionInfo
- Publication number
- JP2000129409A JP2000129409A JP10301930A JP30193098A JP2000129409A JP 2000129409 A JP2000129409 A JP 2000129409A JP 10301930 A JP10301930 A JP 10301930A JP 30193098 A JP30193098 A JP 30193098A JP 2000129409 A JP2000129409 A JP 2000129409A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- rolling
- electrical steel
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電動機や発電機の鉄
芯に利用される無方向性電磁鋼板に係り、なかでも回転
機の実機特性に優れた無方向性電磁鋼板とその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used for an iron core of an electric motor or a generator, and more particularly to a non-oriented electrical steel sheet excellent in the characteristics of a rotating machine and its manufacturing method.
【0002】[0002]
【従来の技術】無方向性電磁鋼板は発電機、電動機、小
型変圧器などの鉄芯に用いられる材料であるが、省エネ
ルギー化を低減するためには、電動機や発電機で失われ
るエネルギー損失を低減する必要があり、鉄損などの電
磁特性の改善が図られている。従来、無方向性電磁鋼板
の鉄損は、一般に、50Hzの周波数で1.5Tに磁化させたと
きの鉄損(W15/50(W/kg))の低いこと、および、5000A/
mの磁化力で磁化したときの磁束密度(B50(T))の高い
ことで評価される。その測定方法は、試料の半量を圧延
方向に磁化させ、残る半量を圧延方向と直角方向に磁化
させた状態で測定する標準的なエプスタイン試験法によ
っている。2. Description of the Related Art Non-oriented electrical steel sheets are materials used for iron cores of generators, electric motors, small transformers, etc. In order to reduce energy conservation, energy loss in electric motors and generators is reduced. It has to be reduced, and improvement of electromagnetic characteristics such as iron loss has been attempted. Conventionally, non-oriented electrical steel sheets generally have low iron loss (W 15/50 (W / kg)) when magnetized to 1.5 T at a frequency of 50 Hz, and 5000 A /
It is evaluated based on the high magnetic flux density (B 50 (T)) when magnetized with a magnetizing force of m. The measuring method is based on a standard Epstein test method in which half of the sample is magnetized in the rolling direction and the remaining half is magnetized in a direction perpendicular to the rolling direction.
【0003】無方向性電磁鋼板の鉄損を低減する方法と
しては、Si、AlあるいはMnを含有させ、鋼板の電気抵
抗を高める方法、鋼板中のS、O、N等の不純物を低減
し、結晶の粒成長性を高め、製品の結晶粒径を大きくす
る方法、製品の結晶の集合組織を好ましいものに改善
する方法などがが挙げられる。しかし、第1の方法は鋼
板の圧延性や、製品加工の際の加工性が劣化するため、
現状から大きくステップアップすることは困難であり、
第2の不純物も現在、Sが20ppm以下、Oが10ppm以下、N
が15ppm以下のレベルに達しており、これ以上低下させ
てもコストアップに比較して磁気特性の改善効果が大き
くない状態にある。[0003] As a method of reducing iron loss of a non-oriented electrical steel sheet, a method of containing Si, Al or Mn to increase the electrical resistance of the steel sheet, reducing impurities such as S, O, N in the steel sheet, Examples of the method include increasing the crystal grain growth and increasing the crystal grain size of the product, and improving the crystal texture of the product to a desirable one. However, the first method deteriorates the rollability of the steel sheet and the workability during product processing,
It is difficult to step up significantly from the current situation,
As for the second impurity, S is less than 20 ppm, O is less than 10 ppm, N
Has reached a level of 15 ppm or less, and even if it is further reduced, the effect of improving the magnetic characteristics is not so large as compared with the cost increase.
【0004】第3の方法は、磁気特性上好ましくない結
晶方位である(111)方位の集合組織を低減する方法
であり、代表的なものとして、冷間圧延前の結晶粒径を
粗大化し、旧結晶粒界から生成する(111)粒の再結
晶を抑制し、旧結晶粒内の変形帯から生成する(11
0)粒の密度を高める方法があげられる。この方法を発
展させたものとして、特開昭55-97426号公報あるいは特
許第2501219号公報に開示されているように高温で短時
間の熱延板焼鈍を行って、冷間圧延前の鋼板の結晶粒径
を粗大化する方法や熱延板を800〜950℃で長時間焼鈍す
る方法がある。また、特公昭56-54370号公報や特公昭58
-30926号公報に開示されるように、鋼中にSbやSnを含有
させた熱延板を700〜1000℃で焼鈍し、圧延前の結晶粒
径を粗大化すると同時に結晶粒界にSbやSnを偏析させ、
前述の効果をさらに促進する方法がある。A third method is a method of reducing the texture of the (111) orientation, which is an unfavorable crystal orientation in terms of magnetic characteristics. As a typical method, the crystal grain size before cold rolling is increased. The recrystallization of the (111) grains generated from the old crystal grain boundaries is suppressed, and the (111) grains generated from the deformed band in the old crystal grains (11)
0) There is a method of increasing the density of grains. As a development of this method, as described in JP-A-55-97426 or Japanese Patent No. 2501219, hot-rolled sheet annealing is performed at a high temperature for a short time, and the steel sheet before cold rolling is There is a method of increasing the crystal grain size or a method of annealing a hot-rolled sheet at 800 to 950 ° C. for a long time. In addition, JP-B-56-54370 and JP-B-58
As disclosed in Japanese Patent No. -30926, a hot-rolled sheet containing Sb or Sn in steel is annealed at 700 to 1000 ° C., and the grain size before rolling is coarsened, and at the same time, Sb or Segregate Sn,
There are ways to further enhance the effects described above.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも製品の{111}<uvw>系の集合
組織を低減し、(110)[001]方位を有する粒を
増加させるものである。そのため、無方向性電磁鋼板の
電磁特性の評価のため、試料の半量を圧延方向に磁化さ
せ、残る半量を圧延方向と直角方向に磁化させる従来常
法として採用されていた測定試験(以下、単に「標準測
定法」という)では、良好な結果が得られても、発電
機、電動機などの回転機の実機特性は必ずしも良好では
なかった。これは、従来の標準測定法は、E1コアのよ
うな2方向のみの特性が重視される用途には適するが、
回転機のようなすべての方向に対する特性が良好である
ことを要求される用途には適切でなかったためである。However, all of these methods reduce the texture of the {111} <uvw> system of the product and increase the number of grains having the (110) [001] orientation. Therefore, in order to evaluate the electromagnetic properties of the non-oriented electrical steel sheet, a measurement test (hereinafter simply referred to as simply referred to as a conventional method) in which half of the sample is magnetized in the rolling direction and the remaining half is magnetized in the direction perpendicular to the rolling direction is used. According to the “standard measurement method”, even if a good result was obtained, the actual machine characteristics of the rotating machine such as the generator and the electric motor were not necessarily good. This is because the conventional standard measurement method is suitable for applications where characteristics in only two directions are important, such as the E1 core,
This is because it was not suitable for an application requiring good characteristics in all directions, such as a rotating machine.
【0006】この発明は、上記の事情に鑑み、無方向性
電磁鋼板を、特に、発電機や電動機等の回転機の鉄芯に
利用した場合に優れた実機特性が得られるようにするた
め、まず、上記用途に用いる無方向性電磁鋼板の評価基
準を確立し、さらにその評価基準を満たす製品およびそ
の製造方法を提案することを目的としてなされたもので
ある。The present invention has been made in view of the above circumstances, and in order to obtain excellent actual machine characteristics when a non-oriented electrical steel sheet is used particularly for an iron core of a rotating machine such as a generator or a motor. First, the purpose of the present invention is to establish an evaluation standard for a non-oriented electrical steel sheet used for the above-mentioned application, and to propose a product satisfying the evaluation standard and a manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段】本発明者は、上記課題の
解決のため鋭意研究を重ね、回転機の実機特性にとって
は、圧延方向、圧延方向に直角方向の特性値を測定する
従来の標準測定法のほかに、圧延方向に対して±45°の
方向の測定値を加味した異方性の特性値が重要であるこ
と、および、飽和磁束密度Bsに対する磁束密度B50の
比が重要であることを知見して、評価基準を確立し、そ
の評価基準を達成するためには、熱延板焼鈍を、従来と
異なり、再結晶を抑え回復を促進させるものとすること
が必要なことを新たに見出し、本発明を完成したもので
ある。Means for Solving the Problems The inventor of the present invention has made intensive studies to solve the above-mentioned problems, and for the characteristics of a rotating machine, a conventional standard for measuring a characteristic value in a rolling direction and a direction perpendicular to the rolling direction. in addition to the measurement method, it characteristic value of anisotropy in consideration of the measured value in a direction of ± 45 ° to the rolling direction is important, and the ratio of magnetic flux density B 50 with respect to the saturation magnetic flux density Bs important In order to establish the evaluation criteria, and to achieve the evaluation criteria, it is necessary to make the hot-rolled sheet annealing different from the conventional ones to suppress the recrystallization and promote the recovery. The present invention has been newly found and the present invention has been completed.
【0008】本発明は、まず、1.0T、50Hzにおける透磁
率の異方性定数が1.07以下、1.5T、50Hzにおける鉄損の
異方性定数が1.05以下、かつ、4方向測定法によるB50
の値がB50/Bs≧0.80を満たすものとすることにより無方
向性電磁鋼板の回転機の実機特性を優れたものとする。
ここに、4方向測定法とは、圧延方向、圧延方向に対し
て直角方向、および圧延方向に対して±45°の方向から
切り出した等量の試験片合計500gに対して行うエプスタ
イン試験などをいう。According to the present invention, first, the anisotropy constant of the magnetic permeability at 1.0 T and 50 Hz is 1.07 or less, the anisotropy constant of the iron loss at 1.5 T and 50 Hz is 1.05 or less, and B 50 is measured by a four-direction measurement method.
Satisfying B 50 /Bs≧0.80, the characteristics of the rotating machine made of non-oriented electrical steel sheet are improved.
Here, the four-direction measurement method is a rolling direction, a direction perpendicular to the rolling direction, and an Epstein test or the like performed on a total of 500 g of test pieces of the same amount cut out from a direction of ± 45 ° with respect to the rolling direction. Say.
【0009】本発明は、上記無方向性電磁鋼板の好まし
い組成として、重量比で、C:0.010%以下、Si:0.1〜
7.0%、Mn:0.03〜3.5%、Sb、Snの1種または2種の合計
量:0.003〜0.20%を含有するとともに、不純物元素を
S:0.0050%以下、N:0.0040%以下、O:0.0030%以下、T
i:0.0030%以下、Zr:0.0030%以下、V:0.0050%以下、
B:0.0010%以下、Nb:0.0050%以下に制限してなり、残
部実質的にFeからなるものとする。According to the present invention, as a preferred composition of the non-oriented electrical steel sheet, C: 0.010% or less and Si: 0.1 to
7.0%, Mn: 0.03 to 3.5%, total amount of one or two of Sb and Sn: 0.003 to 0.20%
S: 0.0050% or less, N: 0.0040% or less, O: 0.0030% or less, T
i: 0.0030% or less, Zr: 0.0030% or less, V: 0.0050% or less,
B: limited to 0.0010% or less, Nb: limited to 0.0050% or less, with the balance substantially consisting of Fe.
【0010】さらに、上記組成に加え、Al:0.10〜2.0
%、P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.01〜0.5
%、Cr:0.01〜1.0%のいずれか1種を以上を含有するこ
ととし、あるいはAl:0.001%以下とするとともに、P:
0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.01〜0.5%、Cr:
0.01〜1.0%のいずれか1種以上を含有することとする。Further, in addition to the above composition, Al: 0.10 to 2.0
%, P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.01 to 0.5
%, Cr: at least one of 0.01 to 1.0%, or Al: 0.001% or less, and P:
0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.01 to 0.5%, Cr:
At least one of 0.01 to 1.0% is contained.
【0011】また、上記無方向性電磁鋼板の製造方法と
して、重量比で、C:0.010%以下、Si:0.1〜7.0%、M
n:0.03〜3.5%を含有する鋼スラブを、熱間圧延により
熱延板とし、熱延板焼鈍後、1回の冷間圧延により最終
板厚とし、さらに仕上げ焼鈍を施す一連の工程からなる
無方向性電磁鋼板の製造工程において、前記鋼スラブの
組成は、Sb、Snを合計量で0.003〜0.20%を含有するとと
もに、その不純物元素を、S:0.0050%以下、N:0.0040%
以下、O:0.0030%以下、Ti:0.0030%以下、Zr:0.0030%
以下、V:0.0050%以下、B:0.0010%以下、Nb:0.0050%
以下とし、前記熱間圧延は、その仕上げ圧延の後段4パ
スの累積圧下率を65〜95%、かつ、前記熱間圧延後のコ
イル巻取り温度を700℃以下とし、前記熱延板焼鈍は圧
延ひずみを回復しながら再結晶率を40%以下とするもの
とし、さらに、前記冷間圧延は、圧下率を75〜98%とす
るものである。Further, as a method for producing the non-oriented electrical steel sheet, C: 0.010% or less, Si: 0.1 to 7.0%, M:
n: A steel slab containing 0.03 to 3.5% is formed into a hot-rolled sheet by hot rolling, and after annealing of the hot-rolled sheet, comprises a series of steps of performing a single cold rolling to a final sheet thickness, and further performing a finish annealing. In the manufacturing process of the non-oriented electrical steel sheet, the composition of the steel slab contains Sb and Sn in a total amount of 0.003 to 0.20%, and the impurity elements thereof, S: 0.0050% or less, N: 0.0040%
Below, O: 0.0030% or less, Ti: 0.0030% or less, Zr: 0.0030%
Below, V: 0.0050% or less, B: 0.0010% or less, Nb: 0.0050%
The hot rolling, the rolling reduction of the latter four passes of the finish rolling is 65 to 95%, and the coil winding temperature after the hot rolling is 700 ° C. or less, and the hot rolled sheet annealing is performed as follows. The recrystallization rate is reduced to 40% or less while recovering the rolling strain, and the cold rolling is performed with a reduction rate of 75 to 98%.
【0012】さらに、上記製造方法においてスラブには
さらにAl:0.10〜2.0%、P:0.01〜0.30%、Cu:0.01〜1.
0%、Ni:0.01〜0.5%、Cr:0.01〜1.0%の1種以上を含有
させること、あるいはAl:0.001%以下とするとともに、
P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.01〜0.5%、C
r:0.01〜1.0%の1種以上を含有させることを好適とす
る。Further, in the above-mentioned production method, the slab further contains Al: 0.10 to 2.0%, P: 0.01 to 0.30%, Cu: 0.01 to 1.
0%, Ni: 0.01-0.5%, Cr: 0.01-1.0% or more, or Al: 0.001% or less,
P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.01 to 0.5%, C
r: It is preferable to contain one or more of 0.01 to 1.0%.
【0013】また、上記熱延板焼鈍は、600〜700℃にお
ける10分以上の保熱・自己焼鈍、500〜700℃における10
分以上の連続または箱焼鈍あるいは650〜850℃における
3秒以上の連続焼鈍のいずれかとするものである。[0013] The hot-rolled sheet annealing includes heat holding and self-annealing at 600 to 700 ° C for 10 minutes or more;
Min or continuous or box annealing or at 650 ~ 850 ℃
Any of continuous annealing for 3 seconds or more.
【0014】さらに加えて、本発明は、冷間圧延を100
〜450℃の温間圧延とし、上記各発明の効果を一層顕著
にするものである。[0014] In addition, the present invention provides that
The effect of each of the above-mentioned inventions is made more remarkable by warm rolling at a temperature of 450 ° C.
【0015】[0015]
【発明の実施の形態】以下、本発明を、その発明に至る
実験結果を含め、詳細に説明する。表1に示すA、Bおよ
びCの各組成を有する溶鋼を連続鋳造で鋳込み、それぞ
れ7本の厚さ230mmのスラブとなした。各スラブは1170
℃の温度で3時間加熱し、粗圧延によりシートバーとし
た後、仕上げ圧延し2.2mmの厚さの熱延板とした。熱間
圧延終了温度はいずれも820〜840℃の間であり、熱延終
了後、直ちにジェット水を噴射して急冷し500℃で巻き
取った。得られた熱延板は、焼鈍を施した後、冷間圧延
して0.5mmの最終板厚とし、さらに、露点−20℃、75%H2
+25%N2の混合雰囲気中において1000℃、1分の焼鈍を
施し、有機・無機混合コートを塗布して製品とした。そ
の際の熱間圧延スケジュール、および焼鈍条件は、表2
に示す処理記号1〜7のとおりとした。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail, including experimental results leading to the invention. Molten steel having each composition of A, B and C shown in Table 1 was cast by continuous casting to form seven slabs each having a thickness of 230 mm. 1170 for each slab
The sheet was heated at a temperature of 3 ° C. for 3 hours, rough-rolled into a sheet bar, and then finish-rolled into a hot-rolled sheet having a thickness of 2.2 mm. The hot rolling end temperature was 820 to 840 ° C. in all cases. Immediately after the hot rolling was completed, jet water was sprayed to rapidly cool and wind up at 500 ° C. The obtained hot-rolled sheet is annealed and then cold-rolled to a final thickness of 0.5 mm, and further has a dew point of −20 ° C. and 75% H 2.
Annealing was performed at 1000 ° C. for 1 minute in a mixed atmosphere of + 25% N 2 , and an organic / inorganic mixed coat was applied to obtain a product. Table 2 shows the hot rolling schedule and annealing conditions at that time.
The treatment symbols 1 to 7 shown in FIG.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】上記実験工程の過程および得られた製品に
ついて、以下のように組織と特性値の測定を行った。 熱延板焼鈍の前後における鋼板断面の再結晶率(全
視野面積に対する再結晶粒の占める面積の百分率) 製品に対する標準測定法によるエプスタイン試験な
らびに4方向測定法による各種試験 モータ効率の測定(固定子外径130mm、回転子径50m
m、胴長70mmの3相6極120Hz、120v、400wの誘導モータ
による) 測定結果はまとめて表3に示す。With respect to the process of the above-mentioned experimental process and the obtained product, the structure and characteristic values were measured as follows. Recrystallization rate of cross section of steel sheet before and after annealing of hot rolled sheet (percentage of area occupied by recrystallized grains with respect to total viewing area) Epstein test by standard measurement method for products and various tests by four-way measurement method Measurement of motor efficiency (stator Outer diameter 130mm, rotor diameter 50m
m, 70 mm long, 3 phase 6 pole 120Hz, 120v, 400w induction motor) The measurement results are shown in Table 3.
【0019】[0019]
【表3】 [Table 3]
【0020】表3に示すようにA-4(鋼Aに対し処理4を
行った場合、以下同様)、A-5、B-4、B-5、B-6およびC
-4、C-5、C-6は、標準測定法において磁束密度も鉄損も
優れているが、モータ効率はA-2の場合のみが優れてい
る。すなわち、モータ効率には製品の磁気特性が必ずし
も反映されていない。この理由を調査した結果、A-2の
製品は2方向測定試験による磁気特性の測定は劣るが、
4方向測定試験の磁気特性は、鉄損W15/50が2.325W/kg
(これに対しA-6は2.483W/kg)と極めて良好な値を示し
ているためであることが分かった。また、A-2の場合、
4方向測定法における1.5T、50Hzの透磁率の値が12310
G/θと高かったのに対し、A-6の場合は11590 G/θしか
なく、これがモータ効率を下げる原因となっている。As shown in Table 3, A-4 (when the treatment A was performed on steel A, the same applies hereinafter), A-5, B-4, B-5, B-6 and C
-4, C-5, and C-6 have excellent magnetic flux density and iron loss in the standard measurement method, but the motor efficiency is excellent only in the case of A-2. That is, the magnetic efficiency of the product is not necessarily reflected in the motor efficiency. As a result of investigating the reason, the measurement of magnetic properties by the two-way measurement test is inferior for the product of A-2,
The magnetic properties of the four-way measurement test are as follows: iron loss W 15/50 is 2.325 W / kg
(On the other hand, A-6 is 2.483 W / kg), which is an extremely good value. In the case of A-2,
The value of the magnetic permeability at 1.5T and 50Hz in the four-direction measurement method is 12310
Although it was as high as G / θ, the A-6 had only 11590 G / θ, which caused the motor efficiency to decrease.
【0021】このような標準測定法と4方向測定法との
間の測定値の乖離は、主として鋼板の結晶組織のうち、
集合組織によってもたらされる。すなわち、標準測定法
による測定では圧延方向および圧延直角方向の2方向の
みに優れた集合組織を有する材料が特に有利に評価され
るのに対し、4方向測定法では鋼板面内における異方性
の少ない集合組織がより有利に評価され、回転機の特性
評価として適切なものになる。ちなみに、A-2の製品の
結晶組織の主要集合組織は{100}<uvw>であっ
た。The discrepancy of the measured values between the standard measuring method and the four-direction measuring method is mainly due to the crystal structure of the steel sheet.
Brought by the texture. That is, in the measurement by the standard measurement method, a material having an excellent texture only in two directions, ie, the rolling direction and the direction perpendicular to the rolling, is particularly advantageously evaluated. Fewer textures are more advantageously evaluated and are more appropriate for evaluating the characteristics of a rotating machine. Incidentally, the main texture of the crystal structure of the product of A-2 was {100} <uvw>.
【0022】このように、標準測定法による結果と4方
向測定法による結果の乖離は、材料の異方性を表す指標
となるので、本発明においては両者の比により異方性定
数を定義する。すなわち、鉄損の異方性定数として、4
方向測定法によるW15/50の値を標準測定法によるW15/50
の測定値で割った値を採用し、また、透磁率異方性定数
として、標準測定法による1.0T、50Hzの透磁率の値を4
方向測定法による1.0T、50Hzの透磁率の値で割った値を
採用する。異方性定数は1に近いほど異方性が弱く、モ
ータ特性にとって有利である。As described above, the difference between the result obtained by the standard measurement method and the result obtained by the four-direction measurement method is an index indicating the anisotropy of the material. In the present invention, the anisotropy constant is defined by the ratio between the two. . That is, the anisotropy constant of iron loss is 4
W the value of W 15/50 by direction measurement method using the standard measurement method 15/50
The value obtained by dividing the value of the permeability at 1.0 T, 50 Hz by the standard measurement method into 4 is used as the permeability anisotropy constant.
The value obtained by dividing by the value of the magnetic permeability of 1.0 T, 50 Hz by the direction measurement method is adopted. The closer the anisotropy constant is to 1, the weaker the anisotropy is, which is advantageous for motor characteristics.
【0023】この場合、モータなどの回転機用材料に対
する4方向測定法の測定条件としては、上記のように、
鉄損については、1.5T、50Hzの条件が、透磁率について
は1.0T、50Hzの条件が一般的に受け入れられるものとな
るが、、設計磁場や、高周波設計されたモータに対して
は、当然、より低磁束度側または高磁束密度側あるいは
より高周波側の測定条件を採用することができる。In this case, the measurement conditions of the four-direction measurement method for a rotating machine material such as a motor are as described above.
For iron loss, the condition of 1.5T, 50Hz is generally accepted, and for the magnetic permeability, the condition of 1.0T, 50Hz is generally accepted.However, naturally, for the design magnetic field and the motor designed for high frequency, The measurement conditions on the lower magnetic flux degree side, higher magnetic flux density side, or higher frequency side can be adopted.
【0024】さらに、本発明者は、表3の結果からB50/
Bsの値とモータ効率はよい相関があり、優れたモータ効
率を得るためにはB50/Bsが0.8以上であることが必要で
あるとの知見を得た。ここにBsとは、電磁鋼板の飽和磁
束密度であり、B50 は5000A/mの最大磁場で、50Hzにお
ける最大磁束密度をいう。単にBs値が高くても、異方性
が大きいときにはモーターなど回転にの実機特性の改善
は顕著とならない。なお、B50/Bsの値が1を超えること
はあり得ないので、B50/Bsが1に近い材料が回転機用に
は適した材料となる。Further, the present inventor has found that B 50 /
Bs value and the motor efficiency is good correlation was obtained knowledge that in order to obtain a good motor efficiency is required to be B 50 / Bs 0.8 or more. Here Bs and the a saturation flux density of the electromagnetic steel sheet, B 50 is the largest field of 5000A / m, means the maximum magnetic flux density at 50 Hz. Even if the Bs value is simply high, when the anisotropy is large, the improvement of the characteristics of the actual machine for rotation such as a motor is not remarkable. Since the value of B 50 / Bs cannot exceed 1, the material whose B 50 / Bs is close to 1 is a material suitable for a rotating machine.
【0025】すなわち、モータのティース部はモータ内
で特に容積が小さくなっている部分であり、磁束が集中
するので、その部分の磁束密度が高くなければ、モータ
の実機特性が向上しない。しかも、モータのティース部
は電磁鋼板の圧延方向に対して360°の全方向に分布し
ており、圧延方向と圧延直角方向のみを評価する標準測
定法ではこのような条件に対応できない。4方向測定法
によるB50の値を用いて算出したB50/Bsの値はティース
部の材料特性評価としてより適切であり、従来の基準に
替わるものである。That is, the teeth portion of the motor is a portion where the volume is particularly small in the motor, and the magnetic flux concentrates. Therefore, unless the magnetic flux density in that portion is high, the actual machine characteristics of the motor are not improved. Moreover, the teeth of the motor are distributed in all directions at 360 ° with respect to the rolling direction of the magnetic steel sheet, and the standard measurement method that evaluates only the rolling direction and the direction perpendicular to the rolling cannot meet such conditions. The value of B 50 / Bs calculated using the value of B 50 by the four-direction measurement method is more appropriate for evaluating the material properties of the teeth portion and replaces the conventional standard.
【0026】上記のように、本発明は回転機の実機特性
の面から無方向性電磁鋼板の特性を再検討し、新しい評
価基準を確立し、従来にない特性を有する回転機用無方
向性電磁鋼板を提案するものである。しかしながら、本
発明は、従来からの評価基準である鉄損値W15/50および
磁束密度B50の価値を否定するものではなく、これらの
値が優れていれば一層効果のあることは当然である。As described above, the present invention reexamines the characteristics of a non-oriented electrical steel sheet from the aspect of the actual characteristics of a rotating machine, establishes a new evaluation criterion, and provides a non-directional It proposes an electromagnetic steel sheet. However, the present invention does not deny the value of iron loss value W 15/50 and the magnetic flux density B 50 is a measure of the conventional, it is natural that more is effective if better these values is there.
【0027】以下、上記本発明の特性を有する無方向性
電磁鋼板を製造する手段について説明する。The means for producing the non-oriented electrical steel sheet having the characteristics of the present invention will be described below.
【0028】まず、出発材料であるスラブの組成とし
て、Sn及び/又はSbを含有することが必要である。表3
に示したA-2とB-2を対比すると、これらは同一の熱延、
熱処理工程および冷延工程を受けているにもかかわら
ず、A-2の結晶組織は主として{100}<uvw>の
集合組織からなり、優れた回転機実機特性を示している
のに対し、B-2の4方向測定法の結果は、鉄損値、磁束
密度、透磁率ともに劣り、かつ、組織的にも{111}
<uvw>が主方位であり、異方性は小さいものの、磁
気特性上好ましくないものとなっていた。First, it is necessary to contain Sn and / or Sb as a composition of a slab as a starting material. Table 3
Comparing A-2 and B-2 shown in the above, these are the same hot rolled,
Despite undergoing the heat treatment step and the cold rolling step, the crystal structure of A-2 is mainly composed of a {100} <uvw> texture, exhibiting excellent rotating machine characteristics, whereas B-2 The result of the -2 four-way measurement method is that the iron loss value, magnetic flux density and magnetic permeability are inferior, and the organization is {111}
<Uvw> is the main orientation, and although the anisotropy is small, it is not preferable in terms of magnetic properties.
【0029】A-2とB-2の相違点は、鋼中にSnやSbなどの
粒界偏析元素を含有しているか否の点にある。さらに詳
細にSnおよびSbに影響を調査したところ、これら元素を
合計量で0.003%〜0.20%含有する場合には、これら元素
が冷間圧延前の結晶粒界に偏析し、冷延後の焼鈍段階で
{111}<uvw>方位粒の再結晶を抑制し、結晶主
方位として{100}<uvw>を有する粒の再結晶・
粒成長を促進されることが判明した。したがって、Snあ
るいはSbを単独あるいは複合して合計量で0.003%以上を
含有させる。しかしながら、0.20%を超えると、加工性
が劣化し実用的でないので、0.20%以下に留める。The difference between A-2 and B-2 lies in whether or not the steel contains grain boundary segregation elements such as Sn and Sb. Investigating the effects on Sn and Sb in more detail, when these elements contain 0.003% to 0.20% in total amount, these elements segregate at the grain boundaries before cold rolling, annealing after cold rolling In the step, recrystallization of {111} <uvw> oriented grains is suppressed, and recrystallization of grains having {100} <uvw> as the main crystal orientation.
It was found that grain growth was promoted. Therefore, Sn or Sb alone or in combination contains 0.003% or more in total. However, if it exceeds 0.20%, the workability deteriorates and it is not practical, so it is limited to 0.20% or less.
【0030】次に、結晶粒を十分成長させ、{100}
<uvw>集合組織を発達させる手段を講ずることが必
要である。この条件の一つには、前述のSnあるいはSbの
適量添加である。ちなみに、前記A-2は結晶粒径が120μ
mと粗大であるのに対し、B-2は90μmであった。Next, the crystal grains are sufficiently grown, and {100}
<Uvw> It is necessary to take measures to develop the texture. One of the conditions is the addition of an appropriate amount of Sn or Sb described above. By the way, the A-2 has a crystal grain size of 120μ.
m-2, whereas B-2 was 90 μm.
【0031】しかし、それだけでは十分ではない。不純
物元素の含有量を十分低下させることが必要である。こ
のことは、鋼Cを用いて鋼Aと同一の処理2(表2参
照)を行った場合、鋼Cが鋼Aと同様Sbを含有し、表3に
示すように4方向測定法による透磁率において良好な値
を示しているにも拘わらず、C-2の場合は結晶粒径が55
μmと小さく、そのため、鉄損値が増加し、モータ効率
を劣化させていることから明らかである。なお、C-2の
場合、集合組織が{100}<uvw>となっていると
はいえ、その強度が弱く、そのため4方向測定法による
B50/Bsも劣っていた。However, this is not enough. It is necessary to sufficiently reduce the content of the impurity element. This means that when the same treatment 2 as that of steel A (see Table 2) was performed using steel C, steel C contained Sb similarly to steel A, and as shown in Table 3, the transparency was measured by the four-direction measurement method. Despite showing a good value in magnetic susceptibility, in the case of C-2, the crystal grain size was 55
It is clear from the fact that the iron loss value is increased and the motor efficiency is deteriorated. In the case of C-2, although the texture is {100} <uvw>, its strength is weak, and therefore it is determined by the four-direction measurement method.
B 50 / Bs was also inferior.
【0032】不純物としては、S:0.0050%以下、N:0.0
040%以下、O:0.0030%以下とするほか、Ti:0.0030%以
下、Zr:0.0030%以下、V:0.0050%以下、B:0.0010%以
下、Nb:0.0050%以下に制限する必要がある。この不純
物を低下させることによって、従来再結晶・粒成長の駆
動力が極めて弱く、かつ、結晶粒径が小さく細粒化しや
すいとされてきた{100}<uvw>集合組織を十分
に発達させることができる。As impurities, S: 0.0050% or less, N: 0.0
In addition to 040% or less, O: 0.0030% or less, it is necessary to limit to Ti: 0.0030% or less, Zr: 0.0030% or less, V: 0.0050% or less, B: 0.0010% or less, and Nb: 0.0050% or less. By reducing these impurities, a {100} <uvw> texture, which has conventionally been considered to have a very low driving force for recrystallization and grain growth and a small crystal grain size and easy grain refinement, can be sufficiently developed. Can be.
【0033】本発明に係る回転機の実機特性の優れた無
方向性電磁鋼板を得るためには、熱間仕上げ圧延で十分
な歪を熱延板に導入することが必要である。ちなみに、
鋼Aについて、熱延スケジュールのみを変更した場合に
おいて、処理1を行った場合(A-1)に比べ、処理2を
行った場合(A-2)の方が回転機用として良好な磁気特
性となっている。本発明においては、熱間仕上げ圧延の
際の歪の導入の程度を仕上げ圧延の後段4パスの累積圧
下率で評価し、その値を65%以上とする。これにより、
熱延コイル中に高密度の加工歪を含有させることができ
る。しかし、95%を超えると仕上げ圧延自体が困難とな
るので95%以下とする。なお、仕上げ圧延の後段におけ
る圧下率を高めるため、必要とあらば、粗圧延を省略す
るなどの手段をとることも可能である。In order to obtain a non-oriented electrical steel sheet excellent in actual machine characteristics of the rotating machine according to the present invention, it is necessary to introduce sufficient strain into the hot rolled sheet by hot finish rolling. By the way,
For steel A, when only the hot rolling schedule was changed, better magnetic properties for the rotating machine were obtained when treatment 2 was performed (A-2) than when treatment 1 was performed (A-1). It has become. In the present invention, the degree of introduction of strain during hot finish rolling is evaluated by the cumulative rolling reduction of the last four passes of finish rolling, and the value is set to 65% or more. This allows
High-density processing strain can be contained in the hot-rolled coil. However, when the content exceeds 95%, the finish rolling itself becomes difficult. In order to increase the rolling reduction in the latter stage of the finish rolling, it is possible to take measures such as omitting rough rolling if necessary.
【0034】また、上記により歪みの導入された熱延板
を焼鈍するに際し、熱延板から歪を除去しながら、再結
晶を抑制する条件を採用することが必要である。これに
より、熱延板の焼鈍過程、特に、回復過程で、内部のサ
ブグレインの組織を良好なものとする。すなわち、旧結
晶粒界およびから旧結晶粒内の変形帯から{111}<
uvw>を有する結晶粒の再結晶を抑制することが可能
になり、旧結晶粒内から{100}<uvw>の方位を
有する粒の再結晶が促進される。In annealing the hot-rolled sheet with the strain introduced as described above, it is necessary to employ conditions for suppressing recrystallization while removing the strain from the hot-rolled sheet. Thereby, the sub-grain structure inside is improved during the annealing process of the hot-rolled sheet, particularly during the recovery process. That is, from the old grain boundary and the deformation zone in the old crystal grain, {111} <
uvw> can be suppressed, and the recrystallization of the grains having the orientation of {100} <uvw> from the old crystal grains can be promoted.
【0035】具体的には、まず、仕上げ圧延終了後の熱
延コイル巻取り温度を700℃以下とする。コイル巻取り
温度を700℃を超える温度とした場合には、鋼板の一部
が再結晶を開始し、これにより{111}<uvw>方
位の集合組織が増加し、回転機の実機の効率を低下する
からである。そのため、熱延終了後、仕上げ圧延機出側
においてジェット水を噴射するなどの手段を取り、巻取
り温度が700℃以下となるようにするのがよい。Specifically, first, the coiling temperature of the hot-rolled coil after finishing rolling is set to 700 ° C. or less. When the coil winding temperature is set to a temperature exceeding 700 ° C., a part of the steel sheet starts recrystallization, thereby increasing the texture of the {111} <uvw> orientation, and increasing the efficiency of the actual rotating machine. It is because it falls. For this reason, after the hot rolling is completed, it is preferable to take measures such as spraying jet water on the exit side of the finishing rolling mill so that the winding temperature is 700 ° C. or less.
【0036】次に、上記熱延板に対し、圧延ひずみを回
復しながら再結晶率を40%以下とする熱処理を施す。再
結晶率が40%を超える場合、再結晶粒の粒界から{11
1}<uvw>方位の再結晶粒が増加し、製品の集合組
織ならびに磁気特性が劣化するからである。ちなみに、
A-2とA-4、A-5あるいはA-6とを比較すればわかるよう
に、A-4、A-5、A-6の場合は、冷間圧延前の鋼板の再結
晶率が高く、そのため、冷間圧延、仕上げ焼鈍後に再結
晶粒の結晶粒界から{111}<uvw>を主方位とす
る再結晶が進行し、磁気特性の劣化が生じている。この
ことは、別の実験結果からも確認されており、したがっ
て、熱処理の温度と時間を選択して再結晶率を40%以下
としなけらばならない。なお、再結晶率とは、対象とす
る鋼板の熱処理後における再結晶粒の割合をいい、全視
野面積に対する再結晶粒の占める面積の百分率によって
定義する。Next, the above hot rolled sheet is subjected to a heat treatment for reducing the recrystallization rate to 40% or less while recovering the rolling strain. If the recrystallization ratio exceeds 40%, the recrystallization grain boundary is reduced by 11%.
This is because the number of recrystallized grains in the 1} <uvw> direction increases, and the texture and magnetic properties of the product deteriorate. By the way,
As can be seen by comparing A-2 with A-4, A-5 or A-6, in the case of A-4, A-5, A-6, the recrystallization rate of the steel sheet before cold rolling is Therefore, after cold rolling and finish annealing, recrystallization with {111} <uvw> as the main orientation progresses from the crystal grain boundary of the recrystallized grains, resulting in deterioration of magnetic properties. This has been confirmed from other experimental results. Therefore, the temperature and time of the heat treatment must be selected to reduce the recrystallization rate to 40% or less. The recrystallization rate refers to the ratio of recrystallized grains after heat treatment of a target steel sheet, and is defined by the percentage of the area occupied by the recrystallized grains with respect to the entire viewing area.
【0037】具体的な熱処理条件としては、次の態様に
よって行うことができる。 600〜700℃における10分以上の保熱・自己焼鈍 この場合には、コイル巻き取り温度を600〜700℃とし、
巻き取り後、適当な保温装置内において保温して、自己
焼鈍させる。 500〜700℃における10分以上の連続あるいは箱焼鈍 この場合は、低温巻き取りしたコイルあるいは、巻き取
り後冷却したコイルを、コイル状態で箱焼鈍するか、あ
るいは巻き戻して連続焼鈍する。 650〜850℃における3秒以上の連続焼鈍 この場合は、低温巻き取りしたコイルあるいは、巻き取
り後冷却したコイルを巻き戻して連続焼鈍する。The specific conditions of the heat treatment can be performed in the following manner. Heat retention and self-annealing for 10 minutes or more at 600 to 700 ° C In this case, the coil winding temperature is set to 600 to 700 ° C,
After winding, it is kept warm in a suitable warming device and self-annealed. Continuous or box annealing at 500 to 700 ° C. for 10 minutes or more In this case, the coil that has been wound at a low temperature or the coil that has been cooled after winding is box-annealed in the coil state or unwound and continuously annealed. Continuous annealing at 650 to 850 ° C. for 3 seconds or more In this case, the coil that has been wound at a low temperature or the coil that has been cooled after winding is rewound and continuously annealed.
【0038】しかしながら、700℃以上の温度で10分以
上もしくは850℃以上の温度で3秒以上の熱処理を施す場
合は再結晶が急激に進行し、好ましくない方位の再結晶
の粒が出現する頻度が高くなるので適切ではない。した
がって、上記手段を採用しながら熱処理の温度と時間の
上限を規制して、再結晶率を40%以下とすることが肝要
である。However, when heat treatment is performed at a temperature of 700 ° C. or more for 10 minutes or more or at a temperature of 850 ° C. or more for 3 seconds or more, recrystallization proceeds rapidly, and the frequency of appearance of recrystallized grains in an undesired orientation is increased. Is not appropriate because Therefore, it is important that the upper limit of the temperature and time of the heat treatment is regulated while employing the above means, so that the recrystallization rate is 40% or less.
【0039】熱延鋼板は、上記の所要の熱処理を経た
後、冷間圧延によって最終板厚とされる。このとき、冷
間圧延の圧下率を75〜98%とする。冷間圧延を75%以上と
することにより、より好ましい集合組織の抑制が可能と
なるからである。しかし、98%以上とすることは、工業
的に無理が多いので75〜98%とする。After the above-mentioned required heat treatment, the hot-rolled steel sheet is cold-rolled to a final thickness. At this time, the rolling reduction of the cold rolling is set to 75 to 98%. By setting the cold rolling at 75% or more, it is possible to suppress the texture more preferably. However, setting the content to 98% or more is 75 to 98% because it is industrially impossible.
【0040】以上により、本発明の基本的な構成につい
て説明したが、以下、本発明の本質ではないが、本発明
を実施するため一般的条件について説明する。Although the basic configuration of the present invention has been described above, the general conditions for carrying out the present invention will be described below, which is not the essence of the present invention.
【0041】まず、電磁鋼板は、Sn、Sb以外に下記の成
分を含有する。 C:0.010%以下 Cは良好な磁気特性を得るためには有害な元素であり、
含有量を0.010%(重量%、以下同じ)とする。First, the electromagnetic steel sheet contains the following components in addition to Sn and Sb. C: 0.010% or less C is a harmful element for obtaining good magnetic properties.
The content is 0.010% (% by weight, the same applies hereinafter).
【0042】Si:0.1〜7.0% Siは電気抵抗を高め、鉄損を低減するのに有効な元素で
あり、0.1重量%以上を含有させる。但し、7.0重量%を
超えると加工が困難となるので、0.1〜7.0%とする。Si: 0.1 to 7.0% Si is an element effective for increasing electric resistance and reducing iron loss, and contains 0.1% by weight or more. However, if the content exceeds 7.0% by weight, processing becomes difficult, so the content is set to 0.1 to 7.0%.
【0043】Mn:0.03〜3.5% Mnも電気抵抗を高め鉄損を低減する作用を有するので、
0.03%以上を含有させる。しかし、3.5%を超えた場合、
高温の仕上げ焼鈍の際に変態が起こり鉄損が劣化するの
で、0.03〜3.5%とする。Mn: 0.03 to 3.5% Since Mn also has the effect of increasing electric resistance and reducing iron loss,
0.03% or more is contained. However, if it exceeds 3.5%,
Transformation occurs at the time of high-temperature finish annealing, and iron loss deteriorates.
【0044】Al:0.10%以上あるいは0.001%以下 Alは電気抵抗を高め、鉄損を低減する作用があるので有
効である。その作用を得るためには、0.10%以上を含有
させることが好ましい。但し、2.0重量%を超えてる場
合、鋼板の酸化・窒化が進行し鉄損の劣化を招くので含
有量を0.10〜2.0重量%の範囲とするのが好ましい。一
方、Alの含有量が0.10%未満の場合にはAlNを形成し、粒
成長性を阻害して鉄損が劣化するので、Alを無添加とす
る場合には0.001%以下に制限する必要がある。Al: 0.10% or more or 0.001% or less Al is effective because it has an effect of increasing electric resistance and reducing iron loss. In order to obtain the effect, it is preferable to contain 0.10% or more. However, when the content exceeds 2.0% by weight, the oxidation and nitriding of the steel sheet progresses, leading to deterioration of iron loss. Therefore, the content is preferably set in the range of 0.10 to 2.0% by weight. On the other hand, when the content of Al is less than 0.10%, AlN is formed, and the grain growth is impaired and iron loss is deteriorated.Therefore, when Al is not added, it is necessary to limit the content to 0.001% or less. is there.
【0045】以上の元素の他に、P、Cu、Ni、Crを含有
させることも、電気抵抗を高め鉄損を低減する作用があ
るので有効である。そのため、Pを0.01〜0.30%、Cuを0.
01〜1.0%、Niを0.01〜0.5%、Crを0.01〜1.0%を含有させ
ることができる。なお、Sn、Sbの含有及び不純物元素の
制限についてはすでに説明したとおりである。It is also effective to include P, Cu, Ni, and Cr in addition to the above-mentioned elements, because they have an effect of increasing electric resistance and reducing iron loss. Therefore, P is 0.01-0.30% and Cu is 0.
It can contain 01-1.0%, Ni 0.01-0.5%, and Cr 0.01-1.0%. The contents of Sn and Sb and the restrictions on the impurity elements are as described above.
【0046】上記の組成を有する鋼は、常法により連続
鋳造によりスラブとされ、スラブ加熱ののち、熱間圧延
により熱延コイルとされ、さらに冷間圧延される。その
際、省エネルギーのため、スラブ加熱を行わず連続鋳造
後、直接熱間圧延を行う手段、あるいは、スラブの温度
保持を行う手段を採用することも可能である。また、冷
延に際し、素材のSiなど電気抵抗増加成分の含有量が高
い場合には100〜400℃の温間圧延を行うことも可能であ
る。なお、本発明の特徴である熱間圧延、および冷間圧
延の条件については、すでに詳細に説明した。The steel having the above composition is formed into a slab by continuous casting by a conventional method, heated to a slab, then hot-rolled into a hot-rolled coil, and further cold-rolled. At that time, for energy saving, it is also possible to employ means for directly performing hot rolling after continuous casting without performing slab heating, or means for maintaining the temperature of the slab. In the case of cold rolling, when the content of the electric resistance increasing component such as Si in the material is high, warm rolling at 100 to 400 ° C. can be performed. The conditions of the hot rolling and the cold rolling, which are features of the present invention, have already been described in detail.
【0047】冷間圧延により最終板厚となった鋼板は、
高温での仕上げ焼鈍を施されて結晶粒の粒成長を行い製
品とする。この場合、いわゆるセミプロセスを採用する
ことを妨げず、さらに、鋼板の表面に必要に応じて、無
機、有機あるいは半有機の絶縁コーティングを施すこと
も可能である。また、溶接性の改善などの目的で鋼板表
面の粗度を増すことも可能である。The steel sheet having the final thickness by cold rolling is:
The product is subjected to finish annealing at a high temperature to grow crystal grains, thereby obtaining a product. In this case, it is possible to apply an inorganic, organic, or semi-organic insulating coating to the surface of the steel sheet, if necessary, without hindering the use of a so-called semi-process. It is also possible to increase the roughness of the steel sheet surface for the purpose of improving weldability.
【0048】[0048]
【実施例1】表4に示す鋼記号Dの組成を有する溶鋼を
連続鋳造し、厚さ220mmのスラブを18本作製し、1220℃
の温度で3時間保持した後、厚さ40mmに粗圧延した。さ
らに、7パスのタンデム仕上げ圧延機によって、40mm→
30mm→18mm→10mm→6.4mm→4.8mm→3.2mm→2.2mmのパス
スケジュール(後段4パス累積圧下率72%)によって厚
さ2.2mmのコイルに熱間圧延した。熱間圧延終了温度は8
10〜830℃であり、熱間圧延終了後、ジェット水噴流を
かけて速度40〜55℃/sで急冷し、温度580〜600℃で巻取
った。Example 1 Molten steel having a composition of steel symbol D shown in Table 4 was continuously cast, and 18 slabs having a thickness of 220 mm were produced at 1220 ° C.
, And then roughly rolled to a thickness of 40 mm. Furthermore, it is 40mm →
The coil was hot rolled into a 2.2 mm thick coil according to a pass schedule of 30 mm → 18 mm → 10 mm → 6.4 mm → 4.8 mm → 3.2 mm → 2.2 mm (cumulative rolling reduction at the latter stage 4 passes: 72%). Hot rolling end temperature is 8
After completion of hot rolling, it was rapidly cooled at a speed of 40 to 55 ° C./s by jet water jet and wound at a temperature of 580 to 600 ° C.
【0049】[0049]
【表4】 [Table 4]
【0050】これらのコイルには酸洗後、520〜700℃の
温度で、30分〜10時間の熱延板焼鈍を施した後、タンデ
ム圧延機によって厚さ0.35mmに圧延し(冷間圧下率:9
2.5%)、脱脂処理を行い1050℃において40秒保持する仕
上げ焼鈍を施し、重クロム酸マグネシウムと有機樹脂を
主剤とする半有機コートを塗布・焼付け製品とした。After pickling, these coils were subjected to hot-rolled sheet annealing at a temperature of 520 to 700 ° C. for 30 minutes to 10 hours, and then rolled to a thickness of 0.35 mm by a tandem rolling mill (cold rolling). Rate: 9
2.5%), degreased, subjected to finish annealing at 1050 ° C for 40 seconds, and coated and baked with a semi-organic coat mainly composed of magnesium dichromate and an organic resin.
【0051】各製品から試験片を切り出し、標準測定法
によるエプスタイン磁気測定と、4方向測定法による磁
気測定を行い、W15/50の鉄損、B50の磁束密度、1.0T、5
0Hzでの透磁率を得た。また、鉄損の異方性定数、透磁
率の異方性定数、およびB50/Bsの値を求めた。さらに、
これら製品から固定子の外径220mm、回転子径120mm、胴
長60mmの8極200Hz、60VのDCブラシレスモータを作製
し、この効率測定を行った。なお、熱延板焼鈍後、鋼板
の再結晶率を測定した。[0051] Test pieces were cut out from each product, performs the Epstein magnetic measuring according to standard assays, magnetic measurement by 4 direction measuring method, the iron loss of W 15/50, flux density B 50, 1.0 T, 5
The magnetic permeability at 0 Hz was obtained. Further, the values of the anisotropy constant of iron loss, the anisotropy constant of magnetic permeability, and B 50 / Bs were determined. further,
From these products, an 8-pole 200 Hz, 60 V DC brushless motor having a stator outer diameter of 220 mm, a rotor diameter of 120 mm, and a body length of 60 mm was manufactured, and its efficiency was measured. After the hot-rolled sheet annealing, the recrystallization rate of the steel sheet was measured.
【0052】上記測定結果は、モータ効率と熱延板焼鈍
後の結晶組織の再結晶率との関係としてを図1に示す。
また、上記製品の鉄損W15/50の異方性定数、1.5T、50Hz
での透磁率の異方性定数、およびB50/Bsの値とモータ効
率との関係を図2に示す。FIG. 1 shows the relationship between the motor efficiency and the recrystallization rate of the crystal structure after the hot-rolled sheet annealing.
In addition, anisotropy constant of iron loss W 15/50 of the above product, 1.5T, 50Hz
FIG. 2 shows the anisotropy constant of the magnetic permeability and the relationship between the value of B 50 / Bs and the motor efficiency.
【0053】図1に示すように、500℃以上の温度での
熱延板焼鈍において再結晶率を40%以下とした本発明の
方法によって、優れたモータ効率が得られており、ま
た、優れたモータ効率を得るためには、鉄損W15/50の異
方性定数が1.05以下、かつ1.0T、50Hzでの透磁率の異方
性定数が1.07以下、かつB50/Bsの値が0.80以上であるこ
とが必要であることが実証されている。As shown in FIG. 1, an excellent motor efficiency was obtained by the method of the present invention in which the recrystallization rate was set to 40% or less in hot-rolled sheet annealing at a temperature of 500 ° C. or more. In order to obtain motor efficiency, the anisotropy constant of iron loss W 15/50 is 1.05 or less, and the anisotropy constant of permeability at 1.0 T and 50 Hz is 1.07 or less, and the value of B 50 / Bs is It has been demonstrated that it is necessary to be 0.80 or more.
【0054】[0054]
【実施例2】表5に示す鋼記号E、FおよびGの組成を
有する溶鋼を連続鋳造し、各7本の厚さ220mmのスラブ
とし、1000℃以上の温度に維持して直接熱間圧延を行い
厚さ2.0mmのコイルに熱間圧延した。熱間圧延の終了温
度はいずれも780〜810℃の間であり、終了後直ちにジェ
ット水を噴射し40℃/sの速度で急冷し、500℃で巻取っ
た。得られたコイルには酸洗後、所要の熱処理を施し
た。同一鋼記号から得られた各7本のスラブの圧延スケ
ジュールおよび焼鈍条件はそれぞれ表6に示すとおりで
ある。Example 2 Molten steel having the composition of steel symbols E, F and G shown in Table 5 was continuously cast into seven slabs each having a thickness of 220 mm, and directly hot-rolled at a temperature of 1000 ° C. or more. And hot-rolled into a coil having a thickness of 2.0 mm. The end temperature of hot rolling was 780 to 810 ° C in all cases. Immediately after the end, jet water was sprayed, rapidly cooled at a rate of 40 ° C / s, and wound at 500 ° C. The obtained coil was subjected to required heat treatment after pickling. The rolling schedule and annealing conditions for each of the seven slabs obtained from the same steel symbol are as shown in Table 6.
【0055】[0055]
【表5】 [Table 5]
【0056】[0056]
【表6】 [Table 6]
【0057】上記により、得られた熱延板に対し、冷間
圧延を施して0.35mmの最終板厚に圧延した。冷間圧下率
は、82.5%であった。得られた冷延鋼板に露点−20℃、7
5%H 2+25%N2雰囲気中で1000℃、1分の焼鈍を施し、リ
ン酸アルミニウムを主剤とする無機コートを塗布して製
品とした。As described above, the obtained hot rolled sheet is
It was rolled to a final thickness of 0.35 mm. Cold reduction
Was 82.5%. A dew point of -20 ° C, 7
5% H Two+ 25% NTwoAnneal in an atmosphere at 1000 ° C for 1 minute.
An inorganic coat consisting mainly of aluminum phosphate is applied
Goods.
【0058】得られた製品から、30 x 280mmの試料を採
取して磁気測定を行った。この試験片により、標準測定
法と、4方向測定法による磁気測定を行い、鉄損値(W
15/50)、磁束密度(B50)、1.0T、50Hzでの透磁率(G/
θ)を求めた。また、鉄損の異方性定数、透磁率の異方
性定数、およびB50/Bsの値を求めた。さらに、これら製
品から固定子の外径150mm、回転子径60mm、胴長80mmの
単相4極300HzのDCブラシレスモータを作製し、この効
率測定を行った。なお、熱延板焼鈍後、鋼板の再結晶率
を測定した。試験結果は表7にまとめて示す。From the obtained product, a sample of 30 × 280 mm was sampled and subjected to magnetic measurement. Using this test piece, magnetic measurement was performed by the standard measurement method and the four-direction measurement method, and the iron loss value (W
15/50 ), magnetic flux density (B 50 ), 1.0T, permeability at 50 Hz (G /
θ) was determined. Further, the values of the anisotropy constant of iron loss, the anisotropy constant of magnetic permeability, and B 50 / Bs were determined. Furthermore, a single-phase 4-pole 300 Hz DC brushless motor having a stator outer diameter of 150 mm, a rotor diameter of 60 mm, and a body length of 80 mm was fabricated from these products, and its efficiency was measured. After the hot-rolled sheet annealing, the recrystallization rate of the steel sheet was measured. The test results are summarized in Table 7.
【0059】[0059]
【表7】 [Table 7]
【0060】表7から明らかなように、鋼Eのうち処理
1を受けたもの(E-1と略記する。以下、同様)、E-6、
F-4、F-6、G-4、G-6の各製品においては、標準測定法で
は磁束密度と鉄損値が優れているが、モータ効率は、記
号E-2、E-5の製品が優れている。さらに、標準測定法と
4方向測定法から求めた材料の磁気特性評価は、E-2お
よびE-5において、鉄損の異方性定数がそれぞれ1.003、
1.014、透磁率の異方性定数がそれぞれ1.032、1.038、
またB50/Bsの値が085、0.84と極めて優れた値を示し
た。As is clear from Table 7, the steel E that has undergone treatment 1 (abbreviated as E-1; the same applies hereinafter), E-6,
The F-4, F-6, G-4, and G-6 products have excellent magnetic flux density and iron loss value by the standard measurement method, but the motor efficiency is equivalent to the symbols E-2 and E-5. The product is excellent. Furthermore, the magnetic property evaluation of the material obtained from the standard measurement method and the four-direction measurement method showed that the anisotropy constant of iron loss was
1.014, the anisotropy constant of permeability is 1.032, 1.038,
In addition, the values of B 50 / Bs were 085 and 0.84, which were extremely excellent values.
【0061】[0061]
【実施例3】表8に示す鋼記号H〜OおよびQ、Rの組成
を有するスラブを電磁攪拌を印加しつつ鋳込み、厚さ25
0mmのスラブとした。得られたスラブを1200℃に加熱し
た後、粗圧延し、厚さ35mmのシートバーとし、さらに6
パスのタンデム圧延機によって熱間仕上げ圧延し、2.4m
mの熱延コイルとした。このときのパススケジュールは3
5mm→27mm→18mm→10.2mm→6.8mm→4.0mm→2.4mmのパス
スケジュール(後段4パス累積圧下率:86.6%)とし、
熱間圧延終了温度は、鋼記号Hのコイルは850℃、鋼記
号I〜Kのコイルは830℃、鋼記号LとMのコイルは790
℃、鋼記号N、O、QおよびRのコイルは760℃とし
た。また、熱間圧延終了後直ちにジェット水を噴射して
50〜65℃/sの速度で急冷し、550℃の温度で巻取った。Example 3 A slab having the composition of steel symbols H to O and Q and R shown in Table 8 was cast while applying electromagnetic stirring to a thickness of 25%.
The slab was 0 mm. After heating the obtained slab to 1200 ° C., it was roughly rolled to form a 35 mm-thick sheet bar.
Hot finish rolling by pass tandem rolling mill, 2.4m
m hot rolled coil. The pass schedule at this time is 3
5mm → 27mm → 18mm → 10.2mm → 6.8mm → 4.0mm → 2.4mm pass schedule (cumulative rolling reduction of 4 passes in the latter stage: 86.6%)
The hot rolling end temperature is 850 ° C. for coils with steel symbol H, 830 ° C. for coils with steel symbols I to K, and 790 for coils with steel symbols L and M.
C., coils of steel symbols N, O, Q and R were 760 ° C. In addition, jet water is sprayed immediately after hot rolling is completed.
It was quenched at a rate of 50 to 65 ° C / s and wound at a temperature of 550 ° C.
【0062】[0062]
【表8】 [Table 8]
【0063】得られたコイルは2分割し、一方は本発明
による焼鈍を施し、他方には、比較例として、本発明に
係る条件から外れた焼鈍を施した。本発明による焼鈍
は、鋼Hは550℃で6時間、鋼I〜Kは550℃で6時間、鋼Lお
よびMは550℃で1時間、鋼N、O、QおよびRは530℃で3時
間のコイル状態での箱焼鈍であった。一方、比較例の焼
鈍は、酸洗後の連続焼鈍であって、鋼Hは950℃で2分、
鋼I〜Kは920℃で2分、鋼L〜OおよびQならびにRは860℃
で5分間の条件であった。The obtained coil was divided into two parts, one of which was annealed according to the present invention, and the other as a comparative example, which was out of the conditions according to the present invention. Annealing according to the invention is as follows: steel H at 550 ° C. for 6 hours, steels I to K at 550 ° C. for 6 hours, steels L and M at 550 ° C. for 1 hour, steels N, O, Q and R at 530 ° C. at 3 hours. It was box annealing in the coil state for a long time. On the other hand, the annealing of the comparative example is continuous annealing after pickling, and steel H is 950 ° C. for 2 minutes,
Steel I to K at 920 ° C for 2 minutes, Steel L to O and Q and R at 860 ° C
For 5 minutes.
【0064】焼鈍されたコイルはタンデム圧延機によっ
て0.50mmの厚みに冷間圧延し(冷間圧下率:79.5%)、
さらに脱脂処理を行い鋼I〜Kの鋼板は1050℃で1分、
鋼LとMの鋼板は1000℃で1分、鋼NとOの鋼板は830
℃で1分、鋼Qの鋼板は800℃で2分、鋼Rの鋼板は780
℃で2分の仕上げ焼鈍を施し、有機、無機混合コートを
塗布して製品とした。The annealed coil was cold-rolled by a tandem rolling mill to a thickness of 0.50 mm (cold rolling reduction: 79.5%),
After further degreasing, the steel sheets I to K are heated at 1050 ° C for 1 minute,
Steel L and M steel plates at 1000 ° C for 1 minute, steel N and O steel plates 830
℃ 1 minute, steel Q steel plate at 800 ℃ 2 minutes, steel R steel plate 780
Finish annealing was performed at 2 ° C. for 2 minutes, and an organic / inorganic mixed coat was applied to obtain a product.
【0065】得られた製品から、30 x 280mmの試料を採
取して磁気測定を行った。測定は標準測定法のエプスタ
イン試験ならびに、4方向測定試験によった。さらに、
これら製品から固定子の外径100mm、回転子径40mm、モ
ータ胴長30mmの単相、4極100HzのCDブラシレスモー
タを作製し、これらのモータの効率測定を行った。な
お、熱延板焼鈍後、鋼板の再結晶率を測定した。From the obtained product, a sample of 30 × 280 mm was sampled and subjected to magnetic measurement. The measurement was performed by the Epstein test as a standard measurement method and the four-direction measurement test. further,
From these products, a single-phase, 4-pole, 100 Hz CD brushless motor having a stator outer diameter of 100 mm, a rotor diameter of 40 mm, and a motor body length of 30 mm was manufactured, and the efficiency of these motors was measured. After the hot-rolled sheet annealing, the recrystallization rate of the steel sheet was measured.
【0066】測定結果をを表9にまとめて示す。表9に
示されるように、本発明にしたがって製造された製品
は、異方性が低く、比較材に比べ極めて良好なモータ効
率が得られている。Table 9 summarizes the measurement results. As shown in Table 9, the products manufactured according to the present invention have low anisotropy, and extremely good motor efficiency is obtained as compared with the comparative material.
【0067】[0067]
【表9】 [Table 9]
【0068】[0068]
【実施例4】表10に示す鋼記号PおよびSの組成を有
する溶鋼を電解攪拌を印加しつつ連続鋳造機で厚さ50mm
の薄スラブを各2本ずつ鋳込んだ。このスラブが鋳込み
後、冷却途中でスラブ中心温度が1220℃に到達したとき
に、7スタンドのタンデム圧延機によって次の2つのパ
ススケジュールにより直後仕上げ圧延を行い熱延コイル
とした。 50mm→38mm→28mm→20mm→12.5mm→7.2mm→4.2mm→
2.7mm (後段4パス累積圧下率:86.5%) 50mm→34mm→25mm→18mm→11.8mm→5.4mm→3.0mm→1.
8mm (後段4パス累積圧下率:90.0%)Example 4 A molten steel having a composition of steel symbols P and S shown in Table 10 was applied to a continuous casting machine with a thickness of 50 mm while applying electrolytic stirring.
2 thin slabs were cast. After the slab was cast, when the slab center temperature reached 1220 ° C. during cooling, the slab was subjected to immediate finish rolling by a tandem rolling mill of seven stands according to the following two pass schedules to obtain a hot-rolled coil. 50mm → 38mm → 28mm → 20mm → 12.5mm → 7.2mm → 4.2mm →
2.7mm (cumulative rolling reduction in the latter four passes: 86.5%) 50mm → 34mm → 25mm → 18mm → 11.8mm → 5.4mm → 3.0mm → 1.
8mm (cumulative rolling reduction of the latter 4 passes: 90.0%)
【0069】[0069]
【表10】 [Table 10]
【0070】熱間圧延終了温度は750℃とし、熱間圧延
終了後、22〜25℃/sの速度で冷却し、620℃で巻取り、
コイル保護カバーを設けて、620〜640℃の温度で1時間
滞留する熱処理を施した。The hot rolling end temperature is 750 ° C. After the hot rolling is completed, the hot rolling is cooled at a rate of 22 to 25 ° C./s, and wound at 620 ° C.
A coil protection cover was provided, and a heat treatment of staying at a temperature of 620 to 640 ° C. for 1 hour was performed.
【0071】得られた熱延コイルは酸洗後、タンデム圧
延機で厚さ0.50mmに圧延した。この場合、冷延圧下率は
の場合、81.5%であり発明例に該当し、の場合、72.
2%であって比較例に該当する。冷延後、脱脂処理を行っ
た後、鋼記号Pの鋼板は820℃で30秒、鋼記号Sの鋼板
は780℃で1分の仕上げ焼鈍を施した上、有機、無機混
合コートを塗布して製品とした。The obtained hot-rolled coil was pickled and then rolled to a thickness of 0.50 mm using a tandem rolling mill. In this case, the cold rolling reduction is 81.5%, which corresponds to the invention example, and in the case of 72.
2%, which corresponds to the comparative example. After cold rolling and degreasing, the steel sheet with steel symbol P was subjected to finish annealing at 820 ° C for 30 seconds, and the steel sheet with steel symbol S was subjected to finish annealing at 780 ° C for 1 minute, and then an organic and inorganic mixed coat was applied. Product.
【0072】得られた製品から、30 x 280mmの試料を採
取して磁気測定を行った。測定は標準測定法、ならび
に、4方向測定法によった。さらに、これら製品から固
定子の外径150mm、回転子径80mm、胴長70mmの3相、6
極120Hzの誘導モータを作製し、これらのモータの効率
測定を行った。結果を表11にまとめて示す。表11に
示されるように、本発明例の製品は、比較材に比べてB
50/Bsの値が大きく鉄損および透磁率の異方性の低くモ
ータ効率が良好である。From the obtained product, a sample of 30 × 280 mm was sampled and subjected to magnetic measurement. The measurement was based on a standard measurement method and a four-way measurement method. Furthermore, from these products, three phases of stator outer diameter 150mm, rotor diameter 80mm, body length 70mm, 6
Induction motors with poles of 120 Hz were fabricated, and the efficiency of these motors was measured. The results are summarized in Table 11. As shown in Table 11, the product of the present invention example showed B
The value of 50 / Bs is large, the iron loss and the anisotropy of the magnetic permeability are low, and the motor efficiency is good.
【0073】[0073]
【表11】 [Table 11]
【0074】[0074]
【発明の効果】本発明は上記のように構成したから、従
来に比べモータなど回転機に使用する無方向性電磁鋼板
の実機特性をきわめて優れたものとすることができ、ま
た、その製造を工業的に行うことが可能になり、それに
より多大の省エネルギー効果が得られる。Since the present invention is constructed as described above, the non-oriented electrical steel sheet used for a rotating machine such as a motor can be made to have extremely excellent actual machine characteristics as compared with the prior art. It can be carried out industrially, thereby obtaining a great energy saving effect.
【図1】モータ効率と熱延板焼鈍後の結晶組織の再結晶
率との関係図である。FIG. 1 is a graph showing the relationship between motor efficiency and the recrystallization rate of a crystal structure after hot-rolled sheet annealing.
【図2】モータ効率と鉄損や透磁率の異方性定数および
B50/Bsの値との関係図である。FIG. 2 shows anisotropy constants of motor efficiency, iron loss and magnetic permeability,
It is a graph showing the relationship between the value of B 50 / Bs.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A Fターム(参考) 4K033 AA01 CA01 CA02 CA03 CA07 CA08 CA09 FA05 FA10 FA13 FA14 HA02 HA04 5E041 AA02 AA11 AA19 CA04 HB05 HB07 HB11 NN01 NN13 NN15 NN17 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 A F term (Reference) 4K033 AA01 CA01 CA02 CA03 CA07 CA08 CA09 FA05 FA10 FA13 FA14 HA02 HA04 5E041 AA02 AA11 AA19 CA04 HB05 HB07 HB11 NN01 NN13 NN15 NN17 NN18
Claims (9)
1.07以下、1.5T、50Hzにおける鉄損の異方性定数が1.05
以下、かつ、4方向測定法によるB50の値がB 50/Bs≧0.
80を満たすことを特徴とする回転機の実機特性の優れた
無方向性電磁鋼板。1. Anisotropy constant of magnetic permeability at 1.0T, 50Hz
1.07 or less, 1.5T, anisotropy constant of iron loss at 50Hz is 1.05
Below, and B by the four-way measurement method50Is B 50/ Bs ≧ 0.
Excellent in actual machine characteristics of rotating machine characterized by satisfying 80
Non-oriented electrical steel sheet.
i:0.1〜7.0%、Mn:0.03〜3.5%、Sb、Snの1種または2
種の合計量:0.003〜0.20%を含有するとともに、不純物
元素をS:0.0050%以下、N:0.0040%以下、O:0.0030%以
下、Ti:0.0030%以下、Zr:0.0030%以下、V:0.0050%以
下、B:0.0010%以下、Nb:0.0050%以下に制限してな
り、残部実質的にFeからなるものであることを特徴とす
る請求項1記載の回転機の実機特性の優れた無方向性電
磁鋼板。2. The composition has a C content of not more than 0.010% by weight,
i: 0.1 to 7.0%, Mn: 0.03 to 3.5%, one or two of Sb and Sn
Total amount of species: 0.003 to 0.20%, and impurity elements S: 0.0050% or less, N: 0.0040% or less, O: 0.0030% or less, Ti: 0.0030% or less, Zr: 0.0030% or less, V: 0.0050 %, B: 0.0010% or less, Nb: 0.0050% or less, and the balance is substantially made of Fe. Electrical steel sheet.
P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.01〜0.5%、C
r:0.01〜1.0%のいずれか1種以上を含有することを特
徴とする請求項2記載の回転機の実機特性の優れた無方
向性電磁鋼板。3. The composition further comprises: Al: 0.10 to 2.0%,
P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.01 to 0.5%, C
3. The non-oriented electrical steel sheet according to claim 2, wherein the non-oriented electrical steel sheet has at least one of r: 0.01 to 1.0%.
するとともに、P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:
0.01〜0.5%、Cr:0.01〜1.0%のいずれか1種以上を含有
することを特徴とする請求項2記載の回転機の実機特性
の優れた無方向性電磁鋼板。4. The composition further includes Al: 0.001% or less, P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni:
3. The non-oriented electrical steel sheet according to claim 2, wherein said non-oriented electrical steel sheet has at least one of 0.01 to 0.5% and Cr: 0.01 to 1.0%.
7.0%、Mn:0.03〜3.5%を含有する鋼スラブを、熱間圧延
により熱延板とし、熱延板焼鈍後、冷間圧延により最終
板厚とし、さらに仕上げ焼鈍を施す一連の工程からなる
無方向性電磁鋼板の製造方法において、 前記鋼スラブは、Sb、Snを合計量で0.003〜0.20%を含有
するとともに、その不純物元素を、S:0.0050%以下、
N:0.0040%以下、O:0.0030%以下、Ti:0.0030%以下、Z
r:0.0030%以下、V:0.0050%以下、B:0.0010%以下、N
b:0.0050%以下とし、 前記熱間圧延は、その仕上げ圧延の後段4パスの累積圧
下率を65〜95%、かつ、前記熱間圧延後のコイル巻取り
温度を700℃以下とし、 前記熱延板焼鈍は圧延ひずみを回復しながら再結晶率を
40%以下とするものとし、さらに、 前記冷間圧延は、圧下率を75〜98%とするものであるこ
とを特徴とする回転機の実機特性の優れた無方向性電磁
鋼板の製造方法。5. C: 0.010% or less by weight, Si: 0.1 to
A steel slab containing 7.0% and Mn: 0.03 to 3.5% is made into a hot-rolled sheet by hot rolling, and after hot-rolled sheet annealing, it is made to have a final thickness by cold rolling, followed by a series of steps of finish annealing. In the method for producing a non-oriented electrical steel sheet, the steel slab contains Sb, Sn in a total amount of 0.003 to 0.20%, and the impurity element, S: 0.0050% or less,
N: 0.0040% or less, O: 0.0030% or less, Ti: 0.0030% or less, Z
r: 0.0030% or less, V: 0.0050% or less, B: 0.0010% or less, N
b: 0.0050% or less, and the hot rolling is performed such that the cumulative rolling reduction in the latter four passes of the finish rolling is 65 to 95% and the coil winding temperature after the hot rolling is 700 ° C or less. Strip annealing reduces the recrystallization rate while recovering the rolling strain.
The method for producing a non-oriented electrical steel sheet excellent in actual machine characteristics of a rotating machine, wherein the cold rolling is performed at a rolling reduction of 75 to 98%.
P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.01〜0.5%、C
r:0.01〜1.0%の1種以上を含有することを特徴とする
請求項5記載の回転機の実機特性の優れた無方向性電磁
鋼板の製造方法。6. The slab further comprises Al: 0.10 to 2.0%,
P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.01 to 0.5%, C
The method for producing a non-oriented electrical steel sheet according to claim 5, wherein at least one of r: 0.01 to 1.0% is contained.
るとともに、P:0.01〜0.30%、Cu:0.01〜1.0%、Ni:0.
01〜0.5%、Cr:0.01〜1.0%の1種以上を含有すること
を特徴とする請求項5記載の回転機の実機特性の優れた
無方向性電磁鋼板の製造方法。7. The slab further contains Al: 0.001% or less, P: 0.01 to 0.30%, Cu: 0.01 to 1.0%, Ni: 0.
6. The method for producing a non-oriented electrical steel sheet according to claim 5, wherein said non-oriented electrical steel sheet has at least one type of 01 to 0.5% and Cr of 0.01 to 1.0%.
上の保熱・自己焼鈍、500〜700℃における10分以上の連
続または箱焼鈍、あるいは650〜850℃における3秒以上
の連続焼鈍のいずれかであることを特徴とする請求項5
〜7記載の回転機の実機特性の優れた無方向性電磁鋼板
の製造方法。8. Hot-rolled sheet annealing includes heat holding and self-annealing at 600 to 700 ° C. for 10 minutes or more, continuous or box annealing at 500 to 700 ° C. for 10 minutes or more, or continuous for 3 seconds or more at 650 to 850 ° C. 6. The method according to claim 5, wherein the method is any one of annealing.
8. A method for producing a non-oriented electrical steel sheet having excellent actual machine characteristics of a rotating machine according to any one of claims 7 to 7.
請求項5〜8記載の回転機の実機特性の優れた無方向性
電磁鋼板の製造方法。9. The method for producing a non-oriented electrical steel sheet according to claim 5, wherein the cold rolling is performed by warm rolling at 100 to 450 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30193098A JP3852227B2 (en) | 1998-10-23 | 1998-10-23 | Non-oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30193098A JP3852227B2 (en) | 1998-10-23 | 1998-10-23 | Non-oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000129409A true JP2000129409A (en) | 2000-05-09 |
JP3852227B2 JP3852227B2 (en) | 2006-11-29 |
Family
ID=17902827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30193098A Expired - Fee Related JP3852227B2 (en) | 1998-10-23 | 1998-10-23 | Non-oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852227B2 (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001234304A (en) * | 2000-02-28 | 2001-08-31 | Nippon Steel Corp | Non-oriented electrical steel sheet excellent in magnetism and manufacturing method thereof |
JP2001294997A (en) * | 2000-04-06 | 2001-10-26 | Nippon Steel Corp | Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same |
JP2002226951A (en) * | 2001-01-31 | 2002-08-14 | Kawasaki Steel Corp | Nonoriented silicon steel sheet for rotary apparatus having good magnetic property in high frequency-high magnetic flux density region and production method therefor |
JP2002226952A (en) * | 2001-01-31 | 2002-08-14 | Kawasaki Steel Corp | Nonoriented silicon steel sheet for iron core of motor and production method therefor |
JP2003096548A (en) * | 2001-09-21 | 2003-04-03 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet and its manufacturing method |
EP1310576A1 (en) * | 2000-06-30 | 2003-05-14 | Nkk Corporation | Steel sheet for heat shrink band |
JP2003197414A (en) * | 2001-12-27 | 2003-07-11 | Jfe Steel Kk | Thin electromagnetic sheet steel superior in punching dimensional accuracy and high-frequency magnetic properties |
JP2005002401A (en) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method for producing non-oriented electrical steel sheet |
JP2006045641A (en) * | 2004-08-06 | 2006-02-16 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same |
JP2006144036A (en) * | 2004-11-16 | 2006-06-08 | Jfe Steel Kk | Non-oriented magnetic steel sheet for modular type motor and its production method |
JP2009299102A (en) * | 2008-06-10 | 2009-12-24 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet for rotor and production method therefor |
JP2010001557A (en) * | 2008-01-30 | 2010-01-07 | Nippon Steel Corp | Method for producing non-oriented electrical steel sheet having high magnetic flux density |
JP2011111658A (en) * | 2009-11-27 | 2011-06-09 | Nippon Steel Corp | Method for producing non-oriented magnetic steel sheet having high magnetic flux density |
KR20140050743A (en) * | 2012-03-29 | 2014-04-29 | 신닛테츠스미킨 카부시키카이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
JP2015516503A (en) * | 2012-03-15 | 2015-06-11 | バオシャン アイアン アンド スティール カンパニー リミテッド | Non-oriented electrical steel sheet and manufacturing method thereof |
WO2015099315A1 (en) * | 2013-12-23 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
WO2016105058A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
KR20160078824A (en) * | 2014-12-24 | 2016-07-05 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
JP2017066425A (en) * | 2015-09-28 | 2017-04-06 | 新日鐵住金株式会社 | Nonoriented electromagnetic steel sheet and manufacturing method therefor |
JP2017537230A (en) * | 2014-10-20 | 2017-12-14 | アルセロールミタル | Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet |
JP2018168413A (en) * | 2017-03-29 | 2018-11-01 | 新日鐵住金株式会社 | Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same |
WO2019182022A1 (en) * | 2018-03-23 | 2019-09-26 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet |
JP2020020005A (en) * | 2018-08-01 | 2020-02-06 | 日本製鉄株式会社 | Manufacturing method of non-oriented electrical steel sheet |
WO2020153387A1 (en) * | 2019-01-24 | 2020-07-30 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
JP2020147842A (en) * | 2019-03-05 | 2020-09-17 | 住友重機械工業株式会社 | Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor |
JP2021083165A (en) * | 2019-11-15 | 2021-05-27 | 日本製鉄株式会社 | Laminated core and rotary electric machine |
US20220349037A1 (en) * | 2019-11-15 | 2022-11-03 | Nippon Steel Corporation | Method for manufacturing non-oriented electrical steel sheet |
CN115369225A (en) * | 2022-09-14 | 2022-11-22 | 张家港扬子江冷轧板有限公司 | Non-oriented silicon steel for new energy drive motor and production method and application thereof |
US20230013043A1 (en) * | 2020-02-20 | 2023-01-19 | Nippon Steel Corporation | Hot-rolled steel sheet for non-oriented electromagnetic steel sheets |
CN116240471A (en) * | 2023-02-21 | 2023-06-09 | 包头钢铁(集团)有限责任公司 | Sb-containing non-oriented silicon steel 50W600 and preparation method thereof |
-
1998
- 1998-10-23 JP JP30193098A patent/JP3852227B2/en not_active Expired - Fee Related
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001234304A (en) * | 2000-02-28 | 2001-08-31 | Nippon Steel Corp | Non-oriented electrical steel sheet excellent in magnetism and manufacturing method thereof |
JP2001294997A (en) * | 2000-04-06 | 2001-10-26 | Nippon Steel Corp | Non-oriented electrical steel sheet having good degree of orientation accumulation and grain growth and method for producing the same |
EP1310576A4 (en) * | 2000-06-30 | 2005-06-29 | Jfe Steel Corp | Steel sheet for heat shrink band |
EP1310576A1 (en) * | 2000-06-30 | 2003-05-14 | Nkk Corporation | Steel sheet for heat shrink band |
JP2002226951A (en) * | 2001-01-31 | 2002-08-14 | Kawasaki Steel Corp | Nonoriented silicon steel sheet for rotary apparatus having good magnetic property in high frequency-high magnetic flux density region and production method therefor |
JP2002226952A (en) * | 2001-01-31 | 2002-08-14 | Kawasaki Steel Corp | Nonoriented silicon steel sheet for iron core of motor and production method therefor |
JP2003096548A (en) * | 2001-09-21 | 2003-04-03 | Sumitomo Metal Ind Ltd | Non-oriented electrical steel sheet and its manufacturing method |
JP2003197414A (en) * | 2001-12-27 | 2003-07-11 | Jfe Steel Kk | Thin electromagnetic sheet steel superior in punching dimensional accuracy and high-frequency magnetic properties |
JP2005002401A (en) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | Method for producing non-oriented electrical steel sheet |
JP2006045641A (en) * | 2004-08-06 | 2006-02-16 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same |
JP2006144036A (en) * | 2004-11-16 | 2006-06-08 | Jfe Steel Kk | Non-oriented magnetic steel sheet for modular type motor and its production method |
JP4600003B2 (en) * | 2004-11-16 | 2010-12-15 | Jfeスチール株式会社 | Non-oriented electrical steel sheet for modular motor and manufacturing method thereof |
JP2010001557A (en) * | 2008-01-30 | 2010-01-07 | Nippon Steel Corp | Method for producing non-oriented electrical steel sheet having high magnetic flux density |
JP2009299102A (en) * | 2008-06-10 | 2009-12-24 | Sumitomo Metal Ind Ltd | Nonoriented silicon steel sheet for rotor and production method therefor |
JP2011111658A (en) * | 2009-11-27 | 2011-06-09 | Nippon Steel Corp | Method for producing non-oriented magnetic steel sheet having high magnetic flux density |
KR101617288B1 (en) | 2012-03-15 | 2016-05-03 | 바오샨 아이론 앤 스틸 유한공사 | Non-oriented Electrical Steel Plate and Manufacturing Process Therefor |
JP2015516503A (en) * | 2012-03-15 | 2015-06-11 | バオシャン アイアン アンド スティール カンパニー リミテッド | Non-oriented electrical steel sheet and manufacturing method thereof |
KR101974674B1 (en) * | 2012-03-29 | 2019-05-03 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
US9570219B2 (en) | 2012-03-29 | 2017-02-14 | Nippon Steel & Sumitomo Metal Corporation | Non-oriented electrical steel sheet and method of manufacturing non-oriented electrical steel sheet |
EP2832882A4 (en) * | 2012-03-29 | 2015-12-16 | Nippon Steel & Sumitomo Metal Corp | NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME |
KR102041897B1 (en) * | 2012-03-29 | 2019-11-08 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
KR102012610B1 (en) * | 2012-03-29 | 2019-08-20 | 닛폰세이테츠 가부시키가이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
KR20140050743A (en) * | 2012-03-29 | 2014-04-29 | 신닛테츠스미킨 카부시키카이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
KR20180051672A (en) * | 2012-03-29 | 2018-05-16 | 신닛테츠스미킨 카부시키카이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
KR20160136462A (en) * | 2012-03-29 | 2016-11-29 | 신닛테츠스미킨 카부시키카이샤 | Non-oriented electromagnetic steel sheet and method for producing same |
US10643771B2 (en) | 2013-12-23 | 2020-05-05 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
CN105849300B (en) * | 2013-12-23 | 2017-09-08 | Posco公司 | Non orientation electric steel plate and its manufacture method |
CN105849300A (en) * | 2013-12-23 | 2016-08-10 | Posco公司 | Non-oriented electrical steel sheet and manufacturing method therefor |
WO2015099315A1 (en) * | 2013-12-23 | 2015-07-02 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
JP7066782B2 (en) | 2014-10-20 | 2022-05-13 | アルセロールミタル | Manufacturing method of tin-containing non-directional silicon steel sheet, obtained steel sheet and use of the steel sheet |
US11566296B2 (en) | 2014-10-20 | 2023-01-31 | Arcelormittal | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
JP2017537230A (en) * | 2014-10-20 | 2017-12-14 | アルセロールミタル | Method for producing tin-containing non-oriented silicon steel sheet, obtained steel sheet and use of the steel sheet |
EP3209807B1 (en) | 2014-10-20 | 2020-11-25 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
JP2020183583A (en) * | 2014-10-20 | 2020-11-12 | アルセロールミタル | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof |
EP3741874B1 (en) | 2014-10-20 | 2023-10-11 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
EP3209807B2 (en) † | 2014-10-20 | 2024-07-24 | ArcelorMittal | Method of production of tin containing non grain-oriented silicon steel sheet |
KR101661897B1 (en) | 2014-12-24 | 2016-10-05 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
WO2016105058A1 (en) * | 2014-12-24 | 2016-06-30 | 주식회사 포스코 | Non-oriented electrical steel sheet and manufacturing method therefor |
KR20160078824A (en) * | 2014-12-24 | 2016-07-05 | 주식회사 포스코 | Non-oriented electrical steel sheet and method for manufacturing the same |
JP2018508646A (en) * | 2014-12-24 | 2018-03-29 | ポスコPosco | Non-oriented electrical steel sheet and manufacturing method thereof |
CN107109583A (en) * | 2014-12-24 | 2017-08-29 | Posco公司 | Non-oriented electromagnetic steel sheet and its manufacture method |
US11299792B2 (en) | 2014-12-24 | 2022-04-12 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
JP2017066425A (en) * | 2015-09-28 | 2017-04-06 | 新日鐵住金株式会社 | Nonoriented electromagnetic steel sheet and manufacturing method therefor |
JP2018168413A (en) * | 2017-03-29 | 2018-11-01 | 新日鐵住金株式会社 | Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same |
JP6628016B1 (en) * | 2018-03-23 | 2020-01-08 | 日本製鉄株式会社 | Non-oriented electrical steel sheet |
WO2019182022A1 (en) * | 2018-03-23 | 2019-09-26 | 日本製鉄株式会社 | Non-oriented electromagnetic steel sheet |
US11421297B2 (en) | 2018-03-23 | 2022-08-23 | Nippon Steel Corporation | Non-oriented electrical steel sheet |
JP2020020005A (en) * | 2018-08-01 | 2020-02-06 | 日本製鉄株式会社 | Manufacturing method of non-oriented electrical steel sheet |
JP7147340B2 (en) | 2018-08-01 | 2022-10-05 | 日本製鉄株式会社 | Method for manufacturing non-oriented electrical steel sheet |
WO2020153387A1 (en) * | 2019-01-24 | 2020-07-30 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
TWI717201B (en) * | 2019-01-24 | 2021-01-21 | 日商杰富意鋼鐵股份有限公司 | Non-directional electromagnetic steel sheet and manufacturing method thereof |
EP3916113A4 (en) * | 2019-01-24 | 2022-07-06 | JFE Steel Corporation | Non-oriented electromagnetic steel sheet and method for producing same |
CN113366124A (en) * | 2019-01-24 | 2021-09-07 | 杰富意钢铁株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
RU2771133C1 (en) * | 2019-01-24 | 2022-04-26 | ДжФЕ СТИЛ КОРПОРЕЙШН | Sheet of non-textured electrical steel and the method for its production |
JP6767687B1 (en) * | 2019-01-24 | 2020-10-14 | Jfeスチール株式会社 | Non-oriented electrical steel sheet and its manufacturing method |
CN113366124B (en) * | 2019-01-24 | 2023-01-17 | 杰富意钢铁株式会社 | Non-oriented electromagnetic steel sheet and method for producing same |
JP2020147842A (en) * | 2019-03-05 | 2020-09-17 | 住友重機械工業株式会社 | Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor |
JP2021083165A (en) * | 2019-11-15 | 2021-05-27 | 日本製鉄株式会社 | Laminated core and rotary electric machine |
JP7343770B2 (en) | 2019-11-15 | 2023-09-13 | 日本製鉄株式会社 | Laminated core and rotating electrical machinery |
US20220349037A1 (en) * | 2019-11-15 | 2022-11-03 | Nippon Steel Corporation | Method for manufacturing non-oriented electrical steel sheet |
US20230013043A1 (en) * | 2020-02-20 | 2023-01-19 | Nippon Steel Corporation | Hot-rolled steel sheet for non-oriented electromagnetic steel sheets |
CN115369225A (en) * | 2022-09-14 | 2022-11-22 | 张家港扬子江冷轧板有限公司 | Non-oriented silicon steel for new energy drive motor and production method and application thereof |
CN115369225B (en) * | 2022-09-14 | 2024-03-08 | 张家港扬子江冷轧板有限公司 | Non-oriented silicon steel for new energy driving motor and production method and application thereof |
CN116240471A (en) * | 2023-02-21 | 2023-06-09 | 包头钢铁(集团)有限责任公司 | Sb-containing non-oriented silicon steel 50W600 and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3852227B2 (en) | 2006-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000129409A (en) | Nonoriented silicon steel sheet excellent in actual machine characteristic of rotary machine and its production | |
CN106574334B (en) | Non-oriented electromagnetic steel sheet and its manufacturing method and electric machine iron core and its manufacturing method | |
KR102535436B1 (en) | Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof | |
EP2796571B1 (en) | High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same | |
JP2014037581A (en) | Method for producing nonoriented silicon steel sheet | |
EP3358027B1 (en) | Non-oriented electromagnetic steel sheet and manufacturing method of same | |
JP7147340B2 (en) | Method for manufacturing non-oriented electrical steel sheet | |
JP7372521B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
JP2022506636A (en) | Electric steel strips or sheet steel for high frequency electric motor applications with improved polarization and low magnetic loss | |
JPH03219020A (en) | Production of nonoriented silicon steel sheet | |
KR100779579B1 (en) | Manufacturing method of non-oriented electrical steel sheet with low iron loss and high magnetic flux density | |
JP2509018B2 (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP4303431B2 (en) | Ultra high magnetic flux density non-oriented electrical steel sheet and manufacturing method thereof | |
JPH0742501B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing | |
KR102483636B1 (en) | Non-oriented electrical steel sheet and method of manufactruing the same | |
KR100345701B1 (en) | A Method for Manufacturing Non-Oriented Electrical Steel Sheets | |
KR950004933B1 (en) | Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties | |
JP2002146493A (en) | Nonoriented silicon steel sheet having excellent mechanical strength property and magnetic property and its production method | |
KR101110257B1 (en) | Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof | |
JPH032323A (en) | Manufacture of nonoriented silicon steel sheet having high magnetic flux density | |
JP4292805B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
JPH06192731A (en) | Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss | |
JPH10251752A (en) | Production of hot rolled silicon steel plate excellent in magnetic property | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JPH07258736A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090915 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |