JPH0723821B2 - Heat transfer tube for vertical absorber - Google Patents
Heat transfer tube for vertical absorberInfo
- Publication number
- JPH0723821B2 JPH0723821B2 JP62158522A JP15852287A JPH0723821B2 JP H0723821 B2 JPH0723821 B2 JP H0723821B2 JP 62158522 A JP62158522 A JP 62158522A JP 15852287 A JP15852287 A JP 15852287A JP H0723821 B2 JPH0723821 B2 JP H0723821B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- transfer tube
- tube
- absorber
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多数の伝熱管が垂直に配置される管内吸収型
縦式吸収器における伝熱管に関するものであり、特にこ
の内部構造に関するものである。TECHNICAL FIELD The present invention relates to a heat transfer tube in an in-tube absorption type vertical absorber in which a large number of heat transfer tubes are arranged vertically, and more particularly to the internal structure thereof. is there.
吸収冷凍機や吸収ヒートポンプ等における吸収器は 密
閉容器内に多数の伝熱管を水平あるいは垂直に配置して
構成される。通常、この吸収器において 伝熱管の外側
に例えば濃度約60重量%程度のLiBr水溶液のごとき吸収
液を滴下あるいは散布し、蒸発器で発生した水蒸気を吸
収させると同時に、吸収時の熱を伝熱管を通してその内
部を流れる冷却水により除去するという水冷式吸収器が
実施されている。しかし、最近一般に“機器の空冷化”
の傾向にあり、吸収器においても空冷式吸収器の出現が
望まれている。その場合、吸収熱を冷却空気により除去
する方式となるため、吸収液を伝熱管の内側に上方から
流下させると同時に管内に蒸発器からの水蒸気を供給し
て吸収液に吸収させ、他方伝熱管の外側に空冷フィンを
装着し、冷却空気を当てて管内に生ずる吸収熱を除去す
るという熱交換方式となっている。しかし、空冷式の場
合は 冷却空気の温度が冷却水の温度よりも高くなって
しまうため、冷房サイクルの温度が上がり、吸収熱は
水冷式の吸収冷房サイクルより高温度、高濃度になり、
実用的でなくなり、また高温の再生器の圧力が大気圧を
超えて真空容器としての特徴を生かすことができなくな
る。従って空冷化を実現するためには 吸収器における
空気側の熱伝達の向上、溶液側の熱伝達及び吸収さ
れた水(水蒸気)の拡散の向上、吸収液の循環サイク
ルの機能向上が必要であり、特にの溶液側の熱伝達及
び吸収された水の拡散の向上は 特に重要である。An absorber in an absorption refrigerator or absorption heat pump is constructed by arranging a number of heat transfer tubes horizontally or vertically in a closed container. Usually, in this absorber, an absorbing liquid such as a LiBr aqueous solution having a concentration of about 60% by weight is dropped or sprayed on the outside of the heat transfer tube to absorb the water vapor generated in the evaporator and at the same time to transfer the heat at the time of the heat transfer tube. A water-cooled absorber is used in which the water is removed by cooling water flowing through the inside. However, recently, in general, "air cooling of equipment"
Therefore, the appearance of air-cooled absorbers is desired in the absorbers. In that case, since the absorption heat is removed by cooling air, the absorption liquid is made to flow into the heat transfer pipe from above, and at the same time, the steam from the evaporator is supplied into the pipe to be absorbed by the absorption liquid, while the heat transfer pipe Air-cooling fins are attached to the outside of the, and heat is exchanged by applying cooling air to remove absorbed heat generated in the tube. However, in the case of the air cooling type, the temperature of the cooling air becomes higher than the temperature of the cooling water, so the temperature of the cooling cycle rises and the absorbed heat
Higher temperature and higher concentration than water-cooled absorption cooling cycle,
It becomes impractical, and the pressure of the high-temperature regenerator exceeds atmospheric pressure, making it impossible to take advantage of the characteristics of the vacuum container. Therefore, in order to realize air cooling, it is necessary to improve heat transfer on the air side in the absorber, heat transfer on the solution side and diffusion of absorbed water (steam), and improve the function of the absorption liquid circulation cycle. Especially, the improvement of the heat transfer on the solution side and the diffusion of absorbed water is particularly important.
吸収器における吸収は 蒸発器からの水蒸気圧と伝熱管
の表面を流下する吸収液の飽和蒸気圧との圧力差によっ
て生じ、この圧力差が大きければ吸収能力は向上する。
また吸収液は その温度が低い程あるいは濃度が高い
程、圧力差が大きくなって吸収能力が向上する。従って
この種の伝熱管には 熱の伝達と吸収された水(水蒸
気)が吸収液全体に拡散する“物質移動”の双方の向上
が要求される。Absorption in the absorber occurs due to the pressure difference between the vapor pressure from the evaporator and the saturated vapor pressure of the absorbing liquid flowing down the surface of the heat transfer tube. If this pressure difference is large, the absorption capacity will improve.
Further, the lower the temperature or the higher the concentration of the absorbing liquid, the larger the pressure difference becomes, and the absorbing ability is improved. Therefore, this type of heat transfer tube is required to improve both heat transfer and “mass transfer” in which absorbed water (steam) diffuses throughout the absorption liquid.
しかし、従来 これらの吸収器における吸収機構につい
ては不明な点か多く、従来の水冷式吸収器において、そ
の伝熱管は 相変わらず平滑管が主流であった。従って
空冷式吸収器についても同様に伝熱管として平滑管を使
用することになるが、ここにおいて その吸収機構を明
らかにし、熱伝達及び物質移動の優れた高性能の伝熱管
を開発する必要がある。However, there are many unclear points regarding the absorption mechanism in these absorbers, and in conventional water-cooled absorbers, the heat transfer tubes were still smooth tubes. Therefore, even for air-cooled absorbers, smooth tubes will be used as heat transfer tubes as well, but it is necessary to clarify the absorption mechanism here and develop high-performance heat transfer tubes with excellent heat transfer and mass transfer. .
本発明は 前述の従来技術における問題点を解決するた
め為されたものであって、特に空冷式吸収器のため、飛
躍的に性能が向上した新規な伝熱管を提供することを目
的とするものである。The present invention has been made to solve the above-mentioned problems in the prior art, and an object of the present invention is to provide a novel heat transfer tube with dramatically improved performance, particularly for an air-cooled absorber. Is.
本発明者等は 管内吸収型縦式吸収器の伝熱管における
熱伝達性能と共に物質移動性能についても研究を重ねた
結果、伝熱管の内側表面における吸収液膜内で対流が発
生すると、熱伝達と共に特に物質移動が大幅に促進され
ることを見出したものである。すなわち本発明は 管内
側に吸収液が流れ、管外側が空冷あるいは水冷され、そ
の多数が垂直に配置される管内吸収型縦式吸収器の伝熱
管において、その内面に該吸収液の流れる方向と異なる
方向に多数の溝が設けられていることを特徴とする管内
吸収型縦式吸収器用伝熱管である。The inventors of the present invention have conducted extensive research on the heat transfer performance as well as the mass transfer performance in the heat transfer tube of the in-tube absorption type vertical absorber, and as a result, when convection occurs in the absorbing liquid film on the inner surface of the heat transfer tube, heat transfer In particular, they have found that mass transfer is greatly promoted. That is, according to the present invention, in a heat transfer tube of an in-tube absorption type vertical absorber in which the absorption liquid flows inside the pipe, the outside of the pipe is air-cooled or water-cooled, and many of them are arranged vertically, A heat transfer tube for an in-pipe absorption type vertical absorber characterized in that a large number of grooves are provided in different directions.
本発明者らの研究によれば、伝熱管の内側表面上の溶液
膜において その水蒸気と接する部分は水蒸気を吸収し
て次第に低濃度となり、水蒸気を吸収する能力を次第に
弱め、しかも溶液膜における溶液の深さ方向への移動は
拡散だけではあまり進まず、しかし溶液膜内に対流が
生ずれば 吸収液膜内での攪拌が生じ、溶液表面だけが
低濃度となって水蒸気の吸収能力が弱まることがなくな
り、吸収液膜全体として吸収能力が向上することが判明
したのである。そして本発明では 管の内表面に吸収液
の流下方向と異なる方向に複数の深い溝を長手方向に設
けることとし、溶液に対流を発生させるに好ましい厚い
液膜を形成させると同時に 溶液が溝を流下する際によ
く攪拌されて熱の伝達及び物質移動を共に大幅に促進さ
せることができた。According to the research conducted by the present inventors, a portion of the solution film on the inner surface of the heat transfer tube, which is in contact with the water vapor, absorbs the water vapor to have a gradually lower concentration, and the ability to absorb the water vapor is gradually weakened. In the depth direction, the diffusion does not proceed so much, but if convection occurs in the solution film, agitation occurs in the absorption liquid film, and only the solution surface has a low concentration and the water vapor absorption capacity weakens. It was found that the absorption capacity of the entire absorbent liquid film was improved. In the present invention, a plurality of deep grooves are provided in the longitudinal direction on the inner surface of the tube in a direction different from the flowing direction of the absorbing liquid, and a thick liquid film preferable for generating convection is formed in the solution, and at the same time, the solution forms grooves. It was well agitated when flowing down, and both heat transfer and mass transfer could be greatly promoted.
本発明において、伝熱管の内壁に設けられる溝の断面形
状は 所望の各種形状のものでよく、例えば後述の実施
例における第1図に示したごとき台形、その他三角形、
四角形、半円形などでもよい。また“管の内表面に吸収
液の流下方向と異なる方向”とは 管の長手方向ではな
い方向、望ましくは管の周囲となる方向を意味する。溝
は 環状でもよく、また螺旋状であってもよい。また第
1図に示した場合においては 溝と溝の間は 平滑面で
あるが、第3図に示すように その面に溝よりも浅い微
小な溝、フィンあるいは凹凸面または多孔質面が形成さ
れ、伝熱面積が増大し、特に熱伝達の向上が図られて、
伝熱管の性能を向上させることができる。In the present invention, the cross-sectional shape of the groove provided on the inner wall of the heat transfer tube may be any desired desired shape, for example, a trapezoid as shown in FIG.
It may be a quadrangle or a semicircle. Further, "a direction different from the direction in which the absorbing liquid flows down on the inner surface of the tube" means a direction which is not the longitudinal direction of the tube, and preferably a direction around the tube. The groove may be annular or spiral. In addition, in the case shown in FIG. 1, there is a smooth surface between the grooves, but as shown in FIG. 3, fine grooves shallower than the grooves, fins or uneven surfaces or porous surfaces are formed on the surface. The heat transfer area is increased, especially the heat transfer is improved,
The performance of the heat transfer tube can be improved.
以下 本発明をその実施例によりさらに具体的にかつ詳
細に説明する。Hereinafter, the present invention will be described more specifically and in detail with reference to Examples.
第1図は 本発明の一実施例である管内吸収型縦式吸収
器に用いられる伝熱管の一部の断面図である。図中、1
は 伝熱管の管体、2は 管体1の内壁、21は 内壁2
に設けられた溝である。本例においては 伝熱管は 外
径15.88mm、内径14.5mmの管体1からなり、その内壁2
には 環状に深さ0.5mmの台形状の溝21が、その長手方
向にピッチ2mmで設けられている。この伝熱管の1本を
有効長1,000mmとして、第2図に示されているごとき機
構になる“性能測定装置”の吸収器に組み込んで性能測
定試験を行った。第2図において、Pは 性能測定に供
せられる伝熱管、3は 吸収液槽(槽内には 吸収液と
してLiBr水溶液が収容されている。)、4は、外管41及
び伝熱管Pによって構成される吸収器、42は 水蒸気を
吸収し、希釈した吸収液の流路、5は 蒸発器(器内に
は 水が収容されている。)、51は 蒸発用ヒーター、
52は 水蒸気の流路、6は 水蒸気を吸収し、希釈した
吸収液を貯蔵する溶液タンク、61は 温度調整用ヒータ
ー、62は 濃縮した再生吸収液の流路、7は 流量計、
8(81、82)は 密度計である。性能測定装置におい
て、吸収器4には 冷却水の給水路43及び排水路44によ
り冷却水を通し、外周より吸収器4を冷却する。蒸発器
5では 蒸発用ヒーター51により器内に収容してある水
を蒸発せしめ、水蒸気を流路51を通して伝熱管Pに供給
する。他方吸収液槽3からは 伝熱管Pの上方より吸収
液を供給する。伝熱管P内においては 供給された水蒸
気は 吸収液に吸収され、流路42を経て溶液タンク6に
流す。流路42においては 密度計81により希釈した吸収
液の密度を測定する。溶液タンク6には 温度調整用ヒ
ーター61が設備されており、希釈した吸収液を濃縮し、
所定の濃度の吸収液とした上、再生吸収液として吸収液
槽3に還流する。その流路62には流量計7及び密度計82
が設置され、各々測定される。FIG. 1 is a sectional view of a part of a heat transfer tube used in an in-tube absorption type vertical absorber according to an embodiment of the present invention. 1 in the figure
Is a tube body of the heat transfer tube, 2 is an inner wall of the tube body 1, 21 is an inner wall 2
It is a groove provided in. In this example, the heat transfer tube consists of a tube body 1 with an outer diameter of 15.88 mm and an inner diameter of 14.5 mm, and its inner wall 2
A trapezoidal groove 21 having a depth of 0.5 mm is annularly provided at a pitch of 2 mm in the longitudinal direction. One of the heat transfer tubes was used as an effective length of 1,000 mm, and the performance measurement test was conducted by incorporating it into the absorber of the "performance measuring device" having the mechanism shown in FIG. In FIG. 2, P is a heat transfer tube used for performance measurement, 3 is an absorption liquid tank (LiBr aqueous solution is contained in the tank as absorption liquid), 4 is an outer tube 41 and a heat transfer tube P. Constituting absorber, 42 absorbs water vapor, flow path of diluted absorption liquid, 5 is evaporator (water is contained in the container), 51 is heater for evaporation,
52 is a water vapor flow path, 6 is a solution tank that absorbs water vapor and stores a diluted absorption liquid, 61 is a temperature adjusting heater, 62 is a concentrated regenerated absorption liquid flow path, 7 is a flow meter,
8 (81, 82) is a densitometer. In the performance measuring apparatus, cooling water is passed through the absorber 4 through the cooling water supply passage 43 and the drainage passage 44 to cool the absorber 4 from the outer periphery. In the evaporator 5, water contained in the container is evaporated by the evaporation heater 51, and steam is supplied to the heat transfer tube P through the flow path 51. On the other hand, the absorbing liquid is supplied from above the heat transfer tube P from the absorbing liquid tank 3. In the heat transfer tube P, the supplied water vapor is absorbed by the absorbing liquid and flows into the solution tank 6 through the flow path 42. In the flow path 42, the density of the diluted absorption liquid is measured by the densitometer 81. The solution tank 6 is equipped with a temperature adjustment heater 61, which concentrates the diluted absorption liquid,
In addition to the absorption liquid having a predetermined concentration, it is refluxed to the absorption liquid tank 3 as a regenerated absorption liquid. The flow path 62 has a flow meter 7 and a density meter 82.
Are installed and each is measured.
本例において、温度40℃の吸収液(濃度58重量%のLiBr
水溶液、界面活性剤を含まず。)を吸収器4の上方より
供給してその内壁を伝わるようにして流下させ、給水路
43からは温度28℃の冷却水を向流で流した。と同時に蒸
発器5から水蒸気を供給した。この際に蒸発温度が10℃
で一定となるように蒸発用ヒーター51を調整した。この
測定方法においては 吸収器4内に配置された伝熱管P
の性能が良ければ 水蒸気の吸収量が多くなり、蒸発器
5での蒸発用ヒーター51の入力が増大すると同時に冷却
水の熱交換量も増大する。In this example, the absorption liquid at a temperature of 40 ° C (concentration of 58 wt% LiBr
Does not contain aqueous solution or surfactant. ) Is supplied from above the absorber 4 so that it flows down along the inner wall of the absorber, and the
From 43, cooling water with a temperature of 28 ° C was flowed in countercurrent. At the same time, water vapor was supplied from the evaporator 5. At this time, the evaporation temperature is 10 ℃
The evaporation heater 51 was adjusted to be constant at. In this measuring method, the heat transfer tube P arranged in the absorber 4
If the performance is good, the amount of water vapor absorbed increases, the input of the evaporation heater 51 in the evaporator 5 increases, and at the same time, the heat exchange amount of the cooling water also increases.
上記の測定実験の結果、本実施例の伝熱管Pの場合は
平滑な内壁の比較資料としての伝熱管P′の場合と比較
すると、蒸発用ヒーター51の入力(実際の場合では 冷
凍能力)が 液膜流量Γ=0.1kg/m・sにおいて約1.5倍
向上した。なお、液膜流量Γは 伝熱管1本あたりの吸
収液質量流量を管内周長さで割った値である。As a result of the above measurement experiment, in the case of the heat transfer tube P of the present embodiment,
Compared with the case of heat transfer tube P'as a reference material for smooth inner wall, the input of the evaporation heater 51 (refrigerating capacity in the actual case) was improved about 1.5 times at liquid film flow rate Γ = 0.1 kg / m · s. . The liquid film flow rate Γ is a value obtained by dividing the absorbed liquid mass flow rate per heat transfer tube by the tube inner peripheral length.
この結果は 前述したように本発明の伝熱管では 流下
した吸収液が 深い溝内に停留することによるマランゴ
ニ対流の助長と共に 流れに直交して溝が設けられてい
るため 吸収液がよく攪拌され、熱伝達及び物質移動の
双方が大幅に促進されたことによるものと考えられる。As a result, as described above, in the heat transfer tube of the present invention, the absorbing liquid is stirred well because the absorbing liquid stays in the deep groove and the groove is provided orthogonally to the flow along with the promotion of Marangoni convection. It is considered that both heat transfer and mass transfer were significantly promoted.
本発明によれば 管内吸収型縦式吸収器用伝熱管におい
て、その内壁に深さの大きい値を設けて 管内を流下する吸収液の膜厚を大きく保持させ、対流を
発生させると同時に その流れと異なる方向に溝が設け
られているので、吸収液の攪拌が十分行われ、さらに伝
熱面積の増大が図られ 熱伝達及び物質移動の双方が大
幅に向上するから、これを用いる管内吸収型の吸収冷凍
機や吸収ヒートポンプなどの吸収器の性能を向上させる
ことができるという効果が奏せられる。According to the present invention, in a heat transfer tube for an in-pipe absorption type vertical absorber, a large depth value is provided on the inner wall of the heat transfer tube to maintain a large film thickness of the absorbing liquid flowing down in the tube to generate convection and at the same time Since the grooves are provided in different directions, the absorption liquid is sufficiently agitated, the heat transfer area is further increased, and both heat transfer and mass transfer are greatly improved. It is possible to improve the performance of the absorber such as the absorption refrigerator and the absorption heat pump.
第1図は 本発明による伝熱管の一実施例の一部断面
図、第2図は 製作した伝熱管の性能測定装置における
主要部の機能の相互関係を示す図、第3図は 本発明に
よる伝熱管の他の実施例の一部断面図である。 図中、1:(伝熱管の)管体、2:(管体1の)内壁、3:吸
収液槽、4:吸収器、41:外管、P:伝熱管(試料)、5:蒸
発器、6:溶液タンク、7:流量計、8(81、82):密度
計。FIG. 1 is a partial cross-sectional view of an embodiment of a heat transfer tube according to the present invention, FIG. 2 is a view showing a mutual relation of functions of main parts in a manufactured heat transfer tube performance measuring apparatus, and FIG. 3 is according to the present invention. It is a partial cross section figure of other examples of a heat transfer tube. In the figure, 1: tube (of heat transfer tube), 2: inner wall (of tube 1), 3: absorbing liquid tank, 4: absorber, 41: outer tube, P: heat transfer tube (sample), 5: evaporation Vessel, 6: solution tank, 7: flow meter, 8 (81, 82): density meter.
Claims (1)
いは水冷され、その多数が垂直に配置される管内吸収型
縦式吸収器の伝熱管において、その内面に該吸収液の流
れる方向と異なる方向に多数の溝が設けられていること
を特徴とする管内吸収型縦式吸収器用伝熱管。1. In a heat transfer tube of an in-tube absorption type vertical absorber in which an absorbing liquid flows inside the pipe, the outside of the pipe is air-cooled or water-cooled, and a large number of them are arranged vertically, the flowing direction of the absorbing liquid on the inner surface thereof. A heat transfer tube for an in-pipe absorption type vertical absorber characterized in that a large number of grooves are provided in different directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62158522A JPH0723821B2 (en) | 1987-06-25 | 1987-06-25 | Heat transfer tube for vertical absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62158522A JPH0723821B2 (en) | 1987-06-25 | 1987-06-25 | Heat transfer tube for vertical absorber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS643474A JPS643474A (en) | 1989-01-09 |
JPH0723821B2 true JPH0723821B2 (en) | 1995-03-15 |
Family
ID=15673576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62158522A Expired - Fee Related JPH0723821B2 (en) | 1987-06-25 | 1987-06-25 | Heat transfer tube for vertical absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723821B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10343049B3 (en) * | 2003-09-16 | 2005-04-14 | Eads Space Transportation Gmbh | Combustion chamber with cooling device and method for producing the combustion chamber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54108053A (en) * | 1978-02-14 | 1979-08-24 | Babcock Hitachi Kk | Heat transmission element |
JPS5941795A (en) * | 1982-09-01 | 1984-03-08 | Toshiba Corp | Heat transfer tube and its manufacture |
JPS5984093A (en) * | 1982-11-02 | 1984-05-15 | Toshiba Corp | Heat transfer tube and manufacture thereof |
JPS62134496A (en) * | 1985-12-06 | 1987-06-17 | Matsushita Electric Ind Co Ltd | Boiling heat transfer tube |
-
1987
- 1987-06-25 JP JP62158522A patent/JPH0723821B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS643474A (en) | 1989-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3315785B2 (en) | Heat transfer tube for absorber | |
JPH01134180A (en) | Heat exchanger tube for absorber | |
JPH04324077A (en) | Reactivative device | |
JPH0723821B2 (en) | Heat transfer tube for vertical absorber | |
JPH0723822B2 (en) | Heat transfer tube for vertical absorber | |
JP2663775B2 (en) | Liquid-filled evaporator | |
KR890004393B1 (en) | Air-cooled absorption chiller | |
JPH0714776Y2 (en) | Water absorber | |
JP2973702B2 (en) | Heat transfer tube for absorption type vertical absorber in tube | |
JPH0827100B2 (en) | Heat transfer tube for absorber | |
JPH01291073A (en) | Heat exchanger tube for absorber | |
JPH01291074A (en) | Heat exchanger tube for vertical absorber | |
JPH0745994B2 (en) | Heat transfer tube for absorber | |
JPH058424Y2 (en) | ||
JPH04278194A (en) | Heat transfer tube for absorber | |
JP2000111291A (en) | Heat transfer tube | |
US1914861A (en) | Refrigeration | |
JP2872083B2 (en) | Regenerator for absorption refrigerator | |
JPS63306371A (en) | Heat exchanger tube for absorber | |
SU506737A1 (en) | Cooling battery | |
JPS63306370A (en) | Heat exchanger tube for absorber | |
JPH0650634A (en) | Method for operating absorption freezer and absorber | |
US2797556A (en) | Combined generator and liquid heat exchanger unit for absorption refrigeration system | |
JPS60599Y2 (en) | low temperature generator | |
JPH0325266A (en) | Air bleed device of air-cooled absorption type cold and hot water supplier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |