[go: up one dir, main page]

JP7628485B2 - Method and device for concentrating liquid waste - Google Patents

Method and device for concentrating liquid waste Download PDF

Info

Publication number
JP7628485B2
JP7628485B2 JP2021194103A JP2021194103A JP7628485B2 JP 7628485 B2 JP7628485 B2 JP 7628485B2 JP 2021194103 A JP2021194103 A JP 2021194103A JP 2021194103 A JP2021194103 A JP 2021194103A JP 7628485 B2 JP7628485 B2 JP 7628485B2
Authority
JP
Japan
Prior art keywords
sludge
liquid waste
concentration
concentrated sludge
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021194103A
Other languages
Japanese (ja)
Other versions
JP2023080648A (en
Inventor
乃大 矢出
康輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2021194103A priority Critical patent/JP7628485B2/en
Publication of JP2023080648A publication Critical patent/JP2023080648A/en
Application granted granted Critical
Publication of JP7628485B2 publication Critical patent/JP7628485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、液状廃棄物の濃縮方法および液状廃棄物の濃縮装置に関し、特に、液状廃棄物から凝集フロックを形成させ、この凝集フロックを含む液状廃棄物から濃縮汚泥と分離液を得る、液状廃棄物の濃縮方法および液状廃棄物の濃縮装置に関する。 The present invention relates to a method and an apparatus for concentrating liquid waste, and in particular to a method and an apparatus for concentrating liquid waste, which form flocs from liquid waste and obtain concentrated sludge and separated liquid from the liquid waste containing the flocs.

液状廃棄物は、水中の浮遊物質が沈殿または浮上して泥状になった汚泥や、し尿や浄化槽汚泥、浄水処理、下水処理、民間排水等の処理過程で発生する液状廃棄物である。液状廃棄物には、有機汚泥と無機汚泥の二種類がある。前者は、下水処理場や食品工場、紙・パルプ工場等からの有機性排水を処理する設備で発生する汚泥や産業廃棄物として収集される有機性廃棄物である。有機性廃棄物の主成分は鉱物油や動植物油を含む有機物である。 Liquid waste is sludge, which is formed when suspended solids in water settle or float to the surface and become muddy, or liquid waste generated during the treatment process of human waste, septic tank sludge, water purification, sewage treatment, and private wastewater. There are two types of liquid waste: organic sludge and inorganic sludge. The former is organic waste collected as sludge or industrial waste generated in facilities that treat organic wastewater from sewage treatment plants, food factories, paper and pulp factories, etc. The main component of organic waste is organic matter including mineral oil and animal and vegetable oil.

後者は、土木工事現場や浄水場の凝集沈殿汚泥である上水汚泥、金属メッキ工場等の砂や金属成分等を多く含む排水を処理する設備で発生する汚泥である。 The latter includes drinking water sludge, which is a coagulation and settling sludge from civil engineering sites and water purification plants, and sludge generated in facilities that treat wastewater containing large amounts of sand and metal components, such as in metal plating factories.

また、液状廃棄物である、バイオマスや下水汚泥などを嫌気性条件下でそれらの有機物を分解する消化槽やメタン発酵槽から排出される消化汚泥も液状廃棄物である。 Digested sludge discharged from digesters and methane fermenters that decompose organic matter such as biomass and sewage sludge under anaerobic conditions is also a liquid waste.

汚泥の減容のために濃縮、あるいは濃縮と脱水が行われる。 To reduce the volume of sludge, it is thickened or thickened and dewatered.

濃縮は、汚泥の濃度を高め、濃縮汚泥とする工程である。 Thickening is the process of increasing the concentration of sludge to turn it into thickened sludge.

脱水は、機械的な圧力をかけて、濃縮汚泥から水分を絞り出す工程であり、これにより、含水率の低い脱水ケーキが得られる。 Dewatering is the process of squeezing water out of thickened sludge using mechanical pressure, resulting in a dehydrated cake with a low moisture content.

汚泥の脱水処理では、汚泥濃度が高い程、汚泥の脱水効率が向上するため、脱水処理に先立ち、汚泥を濃縮する各種方法が提案されている。 In sludge dewatering, the higher the sludge concentration, the more efficient the dewatering process, so various methods have been proposed for concentrating sludge prior to dewatering.

図6は、従来の、液状廃棄物の濃縮・脱水方法の処理フローを示す模式図である。 Figure 6 is a schematic diagram showing the process flow of a conventional method for concentrating and dehydrating liquid waste.

上述のとおり、一般に濃縮は脱水機に供給する汚泥濃度を高めるための前処理として使用される。汚泥は凝集槽で高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は濃縮機で濃縮汚泥と、分離液に分離される。 As mentioned above, thickening is generally used as a pretreatment to increase the concentration of sludge before it is fed to the dehydrator. After the sludge is conditioned in a coagulation tank where a polymer coagulant is added to create coagulated flocs, the conditioned sludge is separated in a thickener into concentrated sludge and separated liquid.

汚泥への高分子凝集剤の添加率は汚泥の固形物に対して概ね0.2~5wt%である。 The rate at which polymer flocculants are added to sludge is approximately 0.2 to 5 wt% of the sludge solids.

濃縮汚泥は脱水機で脱水されて、更に減量化される。この脱水処理に高分子凝集剤が水に溶解した水溶液として用いられる。水溶液の濃度は特に限定されないが、通常0.05~0.8wt%である。 The concentrated sludge is dehydrated in a dehydrator to further reduce its weight. A polymer flocculant is used in this dehydration process as an aqueous solution. There are no particular restrictions on the concentration of the aqueous solution, but it is usually 0.05 to 0.8 wt%.

脱水機からは脱水ろ液と、脱水ケーキが搬出されて、脱水ケーキは埋立処分等で外部搬出されたり、自前の焼却炉で焼却処分されたりする。下水処理では返流水として、分離液と脱水ろ液を下水処理工程に送り、水処理する。 The dehydrator produces the dehydrated filtrate and the dehydrated cake, which is either transported to a landfill or incinerated in the facility's own incinerator. In sewage treatment, the separated liquid and the dehydrated filtrate are sent to the sewage treatment process as return water and treated.

また、濃縮は嫌気性消化槽やメタン発酵槽での嫌気処理性能向上のために、嫌気性消化槽に供給する汚泥濃度を高めるための前処理として使用される。 Thickening is also used as a pretreatment process to increase the concentration of sludge supplied to anaerobic digesters and methane fermentation tanks in order to improve the anaerobic treatment performance of these tanks.

図7は、従来の、嫌気性消化の前処理としての液状廃棄物の濃縮方法の処理フローを示す模式図である。 Figure 7 is a schematic diagram showing the process flow of a conventional method for concentrating liquid waste as a pretreatment for anaerobic digestion.

図示のように、汚泥に凝集槽で高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は濃縮機で濃縮汚泥と、分離液に分離される。濃縮汚泥の有機物は嫌気性消化槽でメタンガスと炭酸ガスに分解される。メタンガスはボイラ燃料等に利用される。分離液は下水処理工程に送られて、水処理される。 As shown in the diagram, a polymer coagulant is added to the sludge in a coagulation tank and the sludge is conditioned to create coagulated flocs. The conditioned sludge is then separated into concentrated sludge and separated liquid in a thickener. The organic matter in the concentrated sludge is broken down into methane gas and carbon dioxide gas in an anaerobic digester. The methane gas is used as boiler fuel, etc. The separated liquid is sent to the sewage treatment process for water treatment.

嫌気性消化槽の汚泥(消化汚泥)も定期的に嫌気性消化槽から消化汚泥として引き抜かれて、図6のように濃縮と、脱水が行われる。 The sludge from the anaerobic digester (digested sludge) is also periodically removed from the anaerobic digester and thickened and dewatered as shown in Figure 6.

汚泥の濃縮には、従来より、重力濃縮槽や造粒濃縮装置が用いられている。 Gravity thickeners and granular thickeners have traditionally been used to thicken sludge.

図8は、従来の、重力濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。 Figure 8 is a schematic diagram showing the conventional liquid waste treatment flow using a gravity concentration device.

図示のように、凝集槽の汚泥に高分子凝集剤を添加し、凝集フロックを作る調質を行った後に、調質後の汚泥は重力濃縮槽で濃縮汚泥と、分離液に分離される。濃縮汚泥は脱水機や嫌気性消化槽に送られる。 As shown in the figure, a polymeric coagulant is added to the sludge in the coagulation tank and the sludge is conditioned to create coagulated flocs. The conditioned sludge is then separated into thickened sludge and separated liquid in a gravity thickening tank. The thickened sludge is sent to a dehydrator or anaerobic digester.

調質された汚泥は重力濃縮槽に流入し、固液分離される。分離液は分離液流出管から排出される。重力濃縮槽に沈殿した汚泥は槽内のピケットフェンスで汚泥を攪拌して、汚泥粒子間の水を排出させて、濃縮汚泥を得る。濃縮汚泥は水槽の下部から排出される。 The conditioned sludge flows into the gravity thickener tank where solids and liquids are separated. The separated liquid is discharged from the separated liquid outlet pipe. The sludge that settles in the gravity thickener tank is stirred by a picket fence inside the tank, which drains the water between the sludge particles to obtain thickened sludge. The thickened sludge is discharged from the bottom of the tank.

図9は、従来の、造粒濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。 Figure 9 is a schematic diagram showing the processing flow of liquid waste using a conventional granulation concentrator.

図示のように、造粒濃縮装置は、撹拌機とドラフトチューブで水槽下部から流入する汚泥と高分子凝集剤を混合することで、凝集フロックを良い大きい造粒物にする。その造粒物と分離液はスクリーンで分離されて、分離液は分離液流出管から排出される。造粒物は濃縮汚泥となり、濃縮汚泥流出管を介して造粒濃縮装置から外に排出される。 As shown in the figure, the granulation concentrator uses an agitator and draft tube to mix the sludge flowing in from the bottom of the tank with a polymer coagulant, turning the flocs into large granules. The granules and separated liquid are separated by a screen, and the separated liquid is discharged from the separated liquid outlet pipe. The granules become concentrated sludge, and are discharged from the granulation concentrator via the concentrated sludge outlet pipe.

また、特許文献1は、汚泥と凝集剤とを反応させて凝集汚泥を生成する凝集反応槽と、凝集反応槽から抜き出された凝集汚泥を濃縮して濃縮汚泥を形成する濃縮機と、凝集反応槽から濃縮機に凝集汚泥を供給する汚泥供給路と、濃縮機により形成された濃縮汚泥の一部を凝集反応槽に環流させる汚泥環流路と、濃縮機により形成された濃縮汚泥の残部を、外部に排出する排出路と、前記凝集反応槽に前記凝集剤を投入する第1の凝集剤投入装置とを備える汚泥濃縮装置を開示する。 Patent Document 1 also discloses a sludge concentration device that includes a coagulation reaction tank that reacts sludge with a coagulant to produce coagulated sludge, a concentrator that thickens the coagulated sludge extracted from the coagulation reaction tank to form concentrated sludge, a sludge supply path that supplies coagulated sludge from the coagulation reaction tank to the concentrator, a sludge circulation path that circulates a portion of the concentrated sludge formed by the concentrator to the coagulation reaction tank, a discharge path that discharges the remainder of the concentrated sludge formed by the concentrator to the outside, and a first coagulant injection device that injects the coagulant into the coagulation reaction tank.

特許文献1の汚泥濃縮装置によれば、濃縮汚泥の一部が凝集反応槽に還流されるので、凝集反応槽における濃縮汚泥の滞留時間を延ばすことができ、これにより、凝集フロックの緻密度と機械的強度が増大し、脱水後の脱水ケーキの含水量をより一層低減させることができる。 According to the sludge thickening device of Patent Document 1, a portion of the thickened sludge is returned to the coagulation reaction tank, so that the residence time of the thickened sludge in the coagulation reaction tank can be extended, which increases the density and mechanical strength of the coagulated flocs and further reduces the water content of the dehydrated cake after dehydration.

特許文献2は、(1)原水に無機凝集剤を添加するとともに、高分子凝集剤を含む返送汚泥を添加して凝集反応を行わせる凝集工程、(2)凝集工程で生成した凝集フロックを固液分離する固液分離工程、(3)固液分離工程から得られる処理水を逆浸透膜装置及び/又はイオン交換装置に通水して脱塩する脱塩工程、(4)固液分離工程から排出される凝集汚泥の一部を凝集工程に返送する汚泥返送工程、並びに(5)凝集工程に返送される凝集汚泥に高分子凝集剤を添加する工程を有する純水製造方法を開示する。 Patent Document 2 discloses a method for producing pure water, which includes: (1) a flocculation step in which an inorganic flocculant is added to raw water and returned sludge containing a polymer flocculant is added to carry out a flocculation reaction; (2) a solid-liquid separation step in which the flocculated flocs produced in the flocculation step are separated into solid and liquid; (3) a desalination step in which treated water obtained from the solid-liquid separation step is passed through a reverse osmosis membrane device and/or an ion exchange device to desalt the treated water; (4) a sludge return step in which a portion of the flocculated sludge discharged from the solid-liquid separation step is returned to the flocculation step; and (5) a step in which a polymer flocculant is added to the flocculated sludge returned to the flocculation step.

特許文献2の純水製造方法によれば、沈殿または浮上処理水のSS濃度が低くなり、処理水の水質が向上する。 According to the pure water production method of Patent Document 2, the SS concentration of the sedimentation or flotation treated water is reduced, improving the quality of the treated water.

特開2020-001016号公報JP 2020-001016 A 特開平11-104696号公報Japanese Patent Application Publication No. 11-104696

特許文献1によれば、濃縮汚泥の一部を凝集反応槽に還流させない従来の濃縮方法と比較して凝集フロックの緻密度と機械的強度が増大し、脱水後の脱水ケーキの含水量をより一層低減させることができるものの、高分子凝集剤が凝集反応槽に添加されることで槽内の粘度が上昇し、濃縮汚泥、汚泥、高分子凝集剤の凝集反応槽での分散性が低下し、混合が不十分になる虞がある。 According to Patent Document 1, compared to conventional concentration methods in which a portion of the concentrated sludge is not returned to the coagulation reaction tank, the density and mechanical strength of the coagulated flocs are increased, and the water content of the dehydrated cake after dewatering can be further reduced. However, the addition of the polymer coagulant to the coagulation reaction tank increases the viscosity within the tank, which reduces the dispersibility of the concentrated sludge, sludge, and polymer coagulant in the coagulation reaction tank, and there is a risk of insufficient mixing.

したがって、凝集反応槽の撹拌条件や濃縮汚泥の返送量などの凝集反応槽の運転条件に凝集反応が大きく左右され、濃縮性に影響が出る。 Therefore, the coagulation reaction is greatly influenced by the operating conditions of the coagulation reaction tank, such as the stirring conditions of the coagulation reaction tank and the amount of thickened sludge returned, which affects the concentration.

特許文献2には、固液分類工程で排出された凝集汚泥の一部に高分子凝集剤を添加し、凝集工程に返送しているが、処理対象が廃棄されるべき液体廃棄物(汚泥)ではなく、純水の原料となる原水であることから凝集工程も低粘度となり、分散の不均一性の課題が生じない。また、処理対象物が原水であり、技術分野も異なる。 In Patent Document 2, a polymer flocculant is added to a portion of the flocculated sludge discharged in the solid-liquid classification process, and the flocculated sludge is returned to the flocculation process. However, since the object to be treated is not liquid waste (sludge) to be disposed of, but raw water that is the raw material for pure water, the viscosity of the flocculation process is also low, and the problem of non-uniform dispersion does not occur. In addition, the object to be treated is raw water, and the technical field is different.

上記課題を鑑みてなされた本願発明の目的は、凝集反応の際の分散性を向上させ、多少の運転条件の違いによっても安定的な濃縮を可能とする汚泥の濃縮方法及び濃縮装置を提供することにある。 The objective of the present invention, which was made in consideration of the above problems, is to provide a method and device for concentrating sludge that improves dispersibility during the coagulation reaction and enables stable concentration even when the operating conditions differ slightly.

本発明者らは、上記目的の達成に向け、鋭意検討したところ、凝集槽での凝集、濃縮機での汚泥の濃縮、濃縮汚泥の一部の凝集工程への返送を伴う汚泥の濃縮方法において、返送する濃縮汚泥に対して、処理対象の汚泥と混合する前に高分子凝集剤を添加することで、凝集槽における凝集フロックをさらに大きく緻密にすることができると共に、凝集槽に高分子凝集剤が添加されないことで凝集槽内の粘度上昇を抑制できることを見出し、その結果、多少の運転条件の違いによっても安定的に濃縮機での濃縮効率が向上することを見出し、本発明を完成させるに至った。 The inventors have conducted extensive research to achieve the above-mentioned object, and have discovered that in a sludge thickening method involving flocculation in a flocculation tank, thickening of the sludge in a thickener, and returning a portion of the thickened sludge to the flocculation step, adding a polymer flocculant to the thickened sludge being returned before it is mixed with the sludge to be treated makes it possible to make the flocculated flocs in the flocculation tank larger and denser, and that not adding a polymer flocculant to the flocculation tank prevents an increase in viscosity within the flocculation tank. As a result, they discovered that the concentration efficiency in the thickener is improved stably even with slight differences in operating conditions, and have completed the present invention.

すなわち、上記目的は、液状廃棄物から凝集フロックを形成させる凝集工程と、前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮工程と、前記濃縮工程で得られた前記濃縮汚泥の少なくとも一部を取り出す取り出し工程と、取り出された濃縮汚泥に高分子凝集剤を添加し、得られた凝集濃縮汚泥を前記凝集工程に返送する返送工程と、を有し、前記凝集工程における前記凝集フロックの形成が、前記返送された前記凝集濃縮汚泥の前記液状廃棄物への混合によりなされることを特徴とする液状廃棄物の濃縮方法により達成することができる。 That is, the above object can be achieved by a method for concentrating liquid waste, comprising a flocculation step for forming flocs from liquid waste, a concentration step for concentrating the liquid waste containing the flocs to obtain concentrated sludge and separated liquid, a removal step for removing at least a portion of the concentrated sludge obtained in the concentration step, and a return step for adding a polymer flocculant to the removed concentrated sludge and returning the obtained flocculated concentrated sludge to the flocculation step, characterized in that the flocculation flocs are formed in the flocculation step by mixing the returned flocculated concentrated sludge with the liquid waste.

本発明に係る液状廃棄物の濃縮方法の好ましい態様は以下の通りである。
(1)取り出し工程後に、取り出された濃縮汚泥の残部を脱水する脱水工程をさらに有する。
A preferred embodiment of the method for concentrating liquid waste according to the present invention is as follows.
(1) After the removing step, the method further includes a dewatering step of dewatering the remaining part of the removed concentrated sludge.

これによれば、高濃度となっている濃縮汚泥を脱水することで脱水性能を従来よりも向上させることができる。
(2)高分子凝集剤が、水道用高分子凝集剤である。高分子凝集剤として水道用高分子凝集剤を使用することで、上水汚泥から大きくて強固な凝集フロックを作ることができ、したがって、得られた濃縮汚泥の濃縮性が向上する。
(3)高分子凝集剤が、アクリルアミドモノマーを含まない水道用高分子凝集剤である。これにより、上水汚泥から得られる濃縮汚泥の濃縮性が向上するとともに、濃縮の際に生じた分離水が浄水処理の前段工程に返送された場合にも、発がん性を有するアクリルアミドモノマーが浄水処理の前段工程に返送されることが無い。
According to this, by dewatering the concentrated sludge having a high concentration, it is possible to improve the dewatering performance more than before.
(2) The polymer flocculant is a polymer flocculant for water supply. By using a polymer flocculant for water supply as the polymer flocculant, large and strong flocs can be produced from the water supply sludge, and therefore the thickening property of the obtained thickened sludge is improved.
(3) The polymer flocculant is a polymer flocculant for water supply that does not contain acrylamide monomers. This improves the concentration of concentrated sludge obtained from water supply sludge, and prevents carcinogenic acrylamide monomers from being returned to the upstream process of water purification treatment even when separated water produced during concentration is returned to the upstream process of water purification treatment.

また、上記目的は、液状廃棄物から凝集フロックを形成させる凝集手段と、前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮手段と、前記濃縮手段で得られた前記濃縮汚泥の少なくとも一部を取り出す配管手段と、前記配管手段で取り出された前記濃縮汚泥に高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る混合手段と、前記混合手段で得られた凝集濃縮汚泥を前記凝集手段に返送する返送手段と、を有することを特徴とする液状廃棄物の濃縮装置によっても達成することができる。 The above object can also be achieved by a liquid waste concentrating device comprising: a flocculation means for forming flocs from liquid waste; a concentration means for concentrating the liquid waste containing the flocs to obtain concentrated sludge and a separated liquid; a piping means for removing at least a portion of the concentrated sludge obtained by the concentration means; a mixing means for adding and mixing a polymer flocculant with the concentrated sludge removed by the piping means to obtain a flocculated concentrated sludge; and a return means for returning the flocculated concentrated sludge obtained by the mixing means to the flocculation means.

本発明に係る液状廃棄物の濃縮装置の好ましい態様は以下の通りである。
(1)濃縮手段が重力濃縮装置であるか、または凝集手段および濃縮手段が造粒濃縮装置である。
A preferred embodiment of the liquid waste concentrating apparatus according to the present invention is as follows.
(1) The concentrating means is a gravity concentrating device, or the flocculating means and the concentrating means are a granulating concentrating device.

本発明によれば、液状廃棄物に直接高分子凝集剤を添加して凝集フロックを形成させるのではなく、濃縮汚泥の少なくとも一部に高分子凝集剤を添加・混合して凝集濃縮汚泥を得て、この凝集濃縮汚泥を液状廃棄物と混合させることで凝集フロックが形成されているので、液状廃棄物に直接高分子凝集剤を添加する場合と比較して凝集フロック形成時の粘度上昇が抑制され、凝集反応の際の分散性が向上する。さらに、凝集濃縮汚泥を核として凝集フロックが形成されるので、従来よりも凝集フロックが大きく強固なものとなる。 According to the present invention, instead of adding a polymer flocculant directly to liquid waste to form flocs, a polymer flocculant is added to and mixed with at least a portion of concentrated sludge to obtain flocculated concentrated sludge, and this flocculated concentrated sludge is mixed with liquid waste to form flocs. This suppresses the increase in viscosity during flocculation and improves dispersibility during the flocculation reaction compared to when a polymer flocculant is added directly to liquid waste. Furthermore, because flocs are formed using the flocculated concentrated sludge as a nucleus, the flocs are larger and stronger than before.

よって、凝集反応の条件が多少異なっていても液状廃棄物の安定的な濃縮が可能となる。 Therefore, stable concentration of liquid waste is possible even if the conditions of the coagulation reaction are slightly different.

本発明の液状廃棄物の濃縮方法の一例を説明するためのフローチャートである。1 is a flow chart for explaining an example of a method for concentrating liquid waste according to the present invention. 本発明の液状廃棄物の濃縮方法による処理フローの代表例を示す模式図である。FIG. 1 is a schematic diagram showing a typical example of a treatment flow according to a method for concentrating liquid waste of the present invention. 本発明の液状廃棄物の処理装置10を示す模式図である。1 is a schematic diagram showing a liquid waste treatment device 10 of the present invention. 濃縮手段が重力濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。FIG. 2 is a schematic diagram showing a liquid waste treatment device in which the concentrating means is a gravity concentrating device. 凝集手段および濃縮手段が造粒濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。FIG. 2 is a schematic diagram showing a liquid waste treatment device in which the flocculation means and the concentration means are granulation concentration devices. 従来の、液状廃棄物の濃縮・脱水方法の処理フローを示す模式図である。FIG. 1 is a schematic diagram showing a process flow of a conventional method for concentrating and dehydrating liquid waste. 従来の、嫌気性消化の前処理としての液状廃棄物の濃縮方法の処理フローを示す模式図である。FIG. 1 is a schematic diagram showing a process flow of a conventional method for concentrating liquid waste as a pretreatment for anaerobic digestion. 従来の、重力濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。FIG. 1 is a schematic diagram showing a conventional treatment flow of liquid waste using a gravity concentration device. 従来の、造粒濃縮装置を用いた液状廃棄物の処理フローを示す模式図である。FIG. 1 is a schematic diagram showing a conventional treatment flow of liquid waste using a granulation concentrator.

<液状廃棄物の濃縮方法>
図1は、本発明の液状廃棄物の濃縮方法の一例を説明するためのフローチャートであり、図2は、本発明の液状廃棄物の濃縮方法による処理フローの代表例を示す模式図である。
<Method for concentrating liquid waste>
FIG. 1 is a flow chart for explaining an example of the method for concentrating liquid waste of the present invention, and FIG. 2 is a schematic diagram showing a representative example of a treatment flow according to the method for concentrating liquid waste of the present invention.

本発明は、図1に示すように、凝集工程(S100)と、濃縮工程(S110)と、取り出し工程(S120)と、返送工程(S130)と、を有する。 As shown in FIG. 1, the present invention includes an aggregation step (S100), a concentration step (S110), a removal step (S120), and a return step (S130).

(液状廃棄物)
液状廃棄物は、懸濁物質濃度が1000mg/L以上の廃液、水中の有機物や無機物の懸濁浮遊物質や水処理用薬品として添加された無機凝集剤の加水分解生成物や粉末活性炭などが沈殿または浮上して泥状(スラリー状)になった汚泥や、固形粒子、藻類や菌類、無機凝集剤の加水分解生成物等を含む上水汚泥、し尿や浄化槽汚泥や、浄水処理、下水処理、民間排水等の水処理過程で発生する液状廃棄物である。
(Liquid waste)
Liquid waste includes wastewater with a suspended solids concentration of 1000 mg/L or more, sludge formed when suspended organic or inorganic matter in water, hydrolysis products of inorganic coagulants or powdered activated carbon added as water treatment chemicals, etc., precipitate or float to form a mud-like (slurry-like) state, water supply sludge containing solid particles, algae, fungi, hydrolysis products of inorganic coagulants, etc., sewage and septic tank sludge, and liquid waste generated during water treatment processes such as water purification processes, sewage treatment processes, and public wastewater treatment processes.

以下、図1および図2に基づき、本発明の液状廃棄物の濃縮方法を説明する。 The method for concentrating liquid waste of the present invention will be described below with reference to Figures 1 and 2.

[凝集工程(S100)]
本工程では、液状廃棄物から凝集フロックを形成させる。凝集フロックの形成は、返送された凝集濃縮汚泥(高分子凝集剤を添加した濃縮汚泥である)の液状廃棄物への混合によりなされる。凝集濃縮汚泥については後述する。本工程は、凝集槽において行われるのが一般的である。
[Agglomeration step (S100)]
In this process, flocculated flocs are formed from the liquid waste. The flocculated flocs are formed by mixing the returned flocculated and concentrated sludge (concentrated sludge to which a polymer flocculant has been added) with the liquid waste. The flocculated and concentrated sludge will be described later. This process is generally carried out in a flocculation tank.

凝集濃縮汚泥と液状廃棄物が流入する凝集槽の汚泥濃度(SS濃度)は5.0~20g/Lが好ましく、SS濃度は10~20g/Lであることがより好ましい。このことから、凝集槽の汚泥濃度をモニタリングすることで、後述する返送工程(S130)において最適な凝集濃縮汚泥の返送流量を決定できる。 The sludge concentration (SS concentration) in the coagulation tank into which the coagulated and concentrated sludge and liquid waste flow is preferably 5.0 to 20 g/L, and the SS concentration is more preferably 10 to 20 g/L. Therefore, by monitoring the sludge concentration in the coagulation tank, the optimal return flow rate of the coagulated and concentrated sludge can be determined in the return process (S130) described below.

凝集槽の前段には、無機凝集剤を添加、混合する混合槽が配備されていてもよい。 A mixing tank may be provided upstream of the coagulation tank to add and mix the inorganic coagulant.

混合槽で無機凝集剤が添加される場合、無機凝集剤は、市販品の硫酸バンド、ポリ塩化アルミニウム(PAC)、ポリ硫酸第2鉄(ポリ鉄)、塩化第2鉄あるいはこれらの混合物が使用できる。また、これらの無機凝集剤を使用すると、調質時の液状廃棄物のpHが低下するため、適正な凝集pHに調整するために、アルカリ剤として市販の苛性ソーダ等を使用する。 When an inorganic coagulant is added in the mixing tank, commercially available products such as aluminum sulfate, polyaluminum chloride (PAC), polyferric sulfate (polyferric iron), ferric chloride, or a mixture of these can be used. In addition, when these inorganic coagulants are used, the pH of the liquid waste during conditioning drops, so commercially available caustic soda or the like is used as an alkaline agent to adjust the pH to the appropriate coagulation pH.

また、混合槽で添加される無機凝結剤に加えて、あるいは無機凝結剤に代えて、有機凝結剤を添加することとしてもよい。混合槽で有機凝結剤が添加される場合、有機凝結剤は市販品を用いることができ、例えば、ポリアルキルポリアミン、ポリエチレンイミン、ジアリルジメチルアンモニウムクロリド、エチレンジアミンエピクロルヒドリン重縮合物、ジシアンジアミド・塩化アンモニウム・ホルムアルデヒド重縮合物、ポリエチレン・ポリアミン・ジメチルアミン・エピクロルヒドリン重縮合物、ジアルキルアミン・エピクロルヒドリン重縮合物などから1種以上を用いることができる。 In addition to the inorganic coagulant added in the mixing tank, or instead of the inorganic coagulant, an organic coagulant may be added. When an organic coagulant is added in the mixing tank, a commercially available product may be used as the organic coagulant, and for example, one or more of polyalkyl polyamine, polyethylene imine, diallyl dimethyl ammonium chloride, ethylene diamine epichlorohydrin polycondensate, dicyandiamide-ammonium chloride-formaldehyde polycondensate, polyethylene polyamine-dimethylamine-epichlorohydrin polycondensate, dialkylamine-epichlorohydrin polycondensate, etc. may be used.

有機凝結剤は、製品を無希釈で使用しても、水などで任意に希釈して使用できる。有機凝結剤が添加される場合、液状廃棄物への有機凝結剤の添加率は、汚泥(液状廃棄物)の固形物TSに対して、概ね0.1質量%~10質量%であり、好ましくは、0.5質量%~5質量%である。 The organic coagulant can be used undiluted or diluted as desired with water. When an organic coagulant is added, the addition rate of the organic coagulant to the liquid waste is generally 0.1% to 10% by mass, preferably 0.5% to 5% by mass, based on the solids TS of the sludge (liquid waste).

凝集槽内の液状廃棄物を凝集濃縮汚泥と混合し、凝集フロックを作る調質を行った後に、凝集フロックを含む液状廃棄物は濃縮工程(S110)に移送される(以上、凝集工程(S100))。 The liquid waste in the coagulation tank is mixed with the coagulated and concentrated sludge, and after conditioning to create coagulated flocs, the liquid waste containing the coagulated flocs is transferred to the concentration step (S110) (this concludes the coagulation step (S100)).

[濃縮工程(S110)]
本工程では、凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る。濃縮に用いる濃縮機としては、例えば、重力濃縮槽などの重力濃縮装置、遠心濃縮機、スクリーン濃縮機、ベルト型ろ過濃縮機、造粒濃縮槽、浮上濃縮など市販の濃縮装置が使用できる。
[Concentration step (S110)]
In this process, the liquid waste containing the flocs is thickened to obtain thickened sludge and separated liquid. As the thickener used for thickening, for example, a gravity thickener such as a gravity thickener, a centrifugal thickener, a screen thickener, a belt-type filtration thickener, a granulation thickener, a flotation thickener, or other commercially available thickeners can be used.

液状廃棄物が浄水場の凝集沈殿処理工程等から発生する凝集沈殿汚泥、すなわち、上水汚泥である場合、本工程で使用される濃縮機は重力濃縮槽が一般的である。 When the liquid waste is coagulation-sedimentation sludge generated from the coagulation-sedimentation process of a water purification plant, i.e., drinking water sludge, the thickener used in this process is generally a gravity thickener.

濃縮前の液状廃棄物の汚泥濃度、SSは5g/Lから15g/Lであるが、濃縮後の濃縮汚泥の汚泥濃度、SSは、汚泥の性状や濃縮機の種類や運転条件で異なるが、20~40g/Lになる。 The sludge concentration (SS) of liquid waste before thickening is 5g/L to 15g/L, but the sludge concentration (SS) of the thickened sludge after thickening is 20-40g/L, depending on the sludge properties, type of thickener, and operating conditions.

汚泥濃度が20~40g/Lと高濃度の濃縮汚泥は、任意に嫌気性消化槽に移送してもよい。この場合、濃縮濃度の汚泥濃度が高濃度であることで嫌気性消化槽での滞留時間が長くなり、嫌気性消化性能を向上させることができる(以上、濃縮工程(S110))。 Concentrated sludge with a high sludge concentration of 20 to 40 g/L may be transferred to an anaerobic digestion tank as desired. In this case, the high concentration of concentrated sludge increases the retention time in the anaerobic digestion tank, improving anaerobic digestion performance (concentration process (S110)).

[取り出し工程(S120)]
本工程では、濃縮工程(S110)で得られた濃縮汚泥の少なくとも一部を取り出す。濃縮汚泥の取り出しには、例えば、一端が前記濃縮機に接続され、他端が前記凝集槽または凝集槽の上流位置に接続された専用の返送配管と、当該返送配管に設けられた返送ポンプと、を含む返送ラインを用いることができる。これによれば、後段の返送工程(S130)において、高分子凝集剤を添加して得られた凝集濃縮汚泥を凝集槽に安定した汚泥流量で返送することができる。
[Removal step (S120)]
In this step, at least a part of the concentrated sludge obtained in the concentration step (S110) is taken out. To take out the concentrated sludge, for example, a return line including a dedicated return pipe connected at one end to the concentrator and at the other end to the coagulation tank or an upstream position of the coagulation tank, and a return pump provided in the return pipe can be used. This allows the coagulated and concentrated sludge obtained by adding a polymer coagulant to be returned to the coagulation tank at a stable sludge flow rate in the subsequent return step (S130).

取り出される濃縮汚泥の量は、後述する凝集濃縮汚泥と液状廃棄物との好適な混合割合に基づき、この混合割合のために必要な量で取り出されることとなる(以上、取り出し工程(S120))。 The amount of concentrated sludge removed is based on the preferred mixing ratio of the coagulated concentrated sludge and liquid waste described below, and the amount removed is the amount required for this mixing ratio (removal process (S120)).

[返送工程(S130)]
本工程では、取り出された濃縮汚泥に高分子凝集剤を添加し、得られた凝集濃縮汚泥を凝集工程(S100)に返送する。
[Returning process (S130)]
In this step, a polymer flocculant is added to the extracted thickened sludge, and the resulting flocculated and thickened sludge is returned to the flocculation step (S100).

高分子凝集剤の添加場所は、濃縮汚泥の(図示していない)返送ポンプの吸込部、吐出部、上記返送配管の途中に設けたラインミキサー、また図2の混合部位に混合槽を設け、この混合槽で添加することとしても良い。返送配管の途中に設けた混合槽の撹拌は、機械撹拌でも濃縮汚泥による水流による撹拌でもよい。 The polymer flocculant may be added at the suction or discharge part of the return pump (not shown) for the concentrated sludge, at a line mixer installed in the return piping, or in a mixing tank installed at the mixing site in Figure 2. The mixing tank installed in the return piping may be mechanically mixed or mixed by a water flow caused by the concentrated sludge.

返送配管の途中に設けた混合槽での濃縮汚泥の滞留時間は撹拌方法や撹拌強度、返送流量やその濃度で変化するが、例えば0.5~3分間とすることができる。滞留時間が0.5分以上であれば高分子凝集剤と濃縮汚泥の混合が十分である。一方、滞留時間が3分間以下であれば、返送配管の途中に設けた混合槽内に濃縮汚泥の凝集物が堆積する可能性や凝集性が低下する可能性が低く抑えることができる。 The residence time of the concentrated sludge in the mixing tank installed in the return pipe varies depending on the mixing method, mixing strength, return flow rate and its concentration, but can be, for example, 0.5 to 3 minutes. If the residence time is 0.5 minutes or more, the polymer flocculant and concentrated sludge are mixed sufficiently. On the other hand, if the residence time is 3 minutes or less, the possibility of concentrated sludge flocs accumulating in the mixing tank installed in the return pipe and the possibility of the flocculation properties decreasing can be reduced.

高分子凝集剤は、市販品を使用することができ、アニオン性高分子凝集剤あるいはカチオン性高分子凝集剤あるいは両性高分子凝集剤、それぞれ単独でも組合せても使用できる。また、高分子凝集剤は、粉末状、液状(ディスパージョン状、エマルジョン状)などが使用できる。 Polymer flocculants that can be used are commercially available products, and anionic polymer flocculants, cationic polymer flocculants, or amphoteric polymer flocculants can be used alone or in combination. Polymer flocculants can also be used in powder or liquid form (dispersion or emulsion).

アニオン性高分子凝集剤は、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能である。 The anionic polymer flocculant may be any one or more selected from the group consisting of polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, sodium polymethacrylate, potassium polymethacrylate, and ammonium polymethacrylate.

また、ポリアクリルアミド系高分子凝集剤も使用することができ、これは、アクリルアミドモノマーと(メタ)アクリル酸塩の共重合物である。 Polyacrylamide-based polymer flocculants can also be used, which are copolymers of acrylamide monomers and (meth)acrylate salts.

液状廃棄物が浄水場の凝集沈殿処理工程等から発生する凝集沈殿汚泥、すなわち、上水汚泥である場合、高分子凝集剤としては、水道用高分子凝集剤を使用する。 When the liquid waste is coagulation-sedimentation sludge generated from the coagulation-sedimentation process of a water purification plant, i.e., drinking water sludge, a polymer coagulant for water supply is used as the polymer coagulant.

水道用高分子凝集剤は、日本水道協会で規格化(JWWA K163:2019、水道用ポリアクリルアミド)されている。水道用高分子凝集剤としては、水道用ポリアクリルアミドを本工程において用いることができる。一方で、アクリルアミドは発がん性を有することから、アクリルアミドモノマーが残留する濃縮工程(S110)の分離液や脱水ろ液が返送水として浄水処理の前段工程に返送されることを回避する観点から、アクリルアミドモノマーを含まないポリアクリル酸、ポリアクリル酸ナトリウムなどの水道用高分子凝集剤が好適である。 Polymer flocculants for water supply are standardized by the Japan Water Works Association (JWWA K163:2019, Polyacrylamide for water supply). As the polymer flocculant for water supply, polyacrylamide for water supply can be used in this process. On the other hand, since acrylamide is carcinogenic, from the viewpoint of avoiding the separation liquid and dehydration filtrate from the concentration process (S110) in which acrylamide monomers remain being returned as return water to the previous process of water purification treatment, polymer flocculants for water supply that do not contain acrylamide monomers, such as polyacrylic acid and sodium polyacrylate, are preferred.

カチオン性高分子凝集剤は、カチオン性モノマーを必須成分として、カチオン性モノマーの単独重合体又は共重合体、カチオン性モノマーとノニオン性モノマーとの共重合体との共重合体などから1種以上を選択して使用することができる。カチオン性モノマーとしては、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートもしくはこれらのアルカリ金属塩、4級アンモニウム塩などである。 The cationic polymer flocculant has a cationic monomer as an essential component, and one or more selected from homopolymers or copolymers of cationic monomers, copolymers of cationic monomers and nonionic monomers, etc. Examples of cationic monomers include dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, or alkali metal salts or quaternary ammonium salts of these.

また、両性高分子凝集剤は、カチオン性モノマー、アニオン性モノマー及びノニオン性モノマーを共重合し、分子内にカチオン単位、アニオン単位及びノニオン単位を有するものである。 In addition, amphoteric polymer flocculants are copolymerized with cationic monomers, anionic monomers, and nonionic monomers, and have cationic units, anionic units, and nonionic units in the molecule.

液状廃棄物が生物処理後の汚泥である場合、高分子凝集剤としては、任意のカチオン度や分子量のカチオン性高分子凝集剤や両性高分子凝集剤を使用することができる。 When the liquid waste is sludge after biological treatment, the polymer flocculant can be a cationic polymer flocculant or an amphoteric polymer flocculant of any cationic degree or molecular weight.

液状廃棄物が上水汚泥である場合、濃縮汚泥に対して、高分子凝集剤として、0.1%塩粘度が2~5mPa・sで、アニオン当量が-9.0以下のポリ(メタ)アクリル酸塩の水道用高分子凝集剤を添加することが好ましいが、水道用高分子凝集剤としてはこれに限られるものではない。アクリルアミドモノマーを含む水道用高分子凝集剤も、アクリルアミドモノマーを含まない水道用高分子凝集剤も、それぞれ目的に応じて使用することができる。 When the liquid waste is drinking water sludge, it is preferable to add a water supply polymer flocculant of poly(meth)acrylate salt with a 0.1% salt viscosity of 2 to 5 mPa·s and an anion equivalent of -9.0 or less to the concentrated sludge, but the water supply polymer flocculant is not limited to this. Water supply polymer flocculants containing acrylamide monomers and water supply polymer flocculants not containing acrylamide monomers can both be used depending on the purpose.

なお、塩粘度は、1Nの塩化ナトリウム水溶液に、ポリ(メタ)アクリル酸塩をその濃度が0.1質量%になるよう溶解した試料を、B型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。 The salt viscosity is a value measured at 25°C using a Brookfield viscometer on a sample prepared by dissolving poly(meth)acrylate in a 1N aqueous sodium chloride solution to a concentration of 0.1% by mass, and is expressed in mPa·s.

アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。ポリ(メタ)アクリル酸塩0.1%水溶液を調整し、メチルグリコールキトサン溶液(N/200)を5ml添加し、攪拌後、トイジンブルー指示薬を2~3滴添加し、ポリビニル硫酸カリウム溶液(PVSK,N/400)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Avを算出する。 The anion equivalent is a value that can be determined by the following measurement method, and is expressed in units of meq/g. Prepare a 0.1% aqueous solution of poly(meth)acrylate, add 5 ml of methyl glycol chitosan solution (N/200), stir, add 2-3 drops of touidine blue indicator, and titrate with potassium polyvinyl sulfate solution (PVSK, N/400). The end point is the point at which the color changes and is maintained for 10 seconds or more. A blank test is performed using the same procedure as above, but without adding the sample, and the anion equivalent Av is calculated using the following formula.

アニオン当量(Av)[meq/g]=
(ブランク滴定量ml-サンプル滴定量ml)×1/2×PVSKの力価
Anion equivalent (Av) [meq/g]=
(Blank titer ml - Sample titer ml) x 1/2 x PVSK titer

濃縮汚泥への高分子凝集剤の添加率は0.02wt/wt%対SS以上2.0wt/wt%対SS以下である。高分子凝集剤の添加率が0.02wt/wt%対SS以上なら、高分子凝集剤の溶解液が濃縮汚泥と良く混合して、凝集槽で強固な凝集フロックが生成して、濃縮性能が向上する。高分子凝集剤の添加率が2.0wt/wt%対SS以下であることで、高分子凝集剤の使用量を抑えつつ凝集した凝集濃縮汚泥と液状廃棄物とから凝集槽で強固な凝集フロックが生成して、濃縮性能が向上する。 The rate of polymer flocculant added to the concentrated sludge is 0.02 wt/wt% to 2.0 wt/wt% of SS or more. If the rate of polymer flocculant added is 0.02 wt/wt% to SS or more, the polymer flocculant solution mixes well with the concentrated sludge, strong flocs are formed in the coagulation tank, and concentration performance is improved. If the rate of polymer flocculant added is 2.0 wt/wt% to SS or less, strong flocs are formed in the coagulation tank from the coagulated concentrated sludge and liquid waste while reducing the amount of polymer flocculant used, and concentration performance is improved.

予め設定された濃縮汚泥への高分子凝集剤添加率(「wt/wt%対SS」または「wt/wt%対TS」)と、凝集濃縮汚泥と液状廃棄物が流入する凝集槽の汚泥濃度と汚泥流量、濃縮汚泥濃度をモニタリングすることで、凝集工程(S100)に返送する凝集濃縮汚泥の最適な返送流量が決定できる。 By monitoring the predetermined polymer flocculant addition rate to the concentrated sludge (wt/wt% vs. SS or wt/wt% vs. TS), the sludge concentration and sludge flow rate in the coagulation tank into which the coagulated and concentrated sludge and liquid waste flow in, and the concentrated sludge concentration, the optimal return flow rate of the coagulated and concentrated sludge to be returned to the coagulation process (S100) can be determined.

また、返送工程(S130)の返送配管の途中に汚泥流量計や汚泥濃度計を設置して、返送流量や汚泥濃度のモニターすることで、凝集工程(S100)への凝集濃縮汚泥の返送量が制御できて、安定した濃縮を行うことができる。 In addition, by installing a sludge flow meter and a sludge concentration meter in the return piping of the return process (S130) to monitor the return flow rate and sludge concentration, the amount of flocculated and concentrated sludge returned to the flocculation process (S100) can be controlled, allowing for stable concentration.

汚泥濃度の検出は、近赤外光式汚泥濃度計、レーザー光式汚泥濃度計、マイクロ波汚泥濃度計などの市販の汚泥濃度計が使用できる。汚泥流量の検出は市販の電磁流量計や超音波流量計などが使用できる。凝集濃縮汚泥を返送するポンプは市販品でよく、回転数制御で設定流量に調節して返送することができる。 To detect the sludge concentration, commercially available sludge concentration meters such as near-infrared sludge concentration meters, laser light sludge concentration meters, and microwave sludge concentration meters can be used. To detect the sludge flow rate, commercially available electromagnetic flow meters and ultrasonic flow meters can be used. The pump that returns the coagulated and concentrated sludge can be a commercially available product, and the flow rate can be adjusted to a set value by controlling the rotation speed before being returned.

本発明の液状廃棄物の濃縮方法によれば、凝集工程(S100)における液状廃棄物からの凝集フロックの形成が、液状廃棄物に直接高分子凝集剤を添加するのではなく、返送された凝集濃縮汚泥を液状廃棄物と混合することによりなされるので、凝集反応の際の粘度上昇が従来よりも抑制されて凝集反応時の分散性が向上する。よって、従来の凝集槽に流入する汚泥(液状廃棄物)の流量を基準とした高分子凝集剤の注入率設定方法に比べて、液状廃棄物の性状等に関わらず常に最適な添加量で高分子凝集剤を添加することが可能となる。 According to the method for concentrating liquid waste of the present invention, the formation of flocs from the liquid waste in the coagulation step (S100) is achieved by mixing the returned coagulated and concentrated sludge with the liquid waste, rather than by adding a polymer coagulant directly to the liquid waste, so that the increase in viscosity during the coagulation reaction is suppressed more than in the past, improving dispersibility during the coagulation reaction. Therefore, compared to the conventional method of setting the injection rate of the polymer coagulant based on the flow rate of the sludge (liquid waste) flowing into the coagulation tank, it is possible to always add the optimal amount of polymer coagulant regardless of the properties of the liquid waste.

これにより、高分子凝集剤の使用量を最適化して効率的な処理を行いながら、高い凝集効果と濃縮性を安定して継続的に得ることが可能となる。 This makes it possible to optimize the amount of polymer flocculant used for efficient processing while still achieving stable, continuous high flocculation and concentration.

最適な高分子凝集剤添加量の凝集濃縮汚泥を凝集工程(S100)に返送すれば、さらに高分子凝集剤を凝集工程(S100)において追加添加する必要はない。むしろ、凝集工程(S100)で高分子凝集剤を追加添加すると、高分子凝集剤溶液の粘性のために凝集槽で分散均一化に時間がかかり、かえって凝集性や濃縮性が低下する可能性がある。 If the flocculated and concentrated sludge with the optimal amount of polymer flocculant added is returned to the flocculation step (S100), there is no need to add additional polymer flocculant in the flocculation step (S100). In fact, if additional polymer flocculant is added in the flocculation step (S100), it may take a long time to disperse and homogenize the solution in the flocculation tank due to the viscosity of the polymer flocculant solution, which may actually reduce the flocculation and concentration properties.

なお、汚泥濃度の指標としてSS(懸濁物質)やTS(Total solids:全蒸発残留物)がある。また、下水のような溶解塩類濃度(食塩などの溶解塩類濃度)が低い汚泥ではSSとTSの測定値は同じであるが、溶解塩類濃度が高いし尿処理などでは汚泥のSSとTSの数値が異なる場合、汚泥濃度はSSを採用する。 Indicators of sludge concentration include SS (suspended solids) and TS (total solids). In sludge with a low dissolved salt concentration (concentration of dissolved salts such as salt), such as sewage, the measured values of SS and TS are the same, but in sludge with a high dissolved salt concentration, such as sewage treatment, when the SS and TS values differ, SS is used as the sludge concentration.

本発明において、SS及びTSは以下の定義に従う。
SS:K 0102:2019 工場排水試験方法 14.1 懸濁物質
TS:K 0102:2019 工場排水試験方法 14.2 全蒸発残留物
In the present invention, SS and TS are defined as follows.
SS:K 0102:2019 Industrial wastewater test method 14.1 Suspended solids TS:K 0102:2019 Industrial wastewater test method 14.2 Total evaporation residue

以上、本発明の液状廃棄物の濃縮方法の一例を、図1および図2に基づき説明したが、本発明はこの一例に限られない。 An example of the method for concentrating liquid waste according to the present invention has been described above with reference to Figures 1 and 2, but the present invention is not limited to this example.

例えば、濃縮工程(S110)で得られた濃縮汚泥の少なくとも一部が取り出され、凝縮濃縮汚泥として凝集工程(S100)に返送されているが、濃縮工程(S110)で得られた濃縮汚泥の残部を脱水することとしてもよい。 For example, at least a portion of the concentrated sludge obtained in the concentration step (S110) is removed and returned to the flocculation step (S100) as condensed concentrated sludge, but the remaining portion of the concentrated sludge obtained in the concentration step (S110) may be dewatered.

図1に示すように、本発明の液状廃棄物の濃縮方法は、任意工程として脱水工程(S140)を含む。脱水工程(S140)を以下に説明する。 As shown in FIG. 1, the method for concentrating liquid waste of the present invention includes a dehydration step (S140) as an optional step. The dehydration step (S140) is described below.

[脱水工程(S140)]
本工程では、取り出し工程(S120)後に前記取り出された前記濃縮汚泥の残部を脱水する。
[Dehydration step (S140)]
In this step, the remaining portion of the concentrated sludge removed after the removing step (S120) is dewatered.

脱水は、濃縮汚泥に機械的な圧力をかけて、濃縮汚泥から水分を絞り出して、含水率の低い脱水ケーキを得るものである。 Dewatering involves applying mechanical pressure to the thickened sludge to squeeze out the water from the thickened sludge, resulting in a dehydrated cake with a low moisture content.

本工程に用いる脱水装置は、従来公知の装置を用いることができ、例えば、ベルトプレス脱水機、遠心脱水機、加圧脱水機、真空脱水機、造粒調質式高効率直接脱水法、多重円盤型脱水機、スクリュープレス型脱水機、電気浸透式脱水機などが挙げられる。 The dehydrator used in this process may be a conventionally known device, such as a belt press dehydrator, a centrifugal dehydrator, a pressurized dehydrator, a vacuum dehydrator, a granulation and conditioning type high-efficiency direct dehydration method, a multiple disk type dehydrator, a screw press type dehydrator, or an electro-osmotic dehydrator.

得られた脱水ケーキは、従来同様、搬出して埋立処分されたり、焼却炉で焼却されたりして処分される(以上、脱水工程(S140))。 The resulting dehydrated cake is disposed of by being transported to a landfill or incinerated in an incinerator, as in conventional methods (this concludes the dehydration process (S140)).

脱水工程(S140)の含む本発明の液状廃棄物の濃縮方法によれば、濃縮工程(S110)後に得られた濃縮汚泥は大きくて強固なフロックを含むので、脱水工程(S140)における脱水性能も向上し、得られた脱水ケーキの含水率が従来よりも低減している。よって、脱水ケーキの運搬コストや、焼却時の燃料コストを従来より低減させることができる。 According to the liquid waste concentrating method of the present invention, which includes a dewatering step (S140), the concentrated sludge obtained after the concentration step (S110) contains large and strong flocs, so the dewatering performance in the dewatering step (S140) is improved and the moisture content of the obtained dewatered cake is lower than in the past. Therefore, the transportation cost of the dewatered cake and the fuel cost for incineration can be reduced compared to the past.

さらに、本発明の液状廃棄物の濃縮方法においては、濃縮汚泥に高分子凝集剤が添加され、また、液状廃棄物に対して任意に無機凝集剤や有機凝結剤が添加されるが、それ以外の添加剤を使用してもよい。例えば、濃縮性向上のため、液状廃棄物に短繊維状薬剤が添加されてもよい。 In addition, in the method for concentrating liquid waste of the present invention, a polymer flocculant is added to the concentrated sludge, and an inorganic flocculant or an organic coagulant is optionally added to the liquid waste, but other additives may also be used. For example, a short fiber agent may be added to the liquid waste to improve the concentrating ability.

短繊維状薬剤は、例えば、古紙や木綿などの天然の短繊維物、化学合成された短繊維物や再生短繊維物が挙げられる。プラスチック廃棄物から再生製糸した短繊維物やビスコースレーヨンからなる短繊維物が好適である。 Examples of short fiber agents include natural short fibers such as waste paper and cotton, chemically synthesized short fibers, and recycled short fibers. Short fibers made from recycled threads made from plastic waste and short fibers made from viscose rayon are preferred.

中でもビスコースレーヨンからなる短繊維物である短繊維状薬剤(例えばエバグロースU-700シリーズ、水ing社製)は濃縮効果に優れる。 Among these, short fiber medicines made of viscose rayon (such as Evergloss U-700 series, manufactured by Suing Co., Ltd.) have excellent concentration effects.

液状廃棄物への分散性および液状廃棄物(汚泥)との親和性に優れる観点から、繊維長さが5~10mmで含水率が30~80wt/wt%の短繊維状薬剤が好適である。 From the viewpoint of excellent dispersibility in liquid waste and affinity with liquid waste (sludge), short fiber agents with fiber lengths of 5 to 10 mm and moisture contents of 30 to 80 wt/wt% are suitable.

短繊維状薬剤の添加率は、液状廃棄物あたり0.02~1.0wt/vol%であり、好ましくは0.1~0.5wt/vol%である。 The addition rate of the short fiber-like chemical is 0.02 to 1.0 wt/vol% per liquid waste, and preferably 0.1 to 0.5 wt/vol%.

短繊維状薬剤の添加率が、液状廃棄物あたり0.02wt/vol%以上であることで、液状廃棄物と繊維によりさらに強固な凝集フロックを得ることができ、濃縮工程(S110)での濃縮性が向上する。したがって、さらに高濃度の濃縮汚泥が得られ、分離液のSS濃度やBOD濃度の低減が発揮される。 By setting the addition rate of the short fiber chemical to 0.02 wt/vol% or more per liquid waste, the liquid waste and fibers can produce stronger flocs, improving the concentration in the concentration step (S110). This results in a more concentrated concentrated sludge, which reduces the SS concentration and BOD concentration of the separated liquid.

また、短繊維状薬剤の添加率が、液状廃棄物あたり1.0wt/vol%未満であることで、液状廃棄物中に短繊維状薬剤を均一に混合分散でき、液状廃棄物の油分やSSを効果的に捕捉でき、また経済的にも有利である。 In addition, by setting the addition rate of the short fiber chemical to less than 1.0 wt/vol% per liquid waste, the short fiber chemical can be uniformly mixed and dispersed in the liquid waste, effectively capturing the oil and SS in the liquid waste, and is also economically advantageous.

<液状廃棄物の濃縮装置>
図3は、本発明の液状廃棄物の処理装置10を示す模式図である。図示のように、本発明の液状廃棄物の処理装置10は、凝集手段20と、濃縮手段30と、配管手段40と、混合手段50と、返送手段60と、を有する。
<Liquid waste concentrating device>
3 is a schematic diagram showing a liquid waste treatment device 10 of the present invention. As shown in the figure, the liquid waste treatment device 10 of the present invention has a flocculation means 20, a concentration means 30, a piping means 40, a mixing means 50, and a return means 60.

凝集手段14は、液状廃棄物から凝集フロックを形成させる手段であり、一般的には凝集槽である。凝集槽内で混合された液状廃棄物と返送された凝集濃縮汚泥とが撹拌され、凝集フロックが成長し、形成される。 The flocculation means 14 is a means for forming flocs from liquid waste, and is generally a flocculation tank. The mixed liquid waste and the returned flocculated and concentrated sludge are stirred in the flocculation tank, causing the flocs to grow and form.

凝集槽の前段には、無機凝集剤を添加、混合する混合槽が配備されていてもよい。また、混合槽で添加される無機凝結剤に加えて、あるいは無機凝結剤に代えて、有機凝結剤を添加することとしてもよい。 A mixing tank may be provided upstream of the coagulation tank to add and mix an inorganic coagulant. Also, an organic coagulant may be added in addition to or instead of the inorganic coagulant added in the mixing tank.

凝集槽内の汚泥濃度(SS濃度)、凝集濃縮汚泥の返送流量、無機凝集剤、および有機凝結剤については、上記液状廃棄物の濃縮方法で述べたとおりであり、ここではその記載を省略する。凝集手段20の下流には、濃縮手段30が設けられている。 The sludge concentration (SS concentration) in the coagulation tank, the return flow rate of the coagulated and concentrated sludge, the inorganic coagulant, and the organic coagulant are as described in the method for concentrating liquid waste above, and will not be described here. Downstream of the coagulation means 20, a concentration means 30 is provided.

濃縮手段30は、凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る手段である。 The concentrating means 30 is a means for concentrating liquid waste containing flocs to obtain concentrated sludge and separated liquid.

濃縮手段30としては、従来公知の濃縮手段を用いることができ、例えば、重力濃縮槽などの重力濃縮装置、遠心濃縮機、スクリーン濃縮機、ベルト型ろ過濃縮機、造粒濃縮槽、浮上濃縮など市販の濃縮装置が使用できる。 As the concentrating means 30, a conventionally known concentrating means can be used, for example, a commercially available concentrating device such as a gravity concentrator such as a gravity concentrator tank, a centrifugal concentrator, a screen concentrator, a belt-type filtration concentrator, a granulation concentrator tank, or a flotation concentrator.

中でも、濃縮手段30が重力濃縮装置であるか、または凝集手段20および濃縮手段30が造粒濃縮装置であることが好ましい。 In particular, it is preferred that the concentrating means 30 is a gravity concentrating device, or that the flocculating means 20 and the concentrating means 30 are a granulating concentrating device.

図4は、濃縮手段が重力濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。図示のように、重力濃縮装置は、凝集槽からの凝集フロックを含む液状廃棄物(調質された汚泥)をセンターウエル内に導入し、ピケットフェンスと汚泥掻き寄せ板を駆動装置で回転させることで、調質された汚泥中の水や気泡を分離するために緩く撹拌する。汚泥は重力で分離されて濃縮汚泥と分離液となり、分離液は分離液流出管から引き抜かれ、濃縮汚泥は重力濃縮装置下方の濃縮汚泥引き抜き管より引き抜かれる。 Figure 4 is a schematic diagram showing a liquid waste treatment device when the concentration means is a gravity concentration device. As shown in the figure, the gravity concentration device introduces liquid waste (conditioned sludge) containing coagulated flocs from the coagulation tank into a center well, and gently stirs the conditioned sludge to separate the water and air bubbles in the conditioned sludge by rotating the picket fence and sludge scraping plate with a drive device. The sludge is separated by gravity into thickened sludge and separated liquid, the separated liquid is drawn out from the separated liquid outflow pipe, and the thickened sludge is drawn out from the thickened sludge withdrawal pipe below the gravity concentration device.

本発明によれば、凝集フロックが強固なものであるので、槽内のピケットフェンスで汚泥を攪拌しても、汚泥が壊れず、汚泥粒子間の水が排出しやすく、高濃度の濃縮汚泥を得ることができる。高濃度の濃縮汚泥が得られるので、返送する濃縮汚泥流量が低減でき、返送ポンプ(図示していない)の動力費の低減になる。また、後段に脱水設備を設ける場合には、脱水機の脱水性能向上や嫌気性消化での濃縮汚泥の滞留時間が長くなり有機物除去効果が向上する。 According to the present invention, the flocculation is strong, so even if the sludge is stirred with a picket fence in the tank, the sludge does not break down, and the water between the sludge particles is easily discharged, making it possible to obtain highly concentrated concentrated sludge. Since highly concentrated concentrated sludge is obtained, the flow rate of the concentrated sludge to be returned can be reduced, which reduces the power cost of the return pump (not shown). In addition, if a dehydration facility is provided in the downstream stage, the dehydration performance of the dehydrator is improved and the retention time of the concentrated sludge in anaerobic digestion is extended, improving the organic matter removal effect.

図5は、凝集手段および濃縮手段が造粒濃縮装置である場合の液状廃棄物の処理装置を示す模式図である。図示のように、造粒濃縮装置は、撹拌羽根を有する撹拌機を備えた造粒濃縮槽を有し、底部に設けられた汚泥流入管から液状廃棄物を槽内に流入させ、同じく底部に設けられた返送配管から凝集濃縮汚泥を流入させる。 Figure 5 is a schematic diagram showing a liquid waste treatment device in which the flocculation means and the concentration means are granulation concentration devices. As shown in the figure, the granulation concentration device has a granulation concentration tank equipped with an agitator having an agitation blade, and liquid waste is introduced into the tank through a sludge inlet pipe provided at the bottom, and flocculated and concentrated sludge is introduced through a return pipe also provided at the bottom.

液状廃棄物と凝集濃縮汚泥はドラフトチューブと撹拌機で撹拌混合されて凝集フロックを形成し、さらに大きな造粒物を形成する。そこからスクリーンによって造粒された濃縮汚泥と分離液に分離する。造粒濃縮装置によれば、強固で大きい凝集フロックが生成するので、閉塞しやすいスクリーンの目開きを大きくすることができ、安定した濃縮と、高濃度の濃縮汚泥が得られる。 The liquid waste and coagulated, concentrated sludge are mixed and stirred in a draft tube and agitator to form coagulated flocs, which then form larger granules. From there, the mixture is separated into granulated concentrated sludge and separated liquid by a screen. The granulation concentration device produces strong, large coagulated flocs, which makes it possible to enlarge the mesh size of the screen, which is prone to clogging, resulting in stable concentration and highly concentrated concentrated sludge.

分離液は、液状廃棄物が有機汚泥であった場合は、分離液は下水処理工程などに送られて、水処理される。液状廃棄物が無機汚泥であった場合、分離液は返送水として例えば浄水処理の前段工程に返送され、あるいは放流される。濃縮汚泥は配管手段から取り出される。 If the liquid waste is organic sludge, the separated liquid is sent to a sewage treatment process or the like for water treatment. If the liquid waste is inorganic sludge, the separated liquid is returned as return water, for example to a previous process of water purification treatment, or is discharged. The concentrated sludge is removed from the piping means.

配管手段40は、濃縮手段30で得られた濃縮汚泥の少なくとも一部を取り出す手段であり、例えば、一端が濃縮手段30に接続され、他端が凝集手段20または凝集手段20および濃縮手段30が造粒濃縮装置である場合には他端が濃縮手段30の底部に接続された専用の返送配管と、当該返送配管に設けられた返送ポンプと、を含む返送ラインを用いることができる。当該返送ラインには、混合手段50が設けられている。 The piping means 40 is a means for extracting at least a portion of the concentrated sludge obtained by the concentration means 30, and may be, for example, a return line including a dedicated return pipe connected at one end to the concentration means 30 and the other end to the bottom of the concentration means 30 when the concentration means 20 or the concentration means 30 is a granulation concentration device, and a return pump provided on the return pipe. A mixing means 50 is provided on the return line.

混合手段50は、配管手段40で取り出された濃縮汚泥に高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る手段である。混合手段50としては、例えば、濃縮汚泥の(図示していない)返送ポンプの吸込部、吐出部もしくは上記返送配管の途中に設けたラインミキサーや混合槽が挙げられる。混合槽における撹拌は、機械撹拌でも濃縮汚泥による水流による撹拌でもよい。混合槽の滞留時間、添加される高分子凝集剤については、上記液状廃棄物の濃縮方法において説明したとおりであり、ここではその説明を省略する。 The mixing means 50 is a means for adding and mixing a polymer coagulant to the concentrated sludge extracted by the piping means 40 to obtain a coagulated concentrated sludge. Examples of the mixing means 50 include a line mixer or a mixing tank provided at the suction or discharge part of a return pump (not shown) for the concentrated sludge or in the middle of the return piping. The mixing tank may be mechanical or may be a water current caused by the concentrated sludge. The residence time in the mixing tank and the polymer coagulant to be added are as explained in the method for concentrating liquid waste, and will not be explained here.

返送手段60は、混合手段50で得られた凝集濃縮汚泥を凝集手段に返送する手段である。返送手段60の具体的構成は上記配管手段40で返送ラインとして述べたとおりである。 The return means 60 is a means for returning the coagulated and concentrated sludge obtained by the mixing means 50 to the coagulation means. The specific configuration of the return means 60 is as described above for the piping means 40 as the return line.

また、返送ラインの返送配管の途中に汚泥流量計や汚泥濃度計を設置して、返送流量や汚泥濃度のモニターすることとしてもよい。汚泥濃度の検出などについては、上記液状廃棄物の濃縮方法において説明したとおりであり、ここではその説明を省略する。 A sludge flow meter and a sludge concentration meter may be installed in the return piping of the return line to monitor the return flow rate and sludge concentration. The detection of sludge concentration is as explained in the method for concentrating liquid waste above, and so a description thereof will be omitted here.

また、図3に示すように、本発明の液状廃棄物の処理装置10では、返送配管が濃縮汚泥の少なくとも一部を濃縮手段30から取り出した後に混合手段50を経て凝集手段20に返送する返送手段60と、濃縮汚泥の残部を下流に移送する配管とに分岐しているが、当該配管の先に脱水手段(図示せず)を設けることとしてもよい。 As shown in FIG. 3, in the liquid waste treatment device 10 of the present invention, the return pipe branches into a return means 60 that returns at least a portion of the concentrated sludge from the concentration means 30 to the flocculation means 20 via the mixing means 50, and a pipe that transports the remainder of the concentrated sludge downstream. A dewatering means (not shown) may be provided at the end of the pipe.

脱水手段は、濃縮汚泥に機械的な圧力をかけて、濃縮汚泥から水分を絞り出して、含水率の低い脱水ケーキを得る手段である。脱水手段としては、従来公知の手段を用いることができる。得られた脱水ケーキは、脱水ケーキは埋立処分等で外部搬出されたり、焼却炉で焼却処分されたりする。 The dewatering means applies mechanical pressure to the concentrated sludge to squeeze out water from the concentrated sludge and obtain a dewatered cake with a low moisture content. Any conventionally known means can be used as the dewatering means. The obtained dewatered cake is transported to an external location for disposal in a landfill or incinerated in an incinerator.

脱水手段を含む本発明の液状廃棄物の処理装置によれば、強固な凝集フロックが得られることから、濃縮汚泥を脱水する際の脱水性能も向上しており、従来より脱水ケーキの含水率が低下する。したがって、搬出の際の運搬コストが低減でき、さらに焼却処分の際に必要な燃料コストを低減することができる。 The liquid waste treatment device of the present invention, which includes a dewatering means, can obtain strong coagulated flocs, improving the dewatering performance when dewatering concentrated sludge, and reducing the moisture content of the dewatered cake compared to conventional methods. This reduces the transportation costs when removing the waste, and also reduces the fuel costs required for incineration.

以下、実施例により本発明をより具体的に説明する。 The present invention will be explained in more detail below with reference to the following examples.

1.実施例1
分流式下水処理場の標準活性汚泥処理設備の余剰汚泥(液状廃棄物)(pH 6.5、 SS 10g/L)を対象に、表1の濃縮試験装置で、余剰汚泥流量 4.5m/日、液温20~25℃でワイヤのスリット幅1mmのスクリーンで濃縮試験を行った。濃縮汚泥の汚泥濃度と、分離液のSS濃度を測定した。
1. Example 1
A concentration test was conducted on excess sludge (liquid waste) (pH 6.5, SS 10g/L) from a standard activated sludge treatment facility of a separate sewerage treatment plant, using the concentration test device shown in Table 1, with an excess sludge flow rate of 4.5 m3 /day and a liquid temperature of 20-25°C, using a wire slit screen with a width of 1 mm. The sludge concentration of the concentrated sludge and the SS concentration of the separated liquid were measured.

Figure 0007628485000001
Figure 0007628485000001

表1の凝集槽の余剰汚泥(液状廃棄物)に、予め調製しておいた濃縮汚泥にカチオン性高分子凝集剤(エバグロースC-104G、水ing社製)を余剰汚泥のSS重量当たり0.02~0.5wt%(濃縮汚泥のSS重量当たり0.03~0.74wt%)添加した凝集濃縮汚泥を添加、混合して凝集させた凝集フロックをスクリーンで濃縮した。 The excess sludge (liquid waste) in the coagulation tank in Table 1 was mixed with coagulated concentrated sludge, which was prepared in advance by adding cationic polymer coagulant (EvaGrose C-104G, manufactured by Suing) at 0.02-0.5 wt% per SS weight of the excess sludge (0.03-0.74 wt% per SS weight of the concentrated sludge), and the coagulated flocs were concentrated using a screen.

予め調製しておいた濃縮汚泥は、余剰汚泥にカチオン性高分子凝集剤を添加率0.3wt/wt%対SSで調質後に表1の濃縮試験装置で予め濃縮した濃縮汚泥(SS 38g/L、表2の試験番号No.11)である。 The thickened sludge that had been prepared in advance was thickened in advance using the thickening test device shown in Table 1 after conditioning the excess sludge with a cationic polymer coagulant at a rate of 0.3 wt/wt% relative to SS (SS 38 g/L, test number No. 11 in Table 2).

また、凝集槽に濃縮汚泥を返送せず、凝集槽に直接、高分子凝集剤を添加した場合や、凝集槽に直接、高分子凝集剤を添加し、更に、高分子凝集剤を添加しない濃縮汚泥を添加した場合についても試験した。 Tests were also conducted in which the polymer flocculant was added directly to the coagulation tank without returning the concentrated sludge to the coagulation tank, and in which the polymer flocculant was added directly to the coagulation tank and then concentrated sludge without the addition of polymer flocculant was added.

結果を表2に示す。 The results are shown in Table 2.

表2の高分子凝集剤添加率(wt/wt%対SS)は、凝集槽SS重量に対する高分子凝集剤の添加率である。 The polymer flocculant addition rate (wt/wt% vs. SS) in Table 2 is the addition rate of the polymer flocculant relative to the weight of the SS in the flocculation tank.

表2の(i)「高分子凝集剤を濃縮汚泥に添加」は、本発明の方法で、高分子凝集剤の必要添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送した場合である。 In Table 2, (i) "Polymer flocculant is added to concentrated sludge" refers to the case where the required amount of polymer flocculant is added to concentrated sludge using the method of the present invention, and concentrated sludge containing the polymer flocculant (flocculated concentrated sludge) is returned to the coagulation tank.

濃縮汚泥のSS重量に対する高分子凝集剤添加率は括弧内に併記する(試験番号No.1~9)。 The polymer flocculant addition rate relative to the SS weight of the concentrated sludge is shown in parentheses (Test No. 1 to 9).

表2の(ii)「濃縮汚泥を返送せず高分子凝集剤を凝集槽に添加」は、濃縮汚泥に高分子凝集剤を添加せず、濃縮汚泥も凝集槽に返送せずに、凝集槽に高分子凝集剤を添加した場合である(試験番号No.10~13)。 In Table 2, (ii) "Polymer flocculant added to coagulation tank without returning thickened sludge" refers to the case where polymer flocculant was added to the coagulation tank without adding thickened sludge or returning thickened sludge to the coagulation tank (Test Nos. 10 to 13).

表2の(iii)「濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加」は、凝集槽の濃縮汚泥に高分子凝集剤を添加しない濃縮汚泥を返送して、高分子凝集剤を凝集槽に添加した場合である(試験番号No.14~17)。 In Table 2, (iii) "Concentrated sludge was returned and polymer flocculant was added to the coagulation tank" refers to the case where concentrated sludge without polymer flocculant was returned to the concentrated sludge in the coagulation tank and polymer flocculant was added to the coagulation tank (Test No. 14 to 17).

Figure 0007628485000002
Figure 0007628485000002

凝集槽のSS重量に対して添加率0.3wt/wt%対SSで高分子凝集剤を濃縮汚泥に添加して得られる凝集濃縮汚泥を凝集槽のSS20g/Lになるように、凝集槽に返送し、凝集濃縮汚泥と余剰汚泥を凝集槽で凝集させてスクリーン濃縮すると、濃縮汚泥のSSは65g/Lで、その分離液のSSは110mg/Lであった(試験番号No.5)。 A polymer flocculant was added to the thickened sludge at a rate of 0.3 wt/wt% relative to the weight of SS in the coagulation tank, and the resulting coagulated thickened sludge was returned to the coagulation tank so that the SS in the coagulation tank was 20 g/L. The coagulated thickened sludge and excess sludge were coagulated in the coagulation tank and screen thickened. The SS of the thickened sludge was 65 g/L, and the SS of the separated liquid was 110 mg/L (Test No. 5).

凝集濃縮汚泥も濃縮汚泥も凝集槽に返送せず、凝集槽に凝集槽のSS重量に対して高分子凝集剤添加率0.3wt/wt%対SSの高分子凝集剤を添加し、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは38g/Lで、その分離液のSSは220mg/Lであった(試験番号No.11)。 Neither the coagulated and concentrated sludge nor the concentrated sludge was returned to the coagulation tank, and instead a polymer coagulant was added to the coagulation tank at a rate of 0.3 wt/wt% of SS based on the weight of SS in the coagulation tank, and the sludge was coagulated and screen-concentrated. The SS of the concentrated sludge was 38 g/L, and the SS of the separated liquid was 220 mg/L (Test No. 11).

高分子凝集剤を添加しない濃縮汚泥を凝集槽に返送し、凝集槽のSSを20g/Lに調整して、凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を凝集槽に添加し、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは44g/Lで、その分離液のSSは300mg/Lであった(試験番号No.15)。 The concentrated sludge without the addition of polymer coagulant was returned to the coagulation tank, the SS in the coagulation tank was adjusted to 20 g/L, and polymer coagulant was added to the coagulation tank at a polymer coagulant addition rate of 0.4 wt/wt% to SS based on the weight of SS in the coagulation tank. After coagulation and screen thickening, the concentrated sludge had a SS of 44 g/L and the separated liquid had a SS of 300 mg/L (Test No. 15).

本発明のように、高分子凝集剤必要添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で余剰汚泥(液状廃棄物)を調質してスクリーン濃縮することで、高分子凝集剤添加量を減らしても得られた濃縮汚泥のSS濃度が高まり、分離液のSS濃度も低減できた。 As in the present invention, by adding the required amount of polymer flocculant to the concentrated sludge, returning the concentrated sludge containing the polymer flocculant (flocculated concentrated sludge) to the flocculation tank, and conditioning the excess sludge (liquid waste) in the flocculation tank and concentrating it using a screen, the SS concentration of the concentrated sludge obtained was increased even with a reduced amount of polymer flocculant added, and the SS concentration of the separated liquid was also reduced.

2.実施例2
実施例1で得られた濃縮汚泥を0.5L分取し、実施例1で使用した高分子凝集剤で調質を行った。濃縮汚泥に対する高分子凝集剤の添加率は、0.5~2.0wt/wt%対SSであった。調質後にろ布面積100cmのろ布上に調質した濃縮汚泥を乗せて、一軸加圧で圧力50kPaで10分間加圧して、加圧脱水試験機で加圧脱水試験を行った。加圧脱水試験後に脱水ケーキを取り出して、含水率を測定した。また、ろ布から排出された脱水ろ液のSSを測定した。
2. Example 2
0.5 L of the concentrated sludge obtained in Example 1 was taken and conditioned with the polymer flocculant used in Example 1. The addition rate of the polymer flocculant to the concentrated sludge was 0.5 to 2.0 wt/wt% relative to SS. After conditioning, the conditioned concentrated sludge was placed on a filter cloth with a filter cloth area of 100 cm2 , and uniaxially pressed at a pressure of 50 kPa for 10 minutes, and a pressure dehydration test was performed using a pressure dehydration tester. After the pressure dehydration test, the dehydrated cake was taken out and the moisture content was measured. In addition, the SS of the dehydrated filtrate discharged from the filter cloth was measured.

結果を表3に示す。 The results are shown in Table 3.

脱水試験に使用した濃縮汚泥は以下の3種類で、表3の濃縮汚泥に対する高分子凝集剤添加率欄に示す(i)~(iii)の濃縮汚泥の調製方法と、濃縮汚泥濃度は以下のとおりである。 The three types of concentrated sludge used in the dewatering tests are shown below. The concentrated sludge preparation methods (i) to (iii) shown in the column for polymer flocculant addition rate for concentrated sludge in Table 3 and the concentrated sludge concentrations are as follows:

(i)高分子凝集剤を濃縮汚泥に添加して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.5に対応し、濃縮汚泥濃度はSS65g/Lである。 (i) This is concentrated sludge obtained by adding a polymer flocculant to concentrated sludge, and corresponds to test number No. 5 in Table 2 (Example 1), and the concentrated sludge concentration is SS 65 g/L.

(ii)濃縮汚泥を返送せず高分子凝集剤を凝集槽して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.11に対応し、濃縮汚泥濃度はSS38g/Lである。 (ii) This is concentrated sludge obtained by adding a polymer coagulant to a coagulation tank without returning the concentrated sludge, and corresponds to test number 11 in Table 2 (Example 1), and the concentrated sludge concentration is SS 38 g/L.

(iii)濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加して得られた濃縮汚泥であり、表2(実施例1)の試験番号No.15に対応し、濃縮汚泥濃度はSS44g/Lである。 (iii) This is the concentrated sludge obtained by returning the concentrated sludge and adding a polymer coagulant to the coagulation tank, and corresponds to test number 15 in Table 2 (Example 1), and the concentrated sludge concentration is SS 44 g/L.

Figure 0007628485000003
Figure 0007628485000003

表2(実施例1)の試験番号No.5の濃縮汚泥に高分子凝集剤を1.0wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 80%、脱水ろ液のSSは 310mg/Lであった(試験番号No.2)。 When polymer flocculant was added to the concentrated sludge of test number 5 in Table 2 (Example 1) at 1.0 wt/wt% relative to SS and pressure dewatered after conditioning, the moisture content of the dewatered cake was 80%, and the SS of the dewatered filtrate was 310 mg/L (test number 2).

表2(実施例1)の試験番号No.11の濃縮汚泥に高分子凝集剤を1.5wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 82%、脱水ろ液のSSは 380mg/Lであった(試験番号No.6)。 When polymer flocculant was added to the concentrated sludge of test number 11 in Table 2 (Example 1) at 1.5 wt/wt% relative to SS and pressure dewatered after conditioning, the moisture content of the dewatered cake was 82%, and the SS of the dewatered filtrate was 380 mg/L (test number 6).

表2(実施例1)の試験番号No.15の濃縮汚泥に高分子凝集剤を1.5wt/wt%対SSで添加して、調質後に加圧脱水すると、脱水ケーキの含水率は 82%、脱水ろ液のSSは 350mg/Lであった(試験番号No.10)。 When polymer flocculant was added to the concentrated sludge of test number 15 in Table 2 (Example 1) at 1.5 wt/wt% relative to SS and pressure dewatered after conditioning, the moisture content of the dewatered cake was 82%, and the SS of the dewatered filtrate was 350 mg/L (test number 10).

本発明のように、必要な高分子凝集剤添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で余剰汚泥(液状廃棄物)を調質してスクリーン濃縮して得られる濃縮汚泥を脱水することで、高分子凝集剤添加量を減らしても低含水率の脱水ケーキが得られる。 As in the present invention, by adding the required amount of polymer flocculant to the thickened sludge, returning the thickened sludge containing the polymer flocculant (flocculated thickened sludge) to the coagulation tank, and conditioning the excess sludge (liquid waste) in the coagulation tank and dewatering the thickened sludge obtained by screen thickening, a dehydrated cake with a low moisture content can be obtained even if the amount of polymer flocculant added is reduced.

本発明で得られる濃縮汚泥は、後段の脱水性能の向上に寄与する。 The concentrated sludge obtained by this invention contributes to improving the dewatering performance in the subsequent stages.

3.実施例3
浄水施設の急速ろ過設備で、濁度3~5度の河川水を水道原水に、PAC注入率20mg/Lで凝集沈殿処理して沈殿池から排出される凝集沈殿汚泥(pH 6.5、 SS 5.1g/L)以下、上水汚泥(液状廃棄物))を対象に、表1の濃縮試験装置で濃縮試験を行った。
3. Example 3
In the rapid filtration equipment of a water purification facility, river water with a turbidity of 3 to 5 degrees was used as raw water for drinking water, and a PAC injection rate of 20 mg/L was used to coagulate and sediment the water. The coagulated and sedimented sludge discharged from the sedimentation tank (pH 6.5, SS 5.1 g/L or less, drinking water sludge (liquid waste)) was subjected to a concentration test using the concentration test equipment shown in Table 1.

表1の凝集槽に上水汚泥(液状廃棄物)と、予め調製しておいた濃縮汚泥にアクリルアミドを含まないアニオン性水道用高分子凝集剤(エバグロースWA-200、水ing(株)製)を上水汚泥のSS重量当たり0.2~0.4wt%(濃縮汚泥のSS重量当たり0.35~0.81wt%)添加した凝集濃縮汚泥を添加、混合して凝集させた凝集フロックをスクリーンで濃縮した。 The water supply sludge (liquid waste) and pre-prepared concentrated sludge with an acrylamide-free anionic water supply polymer flocculant (EvaGrose WA-200, manufactured by Suing Co., Ltd.) added at 0.2-0.4 wt% per SS weight of the water supply sludge (0.35-0.81 wt% per SS weight of the concentrated sludge) were added to the coagulation tank shown in Table 1, mixed, and coagulated, and the coagulated flocs were concentrated using a screen.

予め調製しておいた濃縮汚泥は、上水汚泥に同じアクリルアミドを含まないアニオン性水道用高分子凝集剤を添加率0.4wt/wt%対SSで調質後に表1の濃縮試験装置で濃縮した濃縮汚泥(SS 36g/L、表4の試験番号No.7)である。 The thickened sludge that had been prepared in advance was made by conditioning the drinking water sludge with the same non-acrylamide anionic water supply polymer flocculant at a rate of 0.4 wt/wt% vs. SS, and then thickening it in the thickening test device shown in Table 1 (SS 36 g/L, test number No. 7 in Table 4).

また、実施例1と同様に、凝集槽に濃縮汚泥を返送せず、凝集槽に直接、高分子凝集剤を添加した場合や、凝集槽に直接、高分子凝集剤を添加し、更に、高分子凝集剤を添加しない濃縮汚泥を添加した場合についても試験した。 As in Example 1, tests were also conducted in which the polymer flocculant was added directly to the coagulation tank without returning the concentrated sludge to the coagulation tank, and in which the polymer flocculant was added directly to the coagulation tank and then concentrated sludge without the addition of polymer flocculant was added.

結果を表4に示す。 The results are shown in Table 4.

表4の(i)「高分子凝集剤を濃縮汚泥に添加」は、本発明の方法で、高分子凝集剤の必要添加量を予め調製しておいた濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送した場合である。 In Table 4, (i) "Polymer flocculant added to concentrated sludge" refers to the case where the required amount of polymer flocculant is added to concentrated sludge that has been prepared in advance using the method of the present invention, and the concentrated sludge containing the polymer flocculant (flocculated concentrated sludge) is returned to the coagulation tank.

濃縮汚泥のSS重量に対する高分子凝集剤添加率を表4の括弧内に併記する(試験番号No.1~5)。 The polymer flocculant addition rate relative to the SS weight of the concentrated sludge is also shown in parentheses in Table 4 (Test No. 1 to 5).

表4の(ii)「濃縮汚泥を返送せず高分子凝集剤を凝集槽に添加」は、濃縮汚泥に高分子凝集剤を添加せず、濃縮汚泥も凝集槽に返送せずに、凝集槽に高分子凝集剤を添加した場合である(試験番号No.6~8)。 In Table 4, (ii) "Polymer flocculant added to coagulation tank without returning thickened sludge" refers to the case where polymer flocculant was added to the coagulation tank without adding thickened sludge or returning thickened sludge to the coagulation tank (Test Nos. 6 to 8).

表4の(iii)「濃縮汚泥を返送し、高分子凝集剤を凝集槽に添加」は、凝集槽に濃縮汚泥に高分子凝集剤を添加しない濃縮汚泥を返送して、高分子凝集剤を凝集槽に添加した場合である(試験番号No.9~11)。 In Table 4, (iii) "Concentrated sludge was returned and polymer flocculant was added to the coagulation tank" refers to the case where concentrated sludge without polymer flocculant was returned to the coagulation tank and polymer flocculant was added to the coagulation tank (Test Nos. 9 to 11).

Figure 0007628485000004
Figure 0007628485000004

凝集槽のSS重量に対して添加率0.3wt/wt%対SSで高分子凝集剤を濃縮汚泥に添加して得られる凝集濃縮汚泥を凝集槽のSS10g/Lになるように、凝集槽に返送し、凝集濃縮汚泥と余剰汚泥(液状廃棄物)を凝集槽で凝集させてスクリーン濃縮すると、濃縮汚泥のSSは44g/Lで、その分離液のSSは100mg/Lであった(試験番号No.2)。 A polymer flocculant was added to the thickened sludge at a rate of 0.3 wt/wt% relative to the weight of SS in the coagulation tank, and the resulting coagulated thickened sludge was returned to the coagulation tank so that the SS in the coagulation tank was 10 g/L. The coagulated thickened sludge and excess sludge (liquid waste) were coagulated in the coagulation tank and screen thickened. The SS of the thickened sludge was 44 g/L, and the SS of the separated liquid was 100 mg/L (Test No. 2).

凝集濃縮汚泥も濃縮汚泥も凝集槽に返送せず、凝集槽に凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を添加して、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは36g/Lで、その分離液のSSは260mg/Lであった(試験番号No.7)。 Neither the coagulated and concentrated sludge nor the concentrated sludge was returned to the coagulation tank, but instead a polymer coagulant was added to the coagulation tank at a rate of 0.4 wt/wt% of SS based on the weight of SS in the coagulation tank, and the sludge was coagulated and screen-concentrated. The SS of the concentrated sludge was 36 g/L, and the SS of the separated liquid was 260 mg/L (Test No. 7).

高分子凝集剤を添加しない濃縮汚泥を凝集槽に返送し、凝集槽のSSを10g/Lに調整して、凝集槽のSS重量に対して高分子凝集剤添加率0.4wt/wt%対SSの高分子凝集剤を凝集槽に添加して、凝集させてスクリーン濃縮すると、濃縮汚泥のSSは39g/Lで、その分離液のSSは330mg/Lであった(試験番号No,10)。 The concentrated sludge without the addition of polymer coagulant was returned to the coagulation tank, the SS in the coagulation tank was adjusted to 10 g/L, and polymer coagulant was added to the coagulation tank at a polymer coagulant addition rate of 0.4 wt/wt% to SS based on the weight of SS in the coagulation tank, and the sludge was coagulated and screen-concentrated. The SS of the concentrated sludge was 39 g/L, and the SS of the separated liquid was 330 mg/L (Test No. 10).

本発明のように、必要な高分子凝集剤添加量を濃縮汚泥に添加して、高分子凝集剤を含む濃縮汚泥(凝集濃縮汚泥)を凝集槽に返送し、凝集槽で上水汚泥(液状廃棄物)を調質してスクリーン濃縮することで、高分子凝集剤添加量を減らしても得られた濃縮汚泥のSS濃度が高まり、分離液のSS濃度も低減できた。 As in the present invention, by adding the required amount of polymer flocculant to the concentrated sludge, returning the concentrated sludge containing the polymer flocculant (flocculated concentrated sludge) to the flocculation tank, and conditioning the water supply sludge (liquid waste) in the flocculation tank and screen concentrating it, the SS concentration of the concentrated sludge obtained was increased even with a reduced amount of polymer flocculant added, and the SS concentration of the separated liquid was also reduced.

Claims (8)

液状廃棄物から凝集フロックを形成させる凝集工程と、
前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮工程と、
前記濃縮工程で得られた前記濃縮汚泥の少なくとも一部を取り出す取り出し工程と、
前記取り出された濃縮汚泥の懸濁物質濃度(SS濃度)を測定するSS濃度測定工程と、
取り出された濃縮汚泥に前記SS濃度測定工程の測定結果に応じた量の高分子凝集剤を添加し、得られた凝集濃縮汚泥を前記凝集工程に返送する返送工程と、を有し、
前記凝集工程における前記凝集フロックの形成が、前記返送された前記凝集濃縮汚泥の前記液状廃棄物への混合によりなされることを特徴とする液状廃棄物の濃縮方法。
a flocculation step for forming flocs from the liquid waste;
a concentration step of concentrating the liquid waste containing the flocs to obtain concentrated sludge and a separated liquid;
A removal step of removing at least a portion of the concentrated sludge obtained in the concentration step;
a suspended solids concentration measuring step of measuring a suspended solids concentration (SS concentration) of the extracted concentrated sludge;
A returning step of adding a polymer flocculant to the extracted concentrated sludge in an amount corresponding to the measurement result of the SS concentration measuring step , and returning the obtained flocculated concentrated sludge to the flocculation step,
2. A method for concentrating liquid waste, comprising the steps of: forming the flocs in the flocculation step by mixing the returned flocculated and concentrated sludge with the liquid waste.
前記取り出し工程後に前記取り出された前記濃縮汚泥の残部を脱水する脱水工程をさらに有することを特徴とする、請求項1に記載の液状廃棄物の濃縮方法。 The method for concentrating liquid waste according to claim 1, further comprising a dehydration step for dehydrating the remaining part of the concentrated sludge that has been removed after the removal step. 前記高分子凝集剤が、水道用高分子凝集剤であることを特徴とする、請求項1または2に記載の液状廃棄物の濃縮方法。 The method for concentrating liquid waste according to claim 1 or 2, characterized in that the polymer flocculant is a polymer flocculant for water supply. 前記高分子凝集剤が、アクリルアミドモノマーを含まない水道用高分子凝集剤であることを特徴とする、請求項3に記載の液状廃棄物の濃縮方法。 The method for concentrating liquid waste according to claim 3, characterized in that the polymer flocculant is a polymer flocculant for water supply that does not contain acrylamide monomers. 前記液状廃棄物の懸濁物質濃度(SS濃度)が1000mg/L以上であることを特徴とする請求項1または2に記載の液状廃棄物の濃縮方法。3. The method for concentrating liquid waste according to claim 1, wherein the liquid waste has a suspended solids concentration (SS concentration) of 1000 mg/L or more. 前記凝集工程において、前記凝集濃縮汚泥に含まれる高分子凝集剤を除き、凝集剤を添加しないことを特徴とする請求項1または2に記載の液状廃棄物の濃縮方法。3. The method for concentrating liquid waste according to claim 1, wherein in the coagulation step, no coagulant is added except for a polymer coagulant contained in the coagulated and concentrated sludge. 液状廃棄物から凝集フロックを形成させる凝集手段と、
前記凝集フロックを含む液状廃棄物を濃縮し、濃縮汚泥と分離液を得る濃縮手段と、
前記濃縮手段で得られた前記濃縮汚泥の少なくとも一部を取り出す配管手段と、
前記配管手段の途中に設けられ、該配管手段中の前記濃縮汚泥の懸濁物質濃度(SS濃度)を測定可能な汚泥濃度計と、
前記配管手段で取り出された前記濃縮汚泥に前記汚泥濃度計による測定結果に応じた量の高分子凝集剤を添加・混合し、凝集濃縮汚泥を得る混合手段と、
前記混合手段で得られた凝集濃縮汚泥を前記凝集手段に返送する返送手段と、
を有することを特徴とする液状廃棄物の濃縮装置。
a flocculation means for forming flocs from the liquid waste;
a concentrating means for concentrating the liquid waste containing the flocs to obtain concentrated sludge and a separated liquid;
A piping means for extracting at least a portion of the concentrated sludge obtained by the concentration means;
a sludge concentration meter provided in the middle of the piping means and capable of measuring a suspended solids concentration (SS concentration) of the concentrated sludge in the piping means;
a mixing means for adding and mixing the concentrated sludge taken out by the piping means with an amount of polymer flocculant corresponding to the measurement result by the sludge concentration meter to obtain a flocculated concentrated sludge;
A returning means for returning the flocculated and concentrated sludge obtained by the mixing means to the flocculation means;
1. A liquid waste concentrating apparatus comprising:
記凝集手段および前記濃縮手段が造粒濃縮装置であることを特徴とする請求項に記載の液状廃棄物の濃縮装置。 8. The liquid waste concentrating apparatus according to claim 7, wherein the flocculating means and the concentrating means are granulating concentrating apparatus.
JP2021194103A 2021-11-30 2021-11-30 Method and device for concentrating liquid waste Active JP7628485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021194103A JP7628485B2 (en) 2021-11-30 2021-11-30 Method and device for concentrating liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021194103A JP7628485B2 (en) 2021-11-30 2021-11-30 Method and device for concentrating liquid waste

Publications (2)

Publication Number Publication Date
JP2023080648A JP2023080648A (en) 2023-06-09
JP7628485B2 true JP7628485B2 (en) 2025-02-10

Family

ID=86656767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021194103A Active JP7628485B2 (en) 2021-11-30 2021-11-30 Method and device for concentrating liquid waste

Country Status (1)

Country Link
JP (1) JP7628485B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317220A (en) 1999-05-12 2000-11-21 Japan Organo Co Ltd Flocculating and settling device
JP2002079262A (en) 2000-09-05 2002-03-19 Ebara Corp Equipment for flocculation and separation treatment
JP2016185536A (en) 2015-03-27 2016-10-27 住友重機械エンバイロメント株式会社 Anaerobic treatment apparatus
JP2019037956A (en) 2017-08-28 2019-03-14 水ing株式会社 Method and device for water treatment of organic wastewater containing oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317220A (en) 1999-05-12 2000-11-21 Japan Organo Co Ltd Flocculating and settling device
JP2002079262A (en) 2000-09-05 2002-03-19 Ebara Corp Equipment for flocculation and separation treatment
JP2016185536A (en) 2015-03-27 2016-10-27 住友重機械エンバイロメント株式会社 Anaerobic treatment apparatus
JP2019037956A (en) 2017-08-28 2019-03-14 水ing株式会社 Method and device for water treatment of organic wastewater containing oil

Also Published As

Publication number Publication date
JP2023080648A (en) 2023-06-09

Similar Documents

Publication Publication Date Title
JP6378865B2 (en) Sludge treatment method and apparatus
JP6209046B2 (en) Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
JP6674260B2 (en) Method for determining coagulant injection rate and apparatus for determining coagulant injection rate
CN108083483A (en) A kind of papermaking or the decoloration treatment method of dyeing waste water
JP5423256B2 (en) Sludge dewatering method and sludge dewatering device
JPWO2014021228A1 (en) Sludge treatment method and treatment apparatus
JP2009183889A (en) Sludge dehydration method
JP2009072769A (en) Sewage treatment system
WO2019008822A1 (en) Water treatment method and water treatment device
JP6362305B2 (en) Sludge treatment method and apparatus
JP7628485B2 (en) Method and device for concentrating liquid waste
WO2012147467A1 (en) Sludge-concentrating method and apparatus
WO2016006419A1 (en) Clumping method and clumping device
JP7547296B2 (en) Method for treating oil-containing wastewater and water treatment device for oil-containing wastewater
CN215161630U (en) Total-quantification treatment system for reverse osmosis concentrated solution of refuse leachate of incineration plant
CN213446615U (en) Ethylene-vinyl acetate copolymer adhesive wastewater treatment device
JPH07256298A (en) Dewatering method by sludge granulation concentration
CN112374721B (en) Method for treating viscose sludge by using modified dextran
Libecki et al. Purification of a reactive dyes mixture solution by means of pre-hydrolysed coagulants in the standard tests and coagulating flow system
JP6362304B2 (en) Sludge treatment method and apparatus
JP7075718B2 (en) Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment
JP2005007246A (en) Treatment method for organic waste water
CN111517528A (en) Device and method for treating ammonia nitrogen in desulfurization wastewater by membrane absorption method
CN215924492U (en) Sewage treatment plant cleaning system
CN111320297B (en) Resource treatment system for alkaline wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241022

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20241219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250129

R150 Certificate of patent or registration of utility model

Ref document number: 7628485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150