[go: up one dir, main page]

JPS62134496A - Boiling heat transfer tube - Google Patents

Boiling heat transfer tube

Info

Publication number
JPS62134496A
JPS62134496A JP27535285A JP27535285A JPS62134496A JP S62134496 A JPS62134496 A JP S62134496A JP 27535285 A JP27535285 A JP 27535285A JP 27535285 A JP27535285 A JP 27535285A JP S62134496 A JPS62134496 A JP S62134496A
Authority
JP
Japan
Prior art keywords
tube
spiral
heat transfer
sections
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27535285A
Other languages
Japanese (ja)
Inventor
Fumitoshi Nishiwaki
文俊 西脇
Hiroyoshi Tanaka
博由 田中
Yoshiyuki Tsuda
善行 津田
Tomoaki Ando
智朗 安藤
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27535285A priority Critical patent/JPS62134496A/en
Publication of JPS62134496A publication Critical patent/JPS62134496A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To increase the capacity of a heat transfer tube, by spirally forming a number of projections, of which cross sections are parallelogram, on the inside wall of a heat transfer tube, by inclining those projections to the upstream side of a main flow, and by providing spiral channels, of which sections are in the shape of 'U' of 'V', on the top and the bottom areas of those projections formed on the inside wall of a heat exchanger. CONSTITUTION:Projections 3, of which cross sections are parallelogram, are provided on the inside wall of a heat transfer tube, forming a number of spiral rows, and spiral channels 6, of which sections are in the shape of 'U', and which are inclined to the upstream side of main flow, are formed between those rows. A fluid in the neighborhood of a tube wall flows, circling the inside of a tube along the inclined spiral channels 6 of which sections are in the shape of 'U'. Since fine 'U' shaped or 'V' shaped spiral channels 7 are provided on the top area of spiral projections 3 and the bottom parts of spiral channels of which sections are in the shape of 'U', capillary effect is produced and the fluid in the bottom part of a tube is raised up to the top of it. In addition, the heat transfer area in a tube is greatly increased, because the width of spiral channels 7 of which sections are in the shape of 'U' of 'V' can be made vary small.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機の蒸発器などのように流体の沸騰、
蒸発を伴う熱交換器に使用する伝熱管に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to boiling of fluids, such as evaporators of air conditioners.
This invention relates to heat exchanger tubes used in heat exchangers that involve evaporation.

従来の技術 従来この種の沸騰用伝熱管は、例えば特公昭ω−279
17号公報に示されているように、第4図に示すような
構造になっていた。すなわち、伝熱管1の管内伝熱叩上
に管軸に対する傾き角がβである複数のU字形あるいは
■字形断面のらせん条溝2を刻設することによって、伝
熱性能を向上させていた。
2. Description of the Related Art Conventionally, this type of boiling heat exchanger tube is known, for example, from the Japanese Patent Publication Show ω-279.
As shown in Publication No. 17, it had a structure as shown in FIG. That is, the heat transfer performance was improved by carving a plurality of spiral grooves 2 having a U-shaped or ■-shaped cross section and having an inclination angle of β with respect to the tube axis on the heat transfer groove inside the heat transfer tube 1.

発明が解決しようとする問題点 このような構成のために、管内壁に刻設されたらせん条
溝2により管内伝熱性能が増加するとともに、管壁近傍
を流れる流体が乱されることから、管内伝熱性能は向上
する。しかし、管内壁全面にわたって溝深さhおよび溝
幅Wが一様に小さならせん条溝2を管内壁面に刻設した
のでは、管壁近傍を流れる流体がらせん条溝2から受け
る管内壁面に沿う旋回力は非常に小さくなってしまう。
Problems to be Solved by the Invention Due to such a configuration, the heat transfer performance within the tube increases due to the spiral grooves 2 carved on the inner wall of the tube, and the fluid flowing near the tube wall is disturbed. The heat transfer performance inside the pipe is improved. However, if the spiral grooves 2 with uniformly small groove depth h and groove width W are carved on the pipe inner wall surface over the entire surface of the pipe inner wall, the fluid flowing near the pipe wall will not be able to pass along the pipe inner wall surface which is received from the spiral grooves 2. The turning force becomes very small.

また、管壁近傍を流れる流体の乱れも小さくなる。Further, turbulence in the fluid flowing near the pipe wall is also reduced.

一方、溝深さhおよび溝幅Wを犬きくすると、管底部の
液体を管類部へ引き上げようとする毛細管力が小さくな
ってしまい、管類部には液膜が形、成されないことにな
る。このように、第4図に示すような構造では、らせん
条溝2の寸法に使用可能範囲が存在することになるので
、ら?ん条溝2の溝幅Wを小さくし、溝の数を増大させ
ることによって管内伝熱面積を平滑管のそれと比較して
著しく増大させることは不可能であった。以上の理由の
ために、従来の沸騰用伝熱管1は、らせん条溝2による
伝熱促進効果を十分に利用できていなかった。
On the other hand, if the groove depth h and the groove width W are set too large, the capillary force that tries to pull up the liquid at the bottom of the tube to the tubes becomes small, and a liquid film is not formed in the tubes. Become. In this way, in the structure shown in FIG. 4, there is a usable range for the dimensions of the spiral groove 2. It has been impossible to significantly increase the heat transfer area within the tube compared to that of a smooth tube by reducing the groove width W of the grooves 2 and increasing the number of grooves. For the above reasons, the conventional boiling heat exchanger tube 1 could not fully utilize the heat transfer promoting effect of the spiral grooves 2.

本発明は、前記従来の問題点を解消するものであり、壁
面のらせん状突起による管内流体の旋回運動、U字形あ
るいは■字形断面の細がならせん溝による毛細管力およ
び管内伝熱面積増大による伝熱促進効果を有効に利用し
、伝熱性能の優れた沸騰用伝熱管を提供するものである
The present invention solves the above-mentioned conventional problems, and uses the swirling motion of the fluid inside the tube due to the spiral protrusion on the wall surface, the capillary force due to the narrow spiral groove with a U-shaped or ■-shaped cross section, and an increase in the heat transfer area inside the tube. The present invention provides a boiling heat transfer tube that effectively utilizes the heat transfer promotion effect and has excellent heat transfer performance.

問題点を解決するための手段 本発明は前記問題点を解決するため、伝熱管の管内金相
変化する流体の流路とし、前記伝熱管の内壁面上に横断
面が平行四辺形である突起をらせん状に多数形成し、前
記らせん状突起を主流上流方向に傾けるとともに、前記
らせん状突起上面およびらせん状突起間の伝熱管内壁面
上にU字形あるいはV字形断面のらせん溝を設けるもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a flow path for a fluid that changes the metallic phase inside the heat exchanger tube, and a protrusion having a parallelogram cross section on the inner wall surface of the heat exchanger tube. A large number of spiral projections are formed in a spiral shape, the spiral projections are inclined toward the upstream direction of the mainstream, and spiral grooves with a U-shaped or V-shaped cross section are provided on the upper surface of the spiral projections and on the inner wall surface of the heat exchanger tube between the spiral projections. be.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

伝熱管の内壁に突設された横断面が平行四辺形である突
起はらせん状の列を多数形成し、その列の間には主流上
流方向に傾いたも形断面のらせん溝を形成する。したが
って、管壁近傍を流れる流体は傾いたも形断面のらせん
溝に沿って管内を旋回して流れることになる。また、こ
のらせん状突起の上面およびα形断面のらせん溝底部に
は細かなU字形あるいはV字形断面のらせん溝が設けら
れているため毛細管力が生じて、管底部の液体は管頂部
1と引き上げられる。さらに、U字形あるいはV字形断
面のらせん溝の溝幅を非常に小さくできることから、管
内表面積を著しく増大させることが可能となる。
The protrusions having a parallelogram cross section and protruding from the inner wall of the heat exchanger tube form a number of spiral rows, and between the rows, spiral grooves having a corner-shaped cross section that are inclined toward the upstream direction of the main flow are formed. Therefore, the fluid flowing near the tube wall swirls inside the tube along the spiral groove with the inclined cross-section. In addition, since a fine spiral groove with a U-shaped or V-shaped cross section is provided on the upper surface of this helical protrusion and the bottom of the helical groove with an α-shaped cross section, capillary force is generated, and the liquid at the tube bottom flows into the tube top 1. be lifted up. Furthermore, since the groove width of the spiral groove having a U-shaped or V-shaped cross section can be made very small, it is possible to significantly increase the inner surface area of the pipe.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図に示すように、横断面が平行四辺形であるらせん
状突起3は、その中心線と管軸の交わる角度α(矢印4
で示すように流れる主流部流れの上流方向に作る角度)
が鈍角であるように、伝熱管6の内壁面上に多数突設さ
れている。したがって、ある一つのらせん状突起3aと
その隣りのらせん状突起3bの間には、主流上流方向に
傾いたα形断面のらせん溝6が形成される。さらに、横
断面が平行四辺形であるらせん状突起3の上面およびα
形断面のらせん溝6の底部にはらせん溝6の溝幅に比べ
非常に小さな溝幅を有する■字形断面のらせん連子を設
けている。
As shown in FIG. 1, the spiral protrusion 3 whose cross section is a parallelogram forms an angle α (arrow 4
(Angle made in the upstream direction of the main stream flowing as shown in )
A large number of protrusions are provided on the inner wall surface of the heat exchanger tube 6 so that the angles are obtuse. Therefore, between one spiral projection 3a and the adjacent spiral projection 3b, a spiral groove 6 having an α-shaped cross section tilted in the upstream direction of the mainstream is formed. Furthermore, the upper surface of the spiral protrusion 3 whose cross section is a parallelogram and α
At the bottom of the spiral groove 6 which has a shaped cross section, a spiral link having a square cross section and which has a groove width that is much smaller than the width of the spiral groove 6 is provided.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

横断面が平行四辺形であるらせん状突起3は、その列間
に主流上流方向に傾いたへ形断面のらせん溝6を管内壁
面上に多数形成するので、主流部の流体速度が小さい場
合には、第2図に示すように突起3の上面近くの液体は
突起3と溝6に沿って矢印8で示すように管内をゆるや
かに旋回しながら流れる。一方、主流部の流体速度が大
きい場合には、第3図に示すように突起3の上面近くの
液体は溝6の中に流入せず矢印4で吊上た主流の流れ方
向とほぼ平行に溝6の上部をすべるように流れる(その
流れ方向を矢印9で示す。)。その結果、らせん溝6の
中には時計回りの循環渦10 aが生じ、しかもその循
環渦10 aは突起3の上面近くの液体すなわち管内主
流部の液体に引きずられてらせん溝6内を矢印10bで
示すように流れていく。すなわち、溝6内で循環運動し
ている液体は循環運動しながら、らせん溝6に沿って管
内を旋回運動することになる。循環渦10aの渦強さは
、突起3の中心線と管軸の交わる角度αが900 より
太きいために、非常に強いものとなり、伝熱面から溝6
内の液体への熱伝達量は非常に大きくなる。さらに、溝
6の上部近傍で溝6内の液体は主流部の液体と熱交換を
行うため、伝熱面から主流部の液体への熱伝達量は非常
に大きい。以上のように、横断面が平行四辺形であるら
せん状突起3を突設、シ込形断面の太きならせん溝6を
形成することにより、主流部の流れにかかわらず、管内
壁面近傍の液体は管内壁面に沿って旋回運動を行う。こ
の結果、壁面近傍の流れが乱され熱伝達量が増大するこ
とになる。
The spiral protrusions 3 having a parallelogram cross section form a large number of helical grooves 6 having a helical cross section tilted in the upstream direction of the main stream on the inner wall surface of the pipe between the rows thereof, so that when the fluid velocity in the main flow section is small, As shown in FIG. 2, the liquid near the upper surface of the protrusion 3 flows along the protrusion 3 and the groove 6 while gently swirling inside the tube as shown by the arrow 8. On the other hand, when the fluid velocity in the main flow part is high, the liquid near the top surface of the protrusion 3 does not flow into the groove 6, as shown in FIG. It flows slidingly over the upper part of the groove 6 (the flow direction is indicated by an arrow 9). As a result, a clockwise circulating vortex 10a is generated in the spiral groove 6, and the circulating vortex 10a is dragged by the liquid near the top surface of the protrusion 3, that is, the liquid in the main part of the tube, and moves inside the spiral groove 6 as shown by the arrow. It flows as shown at 10b. That is, the liquid circulating within the groove 6 moves in a circular motion within the pipe along the spiral groove 6 while circulating. The vortex strength of the circulating vortex 10a is very strong because the angle α where the center line of the protrusion 3 intersects with the tube axis is greater than 900°, and the strength of the vortex is very strong, and
The amount of heat transferred to the liquid within is very large. Furthermore, since the liquid in the groove 6 exchanges heat with the liquid in the main stream near the top of the groove 6, the amount of heat transferred from the heat transfer surface to the liquid in the main stream is very large. As described above, by protruding the helical protrusion 3 with a parallelogram cross section and forming the thick helical groove 6 with a recessed cross section, regardless of the flow in the main flow section, the The liquid performs a swirling motion along the inner wall surface of the tube. As a result, the flow near the wall surface is disturbed and the amount of heat transfer increases.

また、横断面が平行四辺形であるらせん状突起3の上面
およびα形断面のらせん溝6の底部に設けられた非常に
小さな溝幅を有する細かいV字形断面のらせん溝7によ
って、管底部の液体を管頂部へ引き上げようとする毛細
管力が生じる。したがって、管底部に液体がたまり、管
頂部に液体が存在しないということはなく、液膜を管内
全面で均一化しようとする力が作用することになる。
In addition, the helical groove 7 with a fine V-shaped cross section and a very small groove width provided on the upper surface of the helical protrusion 3 whose cross section is a parallelogram and the bottom of the helical groove 6 with an α-shaped cross section allows the bottom of the tube to be Capillary forces are created which tend to pull the liquid up to the top of the tube. Therefore, it is not the case that liquid accumulates at the bottom of the tube and no liquid exists at the top of the tube, and a force acts to make the liquid film uniform over the entire surface of the tube.

このため、液膜は薄くなり、熱伝達は促進される。Therefore, the liquid film becomes thinner and heat transfer is promoted.

さらに、上述のように非常に小さな溝幅を有する細かい
V字形断面のらせん溝7を多数設けているために、大幅
に管内表面積を増大させることができる。このため管内
熱伝達量は増大する。
Furthermore, since a large number of spiral grooves 7 having a fine V-shaped cross section and a very small groove width are provided as described above, the inner surface area of the tube can be significantly increased. Therefore, the amount of heat transfer within the tube increases.

なお、らせん状突起3の中心線と管軸の交わる角度αお
よびらせん状突起3の幅あるいは高さが各々の突起で異
なっていても、上記と同様の効果が得られる。また、伝
熱管6の内壁面に横断面が平行四辺形であるらせん状突
起3を多数突設し、その突起3の上面および  形断面
のらせん溝6の底部に細かなV字形断面のらせん溝7を
刻設した後、管内にサンドブラスト処理あるいはエツチ
ング処理などを施し、管内表面を粗面とすれば、伝熱面
近傍の流れの乱れを一層増大させることになり、伝熱性
能はさらに増大することになる。
Note that even if the angle α at which the center line of the spiral protrusion 3 intersects with the tube axis and the width or height of the helical protrusion 3 are different for each protrusion, the same effect as described above can be obtained. Further, a large number of helical protrusions 3 having a parallelogram cross section are protruded from the inner wall surface of the heat transfer tube 6, and a fine helical groove having a V-shaped cross section is formed on the upper surface of the protrusions 3 and the bottom of the helical groove 6 having a shaped cross section. After carving 7, if the inside of the tube is subjected to sandblasting or etching to make the inside surface rough, the turbulence of the flow near the heat transfer surface will further increase, and the heat transfer performance will further increase. It turns out.

発明の効果 以上のように、本発明の沸騰用伝熱管は、伝熱管の管内
を相変化する流体の流路とし、前記伝熱管の内壁面上に
横断面が平行四辺形である突起をらせん状に多数形成し
、前記らせん状突起を主流上流方向に傾けるとともに、
前記らせん状突起上面およびらせん状突起間の伝熱管内
壁面上にU字形あるいはV字形断面のらせん溝を設けた
ものであるから、管壁近傍を流れる流体にα形断面のら
せん溝内での循環運動と管内壁に沿う旋回運動をうなが
すとともに、細かなU字形あるいはV字形断面のらせん
溝の毛細管力により管内液膜厚さを均一化し、しかも伝
熱面積を増大させることが可能であり、沸騰用伝熱管の
伝熱性能を著しく高めることができる。したがって、本
発明は実用的に極めて有用である。
Effects of the Invention As described above, the boiling heat exchanger tube of the present invention uses the inside of the heat exchanger tube as a flow path for a phase-changing fluid, and has spiral protrusions having a parallelogram cross section on the inner wall surface of the heat exchanger tube. a large number of spiral projections are formed, and the spiral projections are tilted in the upstream direction of the mainstream,
Since a spiral groove with a U-shaped or V-shaped cross section is provided on the upper surface of the spiral protrusion and on the inner wall surface of the heat transfer tube between the spiral protrusions, the fluid flowing near the tube wall has a flow inside the helical groove with an α-shaped cross section. In addition to promoting circulation motion and swirling motion along the inner wall of the tube, it is possible to equalize the thickness of the liquid film inside the tube and increase the heat transfer area by the capillary force of the spiral groove with a narrow U-shaped or V-shaped cross section. The heat transfer performance of boiling heat transfer tubes can be significantly improved. Therefore, the present invention is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による沸騰用伝熱管の縦断面
図、第2図a、bおよび第3図a、bはそれぞれ第1図
の要部拡大縦断面図、第4図a。 bばそれぞれ従来の沸騰用伝熱管の縦断面図および横断
面図である。 3・・・−・・らせん状突起、5・・・・・・伝熱管、
6・・・形断面のらせん溝、ア・・・・・・細かなV字
形断面のらせん溝。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第4
図 (b)
FIG. 1 is a vertical cross-sectional view of a boiling heat exchanger tube according to an embodiment of the present invention, FIGS. 2 a, b and 3 a, b are enlarged vertical cross-sectional views of main parts of FIG. . FIG. 1b is a vertical cross-sectional view and a cross-sectional view of a conventional boiling heat exchanger tube, respectively. 3...--Spiral projection, 5... Heat exchanger tube,
6... Spiral groove with a shaped cross section, A... Spiral groove with a fine V-shaped cross section. Name of agent: Patent attorney Toshio Nakao Haga 1 person No. 4
Figure (b)

Claims (1)

【特許請求の範囲】[Claims] 伝熱管の内壁面上に横断面が平行四辺形である突起をら
せん状に多数形成し、前記らせん状突起を主流上流方向
に傾けるとともに、前記らせん状突起上面およびらせん
状突起間の伝熱管内壁面上にU字形あるいはV字形断面
のらせん溝を設けた沸騰用伝熱管。
A large number of protrusions having a parallelogram cross section are formed in a spiral shape on the inner wall surface of the heat exchanger tube, and the helical protrusions are tilted in the upstream direction of the mainstream, and the upper surface of the helical protrusions and the interior of the heat exchanger tube between the helical protrusions are A boiling heat exchanger tube with a U-shaped or V-shaped spiral groove on the wall.
JP27535285A 1985-12-06 1985-12-06 Boiling heat transfer tube Pending JPS62134496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27535285A JPS62134496A (en) 1985-12-06 1985-12-06 Boiling heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27535285A JPS62134496A (en) 1985-12-06 1985-12-06 Boiling heat transfer tube

Publications (1)

Publication Number Publication Date
JPS62134496A true JPS62134496A (en) 1987-06-17

Family

ID=17554274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27535285A Pending JPS62134496A (en) 1985-12-06 1985-12-06 Boiling heat transfer tube

Country Status (1)

Country Link
JP (1) JPS62134496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643474A (en) * 1987-06-25 1989-01-09 Hitachi Cable Heat transfer tube for vertical type absorber
JPS643475A (en) * 1987-06-25 1989-01-09 Hitachi Cable Heat transfer tube for vertical type absorber
FR2893124A1 (en) * 2005-11-09 2007-05-11 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS HAVING IMPROVED EXPANSION RESISTANCE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643474A (en) * 1987-06-25 1989-01-09 Hitachi Cable Heat transfer tube for vertical type absorber
JPS643475A (en) * 1987-06-25 1989-01-09 Hitachi Cable Heat transfer tube for vertical type absorber
JPH0723822B2 (en) * 1987-06-25 1995-03-15 日立電線株式会社 Heat transfer tube for vertical absorber
FR2893124A1 (en) * 2005-11-09 2007-05-11 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS HAVING IMPROVED EXPANSION RESISTANCE
WO2007054642A1 (en) * 2005-11-09 2007-05-18 Trefimetaux Grooved tubes for heat exchangers with better resistance to expansion

Similar Documents

Publication Publication Date Title
JP7212671B2 (en) Improved process-enhanced flow reactor
US5152337A (en) Stack type evaporator
US5109919A (en) Heat exchanger
CN109737793B (en) A bionic wave fin for air conditioner heat exchanger
US5927392A (en) Heat exchanger fin for air conditioner
JPH07151108A (en) Piffuser
EP0415584B1 (en) Stack type evaporator
JPH0248010A (en) Device for separating liquid droplets from a gas stream
JPS62134496A (en) Boiling heat transfer tube
JPS59119192A (en) heat exchanger tube
JPH0158440B2 (en)
JP3957021B2 (en) Heat exchanger
JPS616590A (en) Finned heat exchanger
JPH07190663A (en) Heating tube
JPH05322477A (en) Boiling heat transfer surface
JPH0379058U (en)
JPS6199097A (en) Finned heat exchanger
JPS60194292A (en) Heat exchanger equipped with fin
JP2000097590A (en) Plate-type heat exchanger
JPH0237293A (en) Plate fin tube heat exchanger
JPS60181591A (en) Heat exchanger
JPS6021670Y2 (en) Immersion coil heat exchanger
JPS60194290A (en) Heat exchanger equipped with fins
JPH0523514A (en) Gas-water separator
JPH04126998A (en) Boiling heat transfer tube