JPH07256298A - Dewatering method by sludge granulation concentration - Google Patents
Dewatering method by sludge granulation concentrationInfo
- Publication number
- JPH07256298A JPH07256298A JP6051682A JP5168294A JPH07256298A JP H07256298 A JPH07256298 A JP H07256298A JP 6051682 A JP6051682 A JP 6051682A JP 5168294 A JP5168294 A JP 5168294A JP H07256298 A JPH07256298 A JP H07256298A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- tank
- granulation
- polymer
- coagulant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatment Of Sludge (AREA)
Abstract
(57)【要約】
【目的】 汚泥に第1の凝集剤を添加して攪拌し、次い
で、第2の凝集剤を添加して攪拌した後、又は、第2の
凝集剤と共に、汚泥を濾過部を有する造粒濃縮槽に導入
し、該濾過部から濾液を取り出すことによって汚泥を濃
縮するとともに造粒し、この造粒物を脱水機で脱水する
方法において、凝集剤添加量の低減を図ると共に、脱水
機の安定運転を可能とする。
【構成】 第2の凝集剤を造粒濃縮槽7又は造粒濃縮槽
7から流出する造粒物を含む液に分割注入する。(配管
10A,10B)
【効果】 凝集剤添加量の低減、分離水SSの低減、造
粒汚泥の重力濾過性の向上、脱水機の運転の安定化が図
れ、汚泥を低コストにて効率的に処理することが可能と
される。
(57) [Abstract] [Purpose] The first coagulant is added to sludge and stirred, and then the second coagulant is added and stirred, or the sludge is filtered together with the second coagulant. In a method in which the sludge is introduced into a granulation concentrating tank having a part and the filtrate is taken out from the filtration part to condense and granulate the sludge, and the granulated product is dehydrated with a dehydrator, the amount of the coagulant added is reduced. At the same time, it enables stable operation of the dehydrator. [Structure] The second flocculant is dividedly injected into the granulation concentration tank 7 or a liquid containing a granulated substance flowing out from the granulation concentration tank 7. (Piping 10A, 10B) [Effect] The amount of coagulant added can be reduced, the separation water SS can be reduced, the gravity filtration property of granulated sludge can be improved, the operation of the dehydrator can be stabilized, and sludge can be efficiently produced at low cost. Can be processed.
Description
【0001】[0001]
【産業上の利用分野】本発明は汚泥の造粒濃縮による脱
水方法に係り、特に、汚泥に第1の凝集剤を添加して攪
拌し、次いで、第2の凝集剤を添加して攪拌した後、又
は、第2の凝集剤と共に、汚泥を濾過部を有する造粒濃
縮槽に導入し、該濾過部から濾液を取り出すことによっ
て汚泥を濃縮するとともに造粒し、この造粒物を脱水機
で脱水する方法において、凝集剤添加量の低減を図ると
共に、脱水機の安定運転を可能とする汚泥の造粒濃縮に
よる脱水方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dehydrating sludge by granulation and concentration, and in particular, a first flocculant is added to the sludge and stirred, and then a second flocculant is added and stirred. Afterwards, or together with the second flocculant, the sludge is introduced into a granulation concentrating tank having a filtering section, and the filtrate is taken out from the filtering section to condense the sludge and granulate it, and the granulated product is dehydrated. The present invention relates to a dehydration method by granulating and concentrating sludge, which reduces the amount of coagulant added and enables stable operation of the dehydrator.
【0002】[0002]
【従来の技術】従来、下水、し尿又は有機性産業廃水な
どの処理により生ずる有機系汚泥、その他、金属スラッ
ジや浚渫・埋立時の土砂スラリー、下水・廃水を無機凝
集剤で凝集処理する際発生する凝集汚泥などの無機系汚
泥の処理方法として、無機凝集剤、カチオン系有機高分
子凝集剤(カチオンポリマー)、アニオン系有機高分子
凝集剤(アニオンポリマー)、ノニオン系有機高分子凝
集剤(ノニオンポリマー)、両性有機高分子凝集剤(両
性ポリマー)などを組み合せて添加し、各種の混合、攪
拌方法で調質した後、脱水する方法は広く採用されてい
る。2. Description of the Related Art Conventionally, organic sludge produced by treatment of sewage, night soil or organic industrial wastewater, as well as metal sludge, dredging, sediment slurry at landfill, sewage / wastewater when coagulating with an inorganic coagulant As a method for treating inorganic sludge such as coagulated sludge, inorganic coagulant, cationic organic polymer coagulant (cationic polymer), anionic organic polymer coagulant (anion polymer), nonionic organic polymer coagulant (nonion Polymers, amphoteric organic polymer flocculants (amphoteric polymers) and the like are added in combination, and the mixture is subjected to conditioning by various mixing and stirring methods and then dehydrated, which is widely adopted.
【0003】特に、希薄汚泥の脱水処理法としては、汚
泥にポリマー添加後、ロータリースクリーン、遠心濃縮
などの前処理を施した後、ベルトプレスなどの脱水機で
脱水する方法がある。[0003] In particular, as a dehydration treatment method for dilute sludge, there is a method in which a polymer is added to sludge, a pretreatment such as a rotary screen and centrifugal concentration is performed, and then dehydration is performed with a dehydrator such as a belt press.
【0004】一方、汚泥の処理プロセスとして、造粒濃
縮法が知られている。具体的には、有機系汚泥に無機系
凝集剤と分子内両性ポリマーとを併用し、造粒濃縮槽で
造粒濃縮処理した後、脱水処理する方法である。On the other hand, a granulation concentration method is known as a sludge treatment process. Specifically, it is a method in which an organic flocculant is used in combination with an inorganic flocculant and an intramolecular amphoteric polymer, and the mixture is subjected to a granulation concentration treatment in a granulation concentration tank and then subjected to a dehydration treatment.
【0005】図2は、このような造粒濃縮法の標準フロ
ーチャートである。図2において、汚泥は原汚泥貯留槽
1に投入され、貯留される。1aは攪拌機である。この
貯留槽1内の汚泥は、ポンプ2a及び配管2を経て助剤
反応槽3の底部に導入され、攪拌される。3aは攪拌機
である。この助剤反応槽3へは助剤希釈タンク4内の無
機凝集剤が助剤注入ポンプ5a及び配管5を介して注入
されており、汚泥はこの無機凝集剤と十分に混合され
る。4aは攪拌機である。FIG. 2 is a standard flow chart of such a granulation concentration method. In FIG. 2, sludge is put and stored in the original sludge storage tank 1. 1a is a stirrer. The sludge in the storage tank 1 is introduced into the bottom of the auxiliary agent reaction tank 3 via the pump 2a and the pipe 2 and stirred. 3a is a stirrer. The inorganic coagulant in the auxiliary diluent tank 4 is injected into the auxiliary reaction tank 3 through the auxiliary injection pump 5a and the pipe 5, and the sludge is sufficiently mixed with the inorganic coagulant. 4a is a stirrer.
【0006】無機凝集剤が混和された汚泥は、次いで配
管(供給管)6を経て造粒濃縮槽7に、ポンプ10a及
び配管(薬注管)10を経て送給される攪拌機8a付き
のポリマー溶解槽8内の両性有機高分子凝集剤と共に導
入される。該造粒濃縮槽7内では、攪拌機7aの回転に
より液が旋回されるのに伴って汚泥が造粒され造粒物
(ペレット)となる。造粒濃縮槽7内でペレット化しな
かった液体は、濾過部7bを通過し、分離液として配管
11を経て初沈槽(図示せず)へ送られる。造粒物は、
少量の液と共に汚泥引き抜きポンプ12a及び配管(移
送管)12を経てベルトプレス13等の機械脱水機へ送
られる。16はベルトプレス13の濾布の洗浄排水の排
出管である。The sludge in which the inorganic coagulant is mixed is then fed to the granulation / concentration tank 7 through the pipe (supply pipe) 6 and the polymer with the agitator 8a which is fed through the pump 10a and the pipe (chemical injection pipe) 10. It is introduced together with the amphoteric organic polymer flocculant in the dissolution tank 8. In the granulation thickening tank 7, as the liquid is swirled by the rotation of the stirrer 7a, the sludge is granulated into granules (pellets). The liquid that has not been pelletized in the granulation concentrating tank 7 passes through the filtering unit 7b and is sent as a separated liquid to the initial settling tank (not shown) via the pipe 11. The granulated product is
A small amount of liquid is sent to a mechanical dehydrator such as a belt press 13 through a sludge drawing pump 12a and a pipe (transfer pipe) 12. Reference numeral 16 is a discharge pipe for cleaning and draining the filter cloth of the belt press 13.
【0007】この方法は特に希薄汚泥には有効な手段と
されているが、汚泥濃度が高くなると処理量や含水率は
向上する反面、ポリマー添加量が多くなり、ポリマー添
加量を下げると分離水SSが高くなる傾向にあるという
欠点がある。[0007] This method is said to be an especially effective means for dilute sludge, but the treatment amount and water content increase as the sludge concentration increases, but the polymer addition amount increases and the separation water decreases when the polymer addition amount decreases. There is a drawback that SS tends to be high.
【0008】これは、滞留時間の長い造粒濃縮槽内でフ
ロック破壊が起こるためと考えられ、適度な粒子を確保
して分離水SSを低くおさえるためには過剰なポリマー
添加が必要とされる。It is considered that this is because floc destruction occurs in the granulation concentrating tank having a long residence time, and it is necessary to add an excessive amount of polymer in order to secure appropriate particles and keep the separation water SS low. .
【0009】無機系汚泥を脱水処理する場合において
も、造粒濃縮法を適用することにより、処理量や含水率
が向上し、脱水機の運転状態が改善されるが、この場合
においても、ポリマー添加量を下げると分離水SSが上
昇し、特に濃縮汚泥の形状が壊れ、重力濾過性が悪くな
り、脱水機の安定運転が困難となる。このため、ポリマ
ーの添加量を増加せざるを得ない。Even when the inorganic sludge is dehydrated, the treatment amount and water content are improved and the operating condition of the dehydrator is improved by applying the granulation concentration method. In this case as well, the polymer is used. If the amount of addition is reduced, the amount of separated water SS rises, the shape of the concentrated sludge in particular is broken, the gravity filterability deteriorates, and stable operation of the dehydrator becomes difficult. For this reason, the amount of polymer added must be increased.
【0010】このようなことから、従来、造粒濃縮法に
よる汚泥の処理に当り、 ポリマー添加量の低減 分離水SSの低下 濃縮汚泥の重力濾過性の改善 などを図ることが望まれている。From the above, it has been conventionally desired to reduce the amount of polymer added, to reduce the separation water SS, and to improve the gravity filterability of the concentrated sludge when treating the sludge by the granulation and concentration method.
【0011】なお、従来、上記問題を軽減する改良方法
として、有機性汚泥に第1のカチオンポリマーを添加、
混合し、生成したフロック又はペレットを部分的に脱水
し、得られた脱水生成物に第1のカチオンポリマーより
もカチオン強度の高い第2のカチオンポリマーを添加・
混合し機械脱水することが知られている(特公平1−1
7760号公報)。Conventionally, as a method for improving the above problems, a first cationic polymer is added to organic sludge,
The flocs or pellets produced by mixing are partially dehydrated, and a second cationic polymer having a higher cationic strength than the first cationic polymer is added to the resulting dehydrated product.
It is known that they are mixed and mechanically dehydrated (Japanese Patent Publication No. 1-1.
7760).
【0012】[0012]
【発明が解決しようとする課題】しかし、上記方法にお
いては、異なるカチオンポリマーを添加するため、ポリ
マー注入設備が複数必要となり、設備費がかさむととも
に、ポリマー添加量も多く、処理コストも高くなるとい
う問題がある。However, in the above method, since different cationic polymers are added, a plurality of polymer injecting equipments are required, the equipment cost is increased, and the polymer addition amount is large and the treatment cost is high. There's a problem.
【0013】本発明は上記従来の問題点を解決し、汚泥
に第1の凝集剤を添加して攪拌し、次いで、第2の凝集
剤を添加して攪拌した後、又は、第2の凝集剤と共に、
汚泥を濾過部を有する造粒濃縮槽に導入し、該濾過部か
ら濾液を取り出すことによって汚泥を濃縮するとともに
造粒し、この造粒物を脱水機で脱水する方法において、
凝集剤添加量の低減を図ると共に、脱水機の安定運転を
可能とする汚泥の造粒濃縮による脱水方法を提供するこ
とを目的とする。The present invention solves the above-mentioned conventional problems, and after adding the first flocculant to the sludge and stirring it, and then adding the second flocculant and stirring, or after the second flocculation. With the agent
In the method of introducing sludge into a granulation concentrating tank having a filtering section, concentrating the sludge by removing the filtrate from the filtering section and granulating, and dehydrating this granulated product with a dehydrator,
An object of the present invention is to provide a dehydration method by granulating and concentrating sludge that enables stable operation of a dehydrator while reducing the amount of coagulant added.
【0014】[0014]
【課題を解決するための手段】本発明の汚泥の造粒濃縮
による脱水方法は、汚泥に第1の凝集剤を添加して攪拌
し、次いで、第2の凝集剤を添加して攪拌した後、又
は、第2の凝集剤と共に、濾過部を有した造粒濃縮槽に
この汚泥を導入し、該濾過部から濾液を取り出し、この
造粒濃縮槽内で汚泥を濃縮するとともに造粒し、次いで
この造粒物を含む液を脱水機に導入して脱水する方法に
おいて、前記第2の凝集剤と同一の凝集剤を前記造粒濃
縮槽又は造粒濃縮槽から流出する前記造粒物を含む液に
注入することを特徴とする。The method of dehydration by sludge granulation and concentration according to the present invention comprises adding a first flocculant to a sludge and stirring the mixture, and then adding a second flocculant and stirring the mixture. Or, together with the second flocculant, the sludge is introduced into a granulation concentrating tank having a filtering section, the filtrate is taken out from the filtering section, the sludge is concentrated and granulated in the granulating concentrating tank, Then, in a method of introducing a liquid containing the granulated product into a dehydrator to dehydrate, the same aggregating agent as the second aggregating agent is added to the aggregating tank or the aggregating agent which flows out from the aggregating tank. It is characterized by injecting into a liquid containing.
【0015】[0015]
【作用】本発明の方法に従って、第2の凝集剤としての
ポリマーを造粒濃縮槽に分割注入する場合には次のよう
な効果が得られる。According to the method of the present invention, the following effects are obtained when the polymer as the second flocculant is dividedly injected into the granulation concentrating tank.
【0016】有機系、無機系を問わず、造粒濃縮槽に供
給される汚泥とポリマーは槽内に滞留する汚泥フロック
に“からみ”造粒されるが、時間の経過と共にフロック
の破壊が起こる。この現象はポリマーの添加量が少ない
場合に激しく、分離水SSの悪化をきたす。この破壊さ
れたSSを再捕捉するため、ポリマーの一部を造粒濃縮
槽の中央部又は分離水を分離する部位に分注すると、極
めて少量の添加量で再造粒が起こり、分離水SSの低下
と共に、脱水機の運転状態を改善させることができる。The sludge and polymer supplied to the granulation thickening tank, whether organic or inorganic, are "entangled" in the sludge flocs staying in the tank, but the flocs are destroyed over time. . This phenomenon is severe when the amount of the polymer added is small, which causes deterioration of the separated water SS. In order to recapture the destroyed SS, a part of the polymer was dispensed to the central part of the granulation concentrating tank or the part for separating the separated water, and re-granulation occurred with an extremely small addition amount, and the separated water SS And the operating condition of the dehydrator can be improved.
【0017】また、第2の凝集剤としてのポリマーを造
粒濃縮槽から流出する造粒物を含む液に分割注入する場
合には次のような効果が得られる。When the polymer as the second flocculant is dividedly injected into the liquid containing the granules flowing out from the granulation concentrating tank, the following effects can be obtained.
【0018】有機系、無機系汚泥を問わず、ポリマー添
加量の低減を図る場合やフロック自体の強度が低い場合
には、濃縮倍率が上がらず、粒子の破壊が起こり、造粒
濃縮汚泥の水切れが悪化する。このような場合、ポリマ
ーの一部を造粒濃縮汚泥に分注すると、一時にフロック
が発達し、短時間の間に重力濾過性、圧搾性が改善さ
れ、脱水機の運転状態が良くなる。In both organic and inorganic sludges, when the amount of polymer added is reduced or when the strength of the floc itself is low, the concentration ratio does not increase and the particles are broken, resulting in drainage of the granulated concentrated sludge. Becomes worse. In such a case, when a part of the polymer is dispensed into the granulated thickened sludge, flocs develop at one time, gravity filtration property and squeezability are improved in a short time, and the operating condition of the dehydrator is improved.
【0019】このような現象は全ポリマー添加量を下げ
るほど、顕著であり凝集余力が大きいほど有効である。Such a phenomenon becomes more remarkable as the total amount of the polymer added is reduced, and the larger the coagulation reserve is, the more effective it is.
【0020】[0020]
【実施例】以下、図面を参照して本発明の実施例につい
て詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0021】図1は本発明の汚泥の造粒濃縮による脱水
方法の一実施例方法を示すフローチャートである。な
お、図1において、9は攪拌機9aを備えるポリマー反
応槽、15aはポンプ、10A,10B,10C,1
5,15A,15Bは配管、V1,V2 ,V3 ,V4 ,
V5 はバルブであり、その他図2に示す部材と同一機能
を奏する部材には同一符号が付してある。FIG. 1 is a flow chart showing an embodiment of a dehydration method by sludge granulation concentration according to the present invention. In FIG. 1, 9 is a polymer reaction tank equipped with a stirrer 9a, 15a is a pump, 10A, 10B, 10C, 1
5, 15A, 15B are pipes, V 1 , V 2 , V 3 , V 4 ,
V 5 is a valve, and other members having the same functions as those shown in FIG. 2 are designated by the same reference numerals.
【0022】図示の装置により有機系汚泥の処理を行な
う場合には、バルブV1 とバルブV3 ,V4 又はV5 を
開とし、ポリマー溶解槽8のポリマーを配管15,15
Aを経てポリマー反応槽9に添加すると共に、一部を配
管10,10A,10B又は10Cを経て造粒濃縮槽7
の高さ方向の中間部、底部又は配管12に分割注入す
る。When treating the organic sludge by the apparatus shown in the figure, the valve V 1 and the valves V 3 , V 4 or V 5 are opened and the polymer in the polymer dissolving tank 8 is piped 15, 15.
The polymer is added to the polymer reaction tank 9 via A, and a part of the granulation concentrate tank 7 is passed through the pipe 10, 10A, 10B or 10C.
Is injected into the middle portion, the bottom portion, or the pipe 12 in the height direction of.
【0023】即ち、本実施例において、汚泥は原汚泥貯
留槽1に投入され、貯留される。この貯留槽1内の汚泥
は、ポンプ2a及び配管2を経て助剤反応槽3の底部に
導入され、攪拌される。この助剤反応槽3へは助剤希釈
タンク4内の無機凝集剤が助剤注入ポンプ5a及び配管
5を介して注入されており、汚泥はこの無機凝集剤と十
分に混合される。この無機凝集剤の添加により、汚泥の
荷電中和とフロック核の増強が行なわれる。That is, in this embodiment, the sludge is put into and stored in the original sludge storage tank 1. The sludge in the storage tank 1 is introduced into the bottom of the auxiliary agent reaction tank 3 via the pump 2a and the pipe 2 and stirred. The inorganic coagulant in the auxiliary diluent tank 4 is injected into the auxiliary reaction tank 3 through the auxiliary injection pump 5a and the pipe 5, and the sludge is sufficiently mixed with the inorganic coagulant. By adding this inorganic coagulant, the sludge charge is neutralized and the floc nuclei are enhanced.
【0024】無機凝集剤が混和された汚泥は、次いで配
管6Aを経てポリマー反応槽9に導入され、配管15,
15Aから注入されるポリマーと共に十分に混合され、
フロックのより一層の増強がなされる。ポリマー反応槽
9からの流出汚泥は配管6Bを経て造粒濃縮槽7に導入
され、攪拌機7aの回転により液が旋回されることによ
り汚泥が造粒されて造粒物(ペレット)となり、造粒濃
縮槽7内でペレット化しなかった液体は、濾過部7bを
通過し、分離液として配管11を経て初沈槽(図示せ
ず)へ送られ、一方、造粒物は、少量の液と共に汚泥引
き抜きポンプ12a及び配管(移送管)12を経てベル
トプレス13等の機械脱水機へ送られる。The sludge mixed with the inorganic coagulant is then introduced into the polymer reaction tank 9 through the pipe 6A, and the pipe 15,
Well mixed with the polymer injected from 15A,
Further enhancement of flocs is made. The sludge flowing out from the polymer reaction tank 9 is introduced into the granulation thickening tank 7 through the pipe 6B, and the liquid is swirled by the rotation of the stirrer 7a, whereby the sludge is granulated and becomes a granulated product (pellet), The liquid that has not been pelletized in the concentrating tank 7 passes through the filtering unit 7b and is sent as a separated liquid to the first settling tank (not shown) via the pipe 11, while the granulated material is sludge together with a small amount of liquid. It is sent to a mechanical dehydrator such as a belt press 13 via a drawing pump 12 a and a pipe (transfer pipe) 12.
【0025】本実施例においては、この造粒濃縮又は造
粒物の移送に当り、造粒濃縮槽7の高さ方向の中間部、
底部又は移送用配管12にポリマー溶解槽8内のポリマ
ーが配管10,10A,配管10,10B又は配管1
0,10Cを経て分割注入される。In the present embodiment, when the granulation concentrate or the granulated product is transferred, an intermediate portion in the height direction of the granulation concentrate tank 7,
In the bottom or the transfer pipe 12, the polymer in the polymer dissolution tank 8 is pipes 10 and 10A, pipes 10 and 10B, or pipe 1.
Split injection is performed through 0 and 10C.
【0026】この場合、ポリマーの分注率(即ち、全ポ
リマー添加量に対する分割注入するポリマーの割合)
は、造粒濃縮槽7から排出される分離水SSを指標とし
て適宜決定されるが、通常の場合、造粒濃縮槽に分注す
る場合には分注率10〜20%、移送用配管に分注する
場合には分注率5〜30%とするのが好ましい。In this case, the dispensing rate of the polymer (that is, the ratio of the polymer to be divided and injected with respect to the total amount of the polymer added)
Is appropriately determined by using the separated water SS discharged from the granulation concentrating tank 7 as an index, but in the normal case, when dispensing into the granulation concentrating tank, the dispensing rate is 10 to 20%, and the transfer pipe is When dispensing, the dispensing rate is preferably 5 to 30%.
【0027】本発明において、造粒濃縮槽の高さ方向の
中間部又は底部に分注を行なう場合には、次のような効
果が奏される。 ポリマーの添加量低減が最大のメリットとなる。本
発明による分注法を採用することにより、分注を行なわ
ない場合に比べて、ポリマー添加量を15〜30%低減
することができる。 得られる脱水ケーキの含水率の低下が図れる。含水
率の低下割合は、従来法による75〜80%のケーキに
対し、約0.5〜1.0%が認められる。 浮遊SSが少なくなるため、脱水機の運転状態(特
に重力濾過性)が安定する。 本発明による分注法には即効性があり、運転の調整
が容易となる。In the present invention, the following effects can be obtained when dispensing is carried out in the middle or bottom of the granulating thickener in the height direction. The greatest merit is the reduction of the amount of polymer added. By adopting the dispensing method according to the present invention, the amount of polymer added can be reduced by 15 to 30% as compared with the case where dispensing is not performed. The water content of the obtained dehydrated cake can be reduced. About 0.5 to 1.0% of the reduction rate of the water content is recognized for the 75 to 80% cake by the conventional method. Since the floating SS is reduced, the operating state of the dehydrator (particularly gravity filtration) is stable. The dispensing method according to the present invention has immediate effect and facilitates operation adjustment.
【0028】また、造粒濃縮槽から流出する造粒物を含
む液を脱水機に移送する配管に分注を行なう場合には次
のような効果が奏される。 脱水機の重力濾過性が大幅に改善され、運転が容易
となる。 造粒濃縮槽運転状態との連動性を断ち、造粒濃縮槽
の運転状態が悪い場合でも、常に脱水機の安定運転が可
能であり、即効性に優れる。 ポリマー添加量の低減が可能で、従来法に比べて5
〜30%の低減が図れる。 脱水機運転状態の改善により、SSリークが低下
し、固形分の回収率が向上する。Further, when the liquid containing the granulated product flowing out from the granulation concentrating tank is dispensed to the pipe for transferring to the dehydrator, the following effects are exhibited. The gravity filterability of the dehydrator is greatly improved and the operation becomes easier. The interlocking with the operation state of the granulation concentrating tank is cut off, and even if the operation state of the granulation concentrating tank is poor, the dehydrator can always be stably operated, and the immediate effect is excellent. It is possible to reduce the amount of polymer added.
A reduction of up to 30% can be achieved. By improving the operation state of the dehydrator, SS leak is reduced and the solid content recovery rate is improved.
【0029】なお、図1に示す装置において、有機系汚
泥の処理を行なう場合には、第1の凝集剤として無機凝
集剤を用い、第2の凝集剤として分子内両性有機高分子
凝集剤を用い、この第2の凝集剤の添加を、バルブV1
を開とすると共にバルブV3又はV4 を開とすることに
より、造粒濃縮槽7の底部又は移送用配管12に分注す
るように行なうのが好ましい。In the apparatus shown in FIG. 1, when the organic sludge is treated, an inorganic flocculant is used as the first flocculant and an intramolecular amphoteric organic polymer flocculant is used as the second flocculant. This second coagulant addition was used with the valve V 1
Is preferably opened and the valve V 3 or V 4 is opened so that the liquid is dispensed to the bottom of the granulation thickening tank 7 or the transfer pipe 12.
【0030】一方、無機系汚泥の処理に当っては、第1
の凝集剤及び第2の凝集剤として各種の有機高分子凝集
剤を組み合せて用いて、上記と同様の分注を行なうのが
好ましい。On the other hand, in the treatment of inorganic sludge, the first
It is preferable to use various organic polymer coagulants in combination as the coagulant and the second coagulant and perform the same dispensing as described above.
【0031】本発明において、処理対象となる有機性汚
泥は、特には限定されないが、例えば下水の最初沈殿池
汚泥、し尿、下水等の三次処理で発生する凝集汚泥、各
種産業廃水の凝集汚泥、し尿の嫌気性消化汚泥、し尿の
好気性消化汚泥、し尿浄化槽汚泥、し尿消化脱離液、下
水、各種産業廃水の活性汚泥処理における余剰汚泥など
の有機性汚泥を挙げることができる。また、無機系汚泥
としては、金属スラッジや浚渫・埋立時の土砂スラリ
ー、下水・廃水を無機凝集剤で凝集処理する際に発生す
る凝集汚泥などが挙げられる。In the present invention, the organic sludge to be treated is not particularly limited. For example, sewage first settling basin sludge, coagulated sludge generated in the tertiary treatment of human waste, sewage, etc., coagulated sludge of various industrial wastewater, Examples of the organic sludge include anaerobic digestion sludge of human waste, aerobic digestion sludge of human waste, human waste septic tank sludge, human waste digestive desorption liquid, sewage, and excess sludge in the treatment of activated sludge of various industrial wastewater. Examples of the inorganic sludge include metal sludge, dredging / land / sand slurry at landfill, and coagulated sludge generated when coagulating sewage / wastewater with an inorganic coagulant.
【0032】本発明で使用する無機凝集剤としては、塩
化第二鉄、硫酸アルミニウム、塩化アルミニウム、ポリ
塩化アルミニウム、ポリ硫酸鉄などを挙げることができ
る。Examples of the inorganic flocculant used in the present invention include ferric chloride, aluminum sulfate, aluminum chloride, polyaluminum chloride and polyiron sulfate.
【0033】また、本発明で用いる有機高分子凝集剤の
うち、両性有機高分子凝集剤としては、カチオン性構成
単位(カチオン基)量(以下「カチオン量」と称す。)
を示すpH3でコロイド滴定したコロイド当量値(a
値)が1.0〜3.7meq/g、アニオン性構成単位
(アニオン基)量(以下、「アニオン量」と称す。)と
カチオン性構成単位量の差を示すpH7でコロイド滴定
したコロイド当量値(b値)が−1.7〜0.7meq
/gであり、かつアニオン量/カチオン量の比を示す
(a−b)/aの値が0.8〜1.8の範囲にある両性
有機高分子凝集剤であることが好ましい。Among the organic polymer flocculants used in the present invention, the amphoteric organic polymer flocculant is a cationic constituent unit (cation group) amount (hereinafter referred to as "cation amount").
Colloid equivalent value (a
Value) is 1.0 to 3.7 meq / g, colloid titration at pH 7 showing the difference between the amount of anionic constitutional unit (anion group) (hereinafter referred to as “anion amount”) and the amount of cationic constitutional unit. Value (b value) is -1.7 to 0.7 meq
It is preferable that the amphoteric organic polymer flocculant has a ratio of (a / b) / a, which is a ratio of anion amount / cation amount of 0.8 to 1.8.
【0034】pH3の条件下では、両性有機高分子中の
アニオン基は殆ど解離せず、逆に、カチオン基は大部分
解離するものと考えられるので、pH3の条件下でコロ
イド滴定して求めたコロイド当量値(a値)は、両性有
機高分子の全カチオン量とみなすことができる。Under the condition of pH 3, it is considered that the anionic group in the amphoteric organic polymer hardly dissociates, and conversely, most of the cation group dissociates. Therefore, it was determined by colloid titration under the condition of pH 3. The colloid equivalent value (a value) can be regarded as the total cation amount of the amphoteric organic polymer.
【0035】一方、アニオン基のコロイド当量値は、通
常pH10.5で滴定するが、このpHでは両性有機高
分子中のカチオン基が加水分解してアニオン基となる場
合があるため、本発明においてはpH7で滴定した値を
用いる。この場合、両性有機高分子中のカチオン基とア
ニオン基は両者とも解離するため、コロイド滴定の結果
はカチオンとアニオンが相殺された余分のアニオン量又
はカチオン量が測定されることになる。従って、両性有
機高分子中の全アニオン量はpH3で滴定されたコロイ
ド当量値とpH7で滴定されたコロイド当量値の差(a
−b)とみなすことができる。On the other hand, the colloid equivalent value of the anion group is usually titrated at pH 10.5. At this pH, however, the cation group in the amphoteric organic polymer may be hydrolyzed to become the anion group. Is a value titrated at pH 7. In this case, since both the cation group and the anion group in the amphoteric organic polymer are dissociated, the result of colloid titration is to measure the excess amount of anion or the amount of cation in which the cation and anion are offset. Therefore, the total amount of anions in the amphoteric organic polymer is the difference between the colloid equivalent value titrated at pH 3 and the colloid equivalent value titrated at pH 7 (a
-B) can be considered.
【0036】本発明で使用できる両性有機高分子凝集剤
としては、pH3におけるコロイド当量値(a)が1.
0〜3.7meq/g、pH7におけるコロイド当量値
(b)が−1.7〜0.7meq/gで、かつアニオン
量/カチオン量比((a−b)/a)が0.8〜1.8
の範囲にある両性有機高分子であればいずれのものでも
使用できる。このようなものとして、例えばアニオン性
のモノマー成分及びカチオン性のモノマー成分の共重合
体、アニオン性のモノマー成分、カチオン性のモノマー
成分及びノニオン性のモノマー成分の共重合体、或いは
アニオン性のモノマー成分とノニオン性のモノマー成分
の共重合体のマンニッヒ変性物又はホフマン分解物など
を挙げることができる。The amphoteric organic polymer flocculant usable in the present invention has a colloid equivalent value (a) of 1.
The colloid equivalent value (b) at 0 to 3.7 meq / g, pH 7 is -1.7 to 0.7 meq / g, and the anion amount / cation amount ratio ((ab) / a) is 0.8 to. 1.8
Any amphoteric organic polymer in the range can be used. As such, for example, a copolymer of an anionic monomer component and a cationic monomer component, an anionic monomer component, a copolymer of a cationic monomer component and a nonionic monomer component, or an anionic monomer Examples thereof include a Mannich modified product or a Hoffmann degradation product of a copolymer of the component and a nonionic monomer component.
【0037】アニオン性のモノマー成分としては、例え
ばアクリル酸(AA)、アクリル酸ナトリウム(Na
A)、メタクリル酸、メタクリル酸ナトリウムなどを挙
げることができる。カチオン性のモノマー成分として
は、例えばジメチルアミノエチルアクリレート、ジメチ
ルアミノエチル(メタ)アクリレート(DAM)、ジメ
チルアミノプロピル(メタ)アクリレート、及びそれら
の四級化物などを挙げることができる。四級化物として
は、具体的にはジメチルアミノエチルアクリレートメチ
ルクロライド四級化物(DAA)などを挙げることがで
きる。また、ジメチルアミノプロピルアクリルアミドの
塩酸塩(DAPAAm)を用いても良い。ノニオン性の
モノマー成分としては、例えばアクリルアミド(AA
m)、メタアクリルアミド、N,N’−ジメチル(メ
タ)アクリルアミドなどを挙げることができる。また、
これらの化合物の共重合体として、具体的にはDAA/
AA/AAm共重合体、DAM/AA/AAm共重合
体、DAPAAm/AA/AAm共重合体、DAA/A
A共重合体、又はNaA/AAm共重合体のマンニッヒ
変性物などを挙げることができる。Examples of the anionic monomer component include acrylic acid (AA) and sodium acrylate (Na).
A), methacrylic acid, sodium methacrylate, etc. can be mentioned. Examples of the cationic monomer component include dimethylaminoethyl acrylate, dimethylaminoethyl (meth) acrylate (DAM), dimethylaminopropyl (meth) acrylate, and quaternized products thereof. Specific examples of the quaternary compound include dimethylaminoethyl acrylate methyl chloride quaternary compound (DAA). Alternatively, dimethylaminopropyl acrylamide hydrochloride (DAPAAm) may be used. Examples of the nonionic monomer component include acrylamide (AA
m), methacrylamide, N, N′-dimethyl (meth) acrylamide and the like. Also,
As a copolymer of these compounds, specifically, DAA /
AA / AAm copolymer, DAM / AA / AAm copolymer, DAPAAm / AA / AAm copolymer, DAA / A
Examples thereof include A copolymers and Mannich modified products of NaA / AAm copolymers.
【0038】一方、カチオン系有機高分子凝集剤として
はアミノアルキル(メタ)アクリレートの単独重合体ま
たはアクリルアミドもしくは他のモノマーとの共重合
体、ポリアクリルアミドのマンニッヒ変性物、ポリアク
リルアミドのホフマン分解物、ポリアミドポリアミン、
ポリビニルイミダゾリン、ポリエチレンイミンおよびポ
リジアルキルジアリルアンモニウム塩から選ばれる1種
以上のもの等を用いることができ、アニオン系有機高分
子凝集剤としてはポリアクリル酸またはその塩、ポリア
クリルアミドの部分加水分解物、アクリル酸もしくはそ
の塩とアクリルアミドまたは2−アクリルアミド−2−
エチルプロパンスルホン酸もしくはその塩との共重合体
およびアクリル酸もしくはその塩とアクリルアミドとビ
ニルスルホン酸もしくはその塩との三元共重合体から選
ばれる1種以上のもの等を用いることができ、ノニオン
系有機高分子凝集剤としてはポリアクリルアミド、ポリ
エチレンオキサイドから選ばれるもの等を用いることが
できる。On the other hand, as the cationic organic polymer flocculant, a homopolymer of aminoalkyl (meth) acrylate or a copolymer with acrylamide or another monomer, a Mannich modified product of polyacrylamide, a Hoffmann degradation product of polyacrylamide, Polyamide polyamine,
One or more selected from polyvinylimidazoline, polyethyleneimine and polydialkyldiallylammonium salts can be used, and as the anionic organic polymer flocculant, polyacrylic acid or a salt thereof, a partial hydrolyzate of polyacrylamide, Acrylic acid or its salt and acrylamide or 2-acrylamide-2-
One or more kinds selected from a copolymer of ethylpropanesulfonic acid or a salt thereof and a terpolymer of acrylic acid or a salt thereof and acrylamide and vinylsulfonic acid or a salt thereof can be used. As the organic polymer coagulant, one selected from polyacrylamide and polyethylene oxide can be used.
【0039】本発明において、各種汚泥を処理する場合
の凝集剤の組み合せの好適例は下記表1の通りである。In the present invention, preferred examples of the combination of coagulants for treating various sludges are shown in Table 1 below.
【0040】[0040]
【表1】 [Table 1]
【0041】なお、図1に示す装置は、本発明の実施に
好適な装置の一実施例であって、本発明は何ら図示のも
のに限定されるものではない。例えば、ポリマー反応槽
は必ずしも必要とされず、助剤反応槽3から造粒濃縮槽
7への供給管に直接ポリマーを注入しても良い。また、
第2の凝集剤の造粒濃縮槽7への分注箇所も、造粒濃縮
槽の底部近傍とすることもできる。機械脱水機として
は、図示のベルトプレスの他、遠心脱水機、真空脱水
機、スクリュープレス又はフィルタプレス等の従来より
使用されている脱水機をいずれも使用可能である。The apparatus shown in FIG. 1 is an embodiment of the apparatus suitable for carrying out the present invention, and the present invention is not limited to what is shown. For example, the polymer reaction tank is not always necessary, and the polymer may be directly injected into the supply pipe from the auxiliary reaction tank 3 to the granulation concentration tank 7. Also,
The portion of the second flocculant to be dispensed into the granulation concentrating tank 7 can also be located near the bottom of the granulation concentrating tank. As the mechanical dehydrator, in addition to the belt press shown in the figure, any conventionally used dehydrator such as a centrifugal dehydrator, a vacuum dehydrator, a screw press or a filter press can be used.
【0042】以下、具体的な実施例及び比較例を挙げ
て、本発明をより詳細に説明する。The present invention will be described in more detail below with reference to specific examples and comparative examples.
【0043】なお、使用した高分子凝集剤は表2,3に
示す通りである。The polymer flocculants used are as shown in Tables 2 and 3.
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【表3】 [Table 3]
【0046】実施例1,比較例1−1,1−2 図1において、V1 ,V3 を開、V2 ,V4 ,V5 を閉
として行なった。食品工場排水の活性汚泥処理における
余剰汚泥(VSS85.9%)に塩化第二鉄溶液をFe
Cl3 として対SS2.3%添加して攪拌した後、表2
に記載の記号AC−1の両性有機高分子凝集剤を対SS
0.9%添加して攪拌し、造粒濃縮槽に導入し、更に造
粒濃縮槽の中間部に前記AC−1を対SS0.2%添加
し、濾過部から濾液を取り出すことによって汚泥を造粒
濃縮し、ベルトプレス型脱水機(機種:栗田工業(株)
製、「ハイドプレスPA750」)で、濾布面積負荷9
0kg−DS/m・hr濾布走行速度0.8m/min
の条件にて脱水した。脱水ケーキの含水率は82.2%
であった(実施例1)。Example 1, Comparative Examples 1-1 and 1-2 In FIG. 1, V 1 and V 3 were opened and V 2 , V 4 and V 5 were closed. Fe in a ferric chloride solution is added to excess sludge (VSS 85.9%) in the activated sludge treatment of food factory wastewater.
After adding 2.3% of SS to Cl 3 and stirring, Table 2
The amphoteric organic polymer flocculant having the symbol AC-1 described in
Add 0.9% and stir, introduce into the granulation thickener, add 0.2% of SS-1 to the AC-1 in the middle of the granule thickener, and remove the filtrate from the filter to remove sludge. Granulate and concentrate, belt press type dehydrator (model: Kurita Water Industries Ltd.)
Manufactured by "Hidepress PA750") with a filter cloth area load of 9
0kg-DS / m ・ hr Filter cloth running speed 0.8m / min
It dehydrated on condition of. Water content of dehydrated cake is 82.2%
(Example 1).
【0047】なお、比較のため、AC−1を造粒濃縮槽
の中間部に分割注入することなく、塩化第二鉄溶液を添
加・攪拌後の汚泥にAC−1を対SS1.1%添加した
こと以外は同様に行なったところ、脱水ケーキ含水率は
83.1%であった(比較例1−1)。また、上記分割
注入をすることなく、上記本発明による分割注入を行な
った場合と同等の脱水ケーキ含水率82.2%を達成す
るためには、AC−1の添加量は、対SS1.3%と、
本発明の場合に比べて18%の増量を要した(比較例1
−2)。Incidentally, for comparison, AC-1 was added to the sludge after the ferric chloride solution was added and stirred without adding AC-1 to the intermediate portion of the granulation concentrating tank in an amount of 1.1% of SS. The same operation was performed except that the water content of the dehydrated cake was 83.1% (Comparative Example 1-1). Moreover, in order to achieve the same dehydration cake water content of 82.2% as in the case of performing the above-mentioned split injection according to the present invention without performing the above-mentioned split injection, the addition amount of AC-1 was set to SS1.3. %When,
An increase of 18% was required as compared with the case of the present invention (Comparative Example 1).
-2).
【0048】実施例2,比較例2−1,2−2 下水処理場の最初沈殿池汚泥と活性汚泥処理における余
剰汚泥との混合汚泥(VSS80.8%)を実施例1と
同様に処理した。ただし、両性有機高分子凝集剤はAC
−3を用い、添加量は表4に示す通りとした。得られた
脱水ケーキ含水率を表4に記載した(実施例2)。比較
のため、分割注入を行なわない場合の結果も表4に記載
した(比較例2−1,2−2)。Example 2, Comparative Examples 2-1 and 2-2 A mixed sludge (VSS 80.8%) of the first settling tank sludge of the sewage treatment plant and the excess sludge in the activated sludge treatment was treated in the same manner as in Example 1. . However, the amphoteric organic polymer flocculant is AC
-3 was used, and the addition amount was as shown in Table 4. The water content of the obtained dehydrated cake is shown in Table 4 (Example 2). For comparison, the results when split injection was not performed are also shown in Table 4 (Comparative Examples 2-1 and 2-2).
【0049】実施例3,比較例3−1,3−2 ビール工場排水の余剰汚泥と三次処理汚泥との混合汚泥
(VSS68.1%)を実施例1,比較例1−1,1−
2と同様に処理した。処理条件、結果は表4の通りであ
った。Example 3, Comparative Examples 3-1 and 3-2 Mixed sludge (VSS 68.1%) of excess sludge from beer factory effluent and tertiary treated sludge was used in Example 1 and Comparative Examples 1-1 and 1-.
Processed as in 2. The treatment conditions and the results are shown in Table 4.
【0050】実施例4,比較例4 図1において、V1 ,V5 を開、V2 ,V3 ,V4 を閉
として行なった。化学工場の総合排水の余剰汚泥と凝集
沈殿汚泥との混合汚泥(VSS44.2%)にC−1の
カチオン性有機高分子凝集剤を対SS0.24%添加し
て攪拌した後、A−1のアニオン性有機高分子凝集剤を
対SS0.16%添加して攪拌し、次いで、造粒濃縮槽
に導入し、更に造粒濃縮槽から流出する造粒物を含む液
を脱水機へ移送する配管中に前記A−1を対SS0.0
5%添加し、実施例1と同様にベルトプレス型脱水機で
脱水した。結果を表4に示した(実施例4)。比較のた
め、分割注入を行なわない場合の結果も表4に記載した
(比較例4)。Example 4, Comparative Example 4 In FIG. 1, V 1 and V 5 were opened and V 2 , V 3 and V 4 were closed. To the mixed sludge (VSS 44.2%) of surplus sludge and coagulation sedimentation sludge of the general wastewater of the chemical factory, the cationic organic polymer flocculant of C-1 was added in an amount of 0.24% with respect to SS, and the mixture was mixed with A-1. 0.16% of the anionic organic polymer flocculant is added and stirred, then introduced into the granulation concentrating tank, and the liquid containing the granulated product flowing out from the granulating concentrating tank is transferred to the dehydrator. The above-mentioned A-1 is paired with SS0.0 in the pipe.
5% was added, and dehydration was performed using a belt press type dehydrator as in Example 1. The results are shown in Table 4 (Example 4). For comparison, the results obtained without split injection are also shown in Table 4 (Comparative Example 4).
【0051】実施例5,比較例5 塗工紙製造排水の無機系汚泥(VSS37.9%)を実
施例4、比較例4と同様に処理した。ただし、用いた凝
集剤、その添加量は表4の通りとした。結果を表4に示
した。Example 5, Comparative Example 5 Inorganic sludge (VSS 37.9%) in the wastewater from coated paper production was treated in the same manner as in Example 4 and Comparative Example 4. However, the coagulant used and its addition amount are shown in Table 4. The results are shown in Table 4.
【0052】実施例6,比較例6 圧延工場排水の酸化鉄汚泥(VSS8.8%)を実施例
4、比較例4と同様に処理した。ただし、用いた凝集
剤、その添加量は表4の通りとした。結果を表4に示
す。Example 6, Comparative Example 6 Iron oxide sludge (VSS 8.8%) from the wastewater of a rolling mill was treated in the same manner as in Example 4 and Comparative Example 4. However, the coagulant used and its addition amount are shown in Table 4. The results are shown in Table 4.
【0053】表4より、本発明の方法によれば、少ない
ポリマー添加量にて含水率の低い脱水ケーキを得ること
ができることが明らかである。From Table 4, it is clear that according to the method of the present invention, a dehydrated cake having a low water content can be obtained with a small amount of polymer added.
【0054】[0054]
【表4】 [Table 4]
【0055】[0055]
【発明の効果】以上詳述した通り、本発明の汚泥の造粒
濃縮による脱水方法によれば、汚泥に第1の凝集剤を添
加して攪拌し、次いで、第2の凝集剤を添加して攪拌し
た後、又は、第2の凝集剤と共に、汚泥を濾過部を有す
る造粒濃縮槽に導入し、該濾過部から濾液を取り出すこ
とによって汚泥を濃縮するとともに造粒し、この造粒物
を脱水機で脱水する方法において、凝集剤添加量の低
減、分離水SSの低減、造粒汚泥の重力濾過性の向上、
脱水機の運転の安定化が図れ、汚泥を低コストにて効率
的に処理することが可能とされる。As described above in detail, according to the dehydration method by sludge granulation concentration of the present invention, the first flocculant is added to the sludge and stirred, and then the second flocculant is added. The sludge is introduced into a granulation concentrating tank having a filtering section together with the second flocculant, and the sludge is concentrated and granulated by removing the filtrate from the filtering section. In the method of dehydrating the water with a dehydrator, the addition amount of the coagulant is reduced, the separation water SS is reduced, the gravity filterability of the granulated sludge is improved,
The operation of the dehydrator can be stabilized, and sludge can be efficiently treated at low cost.
【0056】このような本発明の汚泥の造粒濃縮による
脱水方法は、下水、し尿又は有機性産業廃水などの処理
により生ずる有機系汚泥、その他、金属スラッジや浚渫
・埋立時の土砂スラリー、下水・廃水を無機凝集剤で凝
集処理する際発生する凝集汚泥などの無機系汚泥の処理
方法として、工業的に極めて有用である。The method of dehydration by sludge granulation concentration according to the present invention includes organic sludge produced by treatment of sewage, night soil or organic industrial wastewater, as well as metal sludge, dredging / landfill slurry at the time of landfill, and sewage. -It is extremely useful industrially as a method for treating inorganic sludge such as coagulated sludge generated when coagulating wastewater with an inorganic coagulant.
【図1】本発明の汚泥の造粒濃縮による脱水方法の一実
施例方法を示すフローチャートである。FIG. 1 is a flowchart showing an example method of a dehydration method by concentrating sludge granulation according to the present invention.
【図2】従来法を示すフローチャートである。FIG. 2 is a flowchart showing a conventional method.
1 原汚泥貯留槽 3 助剤反応槽 4 助剤希釈タンク 7 造粒濃縮槽 7a 攪拌機 7b 濾過部 8 ポリマー溶解槽 9 ポリマー反応槽 13 ベルトプレス 1 Raw Sludge Storage Tank 3 Auxiliary Reaction Tank 4 Auxiliary Dilution Tank 7 Granulation Concentration Tank 7a Stirrer 7b Filtration Section 8 Polymer Dissolution Tank 9 Polymer Reaction Tank 13 Belt Press
フロントページの続き (72)発明者 花見 勇一 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 後藤 幸夫 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内Front Page Continuation (72) Inventor Yuichi Hanami 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Inventor Yukio Goto 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. In the company
Claims (1)
次いで、第2の凝集剤を添加して攪拌した後、又は、第
2の凝集剤と共に、濾過部を有した造粒濃縮槽にこの汚
泥を導入し、該濾過部から濾液を取り出し、この造粒濃
縮槽内で汚泥を濃縮するとともに造粒し、次いでこの造
粒物を含む液を脱水機に導入して脱水する方法におい
て、 前記第2の凝集剤と同一の凝集剤を前記造粒濃縮槽又は
造粒濃縮槽から流出する前記造粒物を含む液に注入する
ことを特徴とする汚泥の造粒濃縮による脱水方法。1. A first coagulant is added to sludge and stirred,
Then, after adding and stirring the second flocculant, or together with the second flocculant, this sludge is introduced into a granulation concentrating tank having a filtration section, and the filtrate is taken out from the filtration section and In the method of concentrating sludge in a grain concentrating tank and granulating, and then introducing a liquid containing this granulated material into a dehydrator to dehydrate, the same flocculant as the second flocculant is granulated and concentrated. A dehydration method by granulating and concentrating sludge, which is characterized in that the sludge is poured into a liquid containing the granulated product flowing out from a tank or a granulating and concentrating tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05168294A JP3509169B2 (en) | 1994-03-23 | 1994-03-23 | Dewatering method by sludge granulation and concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05168294A JP3509169B2 (en) | 1994-03-23 | 1994-03-23 | Dewatering method by sludge granulation and concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07256298A true JPH07256298A (en) | 1995-10-09 |
JP3509169B2 JP3509169B2 (en) | 2004-03-22 |
Family
ID=12893664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05168294A Expired - Lifetime JP3509169B2 (en) | 1994-03-23 | 1994-03-23 | Dewatering method by sludge granulation and concentration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3509169B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128010A (en) * | 1996-11-05 | 1998-05-19 | Hymo Corp | Treatment of dredge mud |
JPH1157800A (en) * | 1997-08-08 | 1999-03-02 | Kurita Water Ind Ltd | Sludge dewatering method |
JP2000051900A (en) * | 1998-08-17 | 2000-02-22 | Kubota Corp | Sludge conditioning and dehydration method |
JP2013116455A (en) * | 2011-12-05 | 2013-06-13 | Kurita Water Ind Ltd | Flocculant treatment method |
JP2014050830A (en) * | 2012-08-08 | 2014-03-20 | Swing Corp | Sludge treatment method and apparatus |
JP2016112496A (en) * | 2014-12-12 | 2016-06-23 | 栗田工業株式会社 | Sludge dewatering process and apparatus |
JP2016159280A (en) * | 2015-03-05 | 2016-09-05 | 三菱レイヨン株式会社 | Method for treating metal-containing sludge |
JP2019098327A (en) * | 2017-12-07 | 2019-06-24 | 日鉄環境株式会社 | Method of treating oil-containing sludge and method of treating wastewater |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01307492A (en) * | 1988-06-07 | 1989-12-12 | Iseki Tory Tech Inc | How to treat muddy water |
JPH04284900A (en) * | 1991-03-14 | 1992-10-09 | Kurita Water Ind Ltd | Organic sludge dewatering method |
JPH0651682A (en) * | 1992-07-28 | 1994-02-25 | Tootsuya:Kk | Hologram pigment and hologram composition |
-
1994
- 1994-03-23 JP JP05168294A patent/JP3509169B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01307492A (en) * | 1988-06-07 | 1989-12-12 | Iseki Tory Tech Inc | How to treat muddy water |
JPH04284900A (en) * | 1991-03-14 | 1992-10-09 | Kurita Water Ind Ltd | Organic sludge dewatering method |
JPH0651682A (en) * | 1992-07-28 | 1994-02-25 | Tootsuya:Kk | Hologram pigment and hologram composition |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128010A (en) * | 1996-11-05 | 1998-05-19 | Hymo Corp | Treatment of dredge mud |
JPH1157800A (en) * | 1997-08-08 | 1999-03-02 | Kurita Water Ind Ltd | Sludge dewatering method |
JP2000051900A (en) * | 1998-08-17 | 2000-02-22 | Kubota Corp | Sludge conditioning and dehydration method |
JP2013116455A (en) * | 2011-12-05 | 2013-06-13 | Kurita Water Ind Ltd | Flocculant treatment method |
JP2014050830A (en) * | 2012-08-08 | 2014-03-20 | Swing Corp | Sludge treatment method and apparatus |
JP2016112496A (en) * | 2014-12-12 | 2016-06-23 | 栗田工業株式会社 | Sludge dewatering process and apparatus |
JP2016159280A (en) * | 2015-03-05 | 2016-09-05 | 三菱レイヨン株式会社 | Method for treating metal-containing sludge |
JP2019098327A (en) * | 2017-12-07 | 2019-06-24 | 日鉄環境株式会社 | Method of treating oil-containing sludge and method of treating wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP3509169B2 (en) | 2004-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0536194B2 (en) | Purification of aqueous liquor | |
CN100450592C (en) | Metal smelting factory sewage reclaiming method based on membrane filtering technique | |
JP5423256B2 (en) | Sludge dewatering method and sludge dewatering device | |
JPH07256298A (en) | Dewatering method by sludge granulation concentration | |
US6287471B1 (en) | Treatment of aqueous effluents by injection of carbon dioxide | |
JP3248188B2 (en) | Organic sludge dewatering method | |
JP3340477B2 (en) | Coagulation treatment of organic wastewater | |
JP3168608B2 (en) | Sludge treatment equipment | |
US6207062B1 (en) | Treatment of aqueous effluents by injection of carbon dioxide | |
JP2982225B2 (en) | Organic sludge dewatering method | |
JP3591077B2 (en) | Sludge dewatering method | |
US20130075341A1 (en) | Method for clarifying industrial wastewater | |
JP6566563B2 (en) | Anaerobic treatment device | |
JP4007639B2 (en) | Sewage return water treatment method and equipment | |
JP3496773B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP2991588B2 (en) | Method for dewatering sludge containing calcium compound | |
JPH11300389A (en) | Water treatment method and apparatus | |
JP3412641B2 (en) | Coagulation treatment of low turbidity wastewater from power plants | |
JPH0924400A (en) | Dewatering method of digested sludge | |
JP4795290B2 (en) | How to remove phosphorus | |
JPH08206699A (en) | Dehydration method of anaerobic digestion sludge | |
JP3482973B2 (en) | Sewage coagulation method | |
JP2005007246A (en) | Treatment method for organic waste water | |
JP7628485B2 (en) | Method and device for concentrating liquid waste | |
JP3446621B2 (en) | Sludge coagulation granulator and sludge dewatering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031222 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |