[go: up one dir, main page]

JPH07237915A - Fine chrome carbide and method for producing the same - Google Patents

Fine chrome carbide and method for producing the same

Info

Publication number
JPH07237915A
JPH07237915A JP6049999A JP4999994A JPH07237915A JP H07237915 A JPH07237915 A JP H07237915A JP 6049999 A JP6049999 A JP 6049999A JP 4999994 A JP4999994 A JP 4999994A JP H07237915 A JPH07237915 A JP H07237915A
Authority
JP
Japan
Prior art keywords
fine
chromium carbide
chromium
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6049999A
Other languages
Japanese (ja)
Other versions
JP2958851B2 (en
Inventor
Akihide Matsumoto
明英 松本
Shigeyoshi Mori
茂芳 森
Yoshihiro Minato
嘉洋 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd, Sumitomo Electric Industries Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP6049999A priority Critical patent/JP2958851B2/en
Publication of JPH07237915A publication Critical patent/JPH07237915A/en
Application granted granted Critical
Publication of JP2958851B2 publication Critical patent/JP2958851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【目的】 均粒微細でかつ高純度である炭化クロム及び
その製造方法を提供することにある。 【構成】 微粒炭化クロムは,全炭素含有量が5.5〜
13.5wt%であり,酸素の含有量が0.3wt%以
下,鉄の含有量0.05wt%以下で残部が実質的にク
ロムからなり,粒径1μm以下である。この微粒炭化ク
ロムは,酸化クロム粉末と炭素粉末とを混合し,バイン
ダーを用いてペレット状に成形後,このペレットを回転
炉を用いて水素気流中において,1100〜1250℃
で処理することにより製造される。
(57) [Summary] [Object] To provide a chromium carbide having a uniform grain size and high purity, and a method for producing the same. [Structure] Fine-grained chromium carbide has a total carbon content of 5.5 to
The content is 13.5 wt%, the oxygen content is 0.3 wt% or less, the iron content is 0.05 wt% or less, the balance is substantially chromium, and the particle size is 1 μm or less. This fine-grained chromium carbide is obtained by mixing chromium oxide powder and carbon powder and shaping them into pellets using a binder, and then using pellets in a hydrogen stream in a rotary furnace at 1100 to 1250 ° C.
It is manufactured by treating with.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,炭化クロム及びその製
造方法に関し,詳しくは,超微粒合金,サーメット,セ
ラミックス等に用いられる微粒炭化クロム及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to chromium carbide and a method for producing the same, and more particularly to fine chromium carbide used for ultrafine alloys, cermets, ceramics and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年,超微粒超硬合金,サーメット,セ
ラミックス等に炭化クロムが使用されている。そして,
すべての分野において,その工具寿命の長期化が要望さ
れており,そのためには,従来以上に均粒,微細かつ高
純度の炭化クロムが必要とされている。
2. Description of the Related Art In recent years, chromium carbide has been used for ultrafine cemented carbide, cermet, ceramics and the like. And
In all fields, there is a demand for longer tool life, and for that purpose, chromium carbide with even grain size, finer and higher purity than ever before is required.

【0003】ここで,酸化タングステン(WO3 )や酸
化モリブデン(MoO3 )は水素により容易に還元され
るが,酸化クロムは熱力学見地より水素による還元は不
可能である。したがって,炭化クロムを製造するには,
酸化クロム粉末と炭素粉末の混合粉を還元炭化する必要
がある。表1は,標準生成エンタルピーより求めた炭化
物1モルを得るのに必要な熱量を示す(単位,Kcal)。
表1から,IVa,Va,VIa族の酸化物を炭素粉末
で還元させる反応は,十分な熱の供給が必要である。
Here, tungsten oxide (WO 3 ) and molybdenum oxide (MoO 3 ) are easily reduced by hydrogen, but chromium oxide cannot be reduced by hydrogen from the viewpoint of thermodynamics. Therefore, to produce chromium carbide,
It is necessary to reduce and carbonize the mixed powder of chromium oxide powder and carbon powder. Table 1 shows the amount of heat required to obtain 1 mol of carbide determined from the standard enthalpy of formation (unit, Kcal).
From Table 1, it is necessary to supply sufficient heat for the reaction of reducing the oxides of group IVa, Va and VIa with carbon powder.

【0004】[0004]

【表1】 ここで,近年の炭化クロムの製造方法を簡単に述べる。
近年の炭化クロムの製造方法には,次の3種のタイプが
ある。その第1の方法は,金属クロム粉末と炭素粉末の
混合物をH2 気流中2000℃以上の温度域にて,プッ
シャータイプの連続炉やバッチタイプの真空炉中で炭化
処理を行う方法である(以下,従来技術1と呼ぶ)。ま
た,第2の方法は,酸化クロムに鉄族金属を加えた粉末
を浸炭性雰囲気にて900〜1000℃で気相炭化する
方法である(特開昭50−17040号公報参照,以
下,従来技術2と呼ぶ)。また,第3の方法は,酸化ク
ロムと炭素粉末とを混合し,H2 気流中1250℃以上
の温度域にて,プッシャータイプの連続炉やバッチタイ
プの真空炉中で炭化処理を行う方法である(特開昭54
−8361号公報,特開昭61−209907号公報参
照,以下,従来技術3と呼ぶ)。ここで,プッシャータ
イプの連続炉とは,円筒状の黒鉛の両端に直流電流を流
して加熱し,その後,所定の温度になった炉に,黒鉛で
できたボートの中に処理物を適当量充填して,プッシャ
ーで順次送っていく炉である。
[Table 1] Here, a recent method for producing chromium carbide will be briefly described.
There are the following three types of methods for producing chromium carbide in recent years. The first method is a method in which a mixture of metallic chromium powder and carbon powder is carbonized in a pusher type continuous furnace or a batch type vacuum furnace in a temperature range of 2000 ° C. or higher in an H 2 stream ( Hereinafter, it will be referred to as Prior Art 1). The second method is a method of vapor-phase carbonizing a powder obtained by adding an iron group metal to chromium oxide at 900 to 1000 ° C. in a carburizing atmosphere (see Japanese Patent Laid-Open No. 50-17040, hereinafter, conventional method). Called Technology 2). The third method is a method in which chromium oxide and carbon powder are mixed and carbonized in a pusher type continuous furnace or a batch type vacuum furnace in a temperature range of 1250 ° C. or higher in an H 2 stream. There is (JP-A-54
-8361, JP-A-61-209907, hereinafter referred to as Prior Art 3). Here, the pusher type continuous furnace means that a direct current is applied to both ends of a cylindrical graphite to heat it, and then the furnace is heated to a predetermined temperature, and an appropriate amount of the processed material is put into a boat made of graphite. It is a furnace that is filled and sent sequentially with pushers.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,従来技
術1で示された方法は,炭化処理温度が炭化クロムの融
点以上なので,炭化クロム粒子が焼結し,微粉末を得る
ためには,後工程での強力な粉砕が必要であり,コスト
的に不利である。
However, in the method shown in the prior art 1, since the carbonization temperature is higher than the melting point of chromium carbide, the chromium carbide particles sinter and the fine powder is obtained by a post-process. It requires strong crushing at, which is disadvantageous in cost.

【0006】また,従来技術2で示された方法は,微粉
末を低い炭化温度で製造可能であるが,後工程での鉄族
金属の除去が必要であり,また生産性が悪くコスト的に
不利になるという欠点がある。
In the method shown in the prior art 2, fine powder can be produced at a low carbonization temperature, but it is necessary to remove the iron group metal in the subsequent process, and the productivity is poor and the cost is low. It has the disadvantage of being at a disadvantage.

【0007】この従来技術3の方法では,プッシャータ
イプの連続炉やバッチタイプの真空炉中で炭化処理を行
う。しかし,酸化クロムの還元反応は吸熱反応なため,
ボートの中心部まで熱が伝達されにくく,ボート内で温
度格差を生じるため,中心部の酸化クロムを還元炭化す
るためには,多くの余分な熱を加えなければなならな
い。この結果,粒径1μm以上かつ,粒度分布の広い炭
化クロムとなる欠点がある。また,炉内部で温度格差を
少なくするには,その充填量を大幅に減らせなければな
らず,非生産的である。
According to the method of the prior art 3, the carbonization process is performed in a pusher type continuous furnace or a batch type vacuum furnace. However, since the reduction reaction of chromium oxide is an endothermic reaction,
Since heat is not easily transferred to the center of the boat and a temperature difference occurs within the boat, a large amount of extra heat must be added to reduce and carbonize the chromium oxide in the center. As a result, there is a drawback that the chromium carbide has a particle size of 1 μm or more and has a wide particle size distribution. Also, in order to reduce the temperature difference inside the furnace, the filling amount must be greatly reduced, which is unproductive.

【0008】そこで,本発明の技術的課題は,均粒微細
でかつ高純度である炭化クロム及びその製造方法を提供
することにある。
[0008] Therefore, a technical object of the present invention is to provide a chromium carbide having a uniform grain size and a high purity, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは,均粒,微
細且つ高純度の炭化クロムを得るために,下記方法を見
出だしたものである。
[Means for Solving the Problems] The present inventors have found out the following method in order to obtain chromium carbide of uniform grain size, fine and high purity.

【0010】即ち,本発明によれば,全炭素含有量が
5.5〜13.5wt%であり,酸素の含有量が0.3
wt%以下,鉄の含有量0.05wt%以下で残部が実
質的にクロムからなり,粒径1μm以下であることを特
徴とする微粒炭化クロムが得られる。
That is, according to the present invention, the total carbon content is 5.5 to 13.5 wt% and the oxygen content is 0.3.
A fine chromium carbide is obtained which is characterized by having a content of not more than wt% and an iron content of not more than 0.05 wt%, the balance being substantially chromium, and having a particle size of not more than 1 μm.

【0011】ここで,本発明において,全炭素含有量を
5.5〜13.5wt%としたのは,切削,耐摩工具等
に使用される炭化クロムは,Cr3 2 ,Cr7 C3 ,
Cr236 のうちのいずれかの形態であり,これらの炭
化物の炭素含有量が前述の数値を取るからである。
Here, in the present invention, the total carbon content is set to 5.5 to 13.5 wt% because the chromium carbides used for cutting and abrasion resistant tools are Cr 3 C 2 , Cr 7 C 3,
This is because it is in any form of Cr 23 C 6 and the carbon content of these carbides takes the above-mentioned numerical values.

【0012】また,本発明において,酸素の含有量を
0.3%以下としたのは,0.3%を越える酸素を含有
すると微粒炭化クロムを用いて製造された材料,例え
ば,工具中にポアとして残り,工具の寿命を減少させる
からである。
Further, in the present invention, the oxygen content is set to 0.3% or less because the material produced by using fine grained chromium carbide when oxygen content exceeds 0.3%, for example, in a tool. This is because they remain as pores and reduce the tool life.

【0013】また,本発明において,鉄の含有量を0.
05%以下としたのは,鉄が微粒炭化クロムを用いた合
金中で正常な相と異なる相を形成し,工具の寿命を減少
させるからである。
In the present invention, the iron content is set to 0.
The reason for setting the content to 05% or less is that iron forms a phase different from the normal phase in the alloy using fine-grained chromium carbide and reduces the tool life.

【0014】また,本発明によれば,粒径0.5μm以
下の微粒な酸化クロム粉末と粒径1μm以下の微粒な炭
素粉末とを混合し,バインダーを用いてペレット状に成
形後,このペレットを回転炉を用いて水素気流中におい
て,1100〜1250℃で処理して均粒微粒な炭化ク
ロム粉末を得ることを特徴とする微粒炭化クロムの製造
方法が得られる。
Further, according to the present invention, a fine chromium oxide powder having a particle size of 0.5 μm or less and a fine carbon powder having a particle size of 1 μm or less are mixed and molded into a pellet using a binder, and then the pellet is formed. Is treated in a hydrogen stream in a rotary furnace at 1100 to 1250 ° C. to obtain a uniform-grained fine-grained chromium carbide powder.

【0015】ここで,本発明において,酸化クロム粉末
と炭素粉末の反応は固相と固相の反応であるため,原料
粉末である酸化クロムは,できる限り高純度且つ微粒で
なければならない。その理由は,酸化クロム粉末と炭素
粉末の接触面積を増大させ,迅速に還元炭化反応をさせ
るためである。
In the present invention, since the reaction between the chromium oxide powder and the carbon powder is a solid-phase reaction, the raw material powder, chromium oxide, must be as pure and fine as possible. The reason is that the contact area between the chromium oxide powder and the carbon powder is increased and the reduction carbonization reaction is promptly performed.

【0016】また,本発明において,整粒された造粒ペ
レットは,直径1〜2mm,長さ2〜5mmであること
が好ましい。その理由は,回転炉内でペレットが転がり
易く,かつ十分に還元炭化反応をさせるためである。こ
れ以上の大きさでは,ペレット中心部に未反応部分が発
生し,またこれ以下の大きさでは,回転炉内で詰まりが
発生してしまうからである。
In the present invention, it is preferable that the granulated pellets that have been sized have a diameter of 1 to 2 mm and a length of 2 to 5 mm. The reason is that the pellets are easy to roll in the rotary furnace, and the reducing carbonization reaction is sufficiently carried out. This is because if the size is larger than this, an unreacted part occurs in the center of the pellet, and if the size is smaller than this, clogging occurs in the rotary furnace.

【0017】また,本発明において,回転炉を用いたの
は,反応ガス(COガス)の除去を迅速にし,更に,原
料粉末を攪拌させながら連続的に供給し,熱を効率良く
伝えることにより固相−固相反応の反応性を高め,酸化
クロム粉末と炭素粉末が素早く炭化反応するようにし,
従来より低い温度で炭化させるためである。
Further, in the present invention, the rotary furnace is used because the reaction gas (CO gas) is removed quickly and the raw material powder is continuously supplied while being stirred to efficiently transfer heat. Increase the reactivity of solid-solid reaction so that chromium oxide powder and carbon powder can quickly carbonize,
This is to carbonize at a lower temperature than before.

【0018】また,本発明において,処理温度を110
0〜1250℃としたのは,1100℃以下の温度で
は,反応が十分ではなく酸素含有量が0.3wt%以上
となるためであり,1250℃以上の温度では,粉末の
粒成長が進み粒径1μm以上となるからである。
In the present invention, the processing temperature is set to 110.
The reason why 0 to 1250 ° C is that the reaction is not sufficient at a temperature of 1100 ° C or lower and the oxygen content becomes 0.3 wt% or more, and the grain growth of the powder proceeds at a temperature of 1250 ° C or higher. This is because the diameter is 1 μm or more.

【0019】[0019]

【作用】本発明においては,微粒な原料を使用すること
により,酸化クロムと炭素粉末との接触面積を増やし,
回転炉を使用し,反応ガスを炉外へ迅速に排出させ,か
つ熱を効率良く伝えることにより,固相−固相反応の反
応性を高め,比較的低い温度で炭化を可能にする。
In the present invention, the contact area between the chromium oxide and the carbon powder is increased by using a fine-grained raw material,
By using a rotary furnace, the reaction gas is quickly discharged to the outside of the furnace, and the heat is efficiently transferred, thereby increasing the reactivity of the solid-solid reaction and enabling carbonization at a relatively low temperature.

【0020】[0020]

【実施例】以下,本発明の実施例について説明する。 (実施例1)粒径0.2μmの酸化クロム(Cr
2 3 )と粒径0.1μmの炭素粉末(C)とをCr3
2 の組成になるように,配合した後,原料粉末を高速
回転混合機にて混合した後,バインダーを使用し,直径
1〜2mm,長さ2〜5mmのペレットに整粒し,得ら
れた造粒体を乾燥して原料粉末を作成した。この造粒体
を回転炉を用いて水素気流中で1100℃で反応せしめ
た。この時回転炉は,内径85mm,長さ2400mm
の黒鉛製の円筒内に,直径40mm,長さ2620mm
の黒鉛製ヒーターを設置したものであり,円筒を3rp
mで回転させ,水平に対して約6度傾けて使用した。回
転炉内は,水素ガスを1.0m3 /時間で流し,且つ黒
鉛製の円筒をヒーターに通電加熱することにより,円筒
内を1100℃に保った。この状態で,回転炉上部より
整粒したペレットを100g/分の割合で投入した。こ
のペレットの炉内滞在時間は約10分であった。このよ
うにして得られた本発明の実施例1に係る炭化クロムの
分析値と製造条件を下記表2の試料1に示した。また,
試料1の粒子構造を示す走査型電子顕微鏡による写真を
図1に示す。本発明の実施例外の比較例1及び2とし
て,炭化温度1000℃で処理した炭化クロムの分析値
(この場合,未還元の酸素が残る)を下記表2の試料2
に,炭化温度1400℃で処理した炭化クロムの分析値
(この場合,粒度が粗くなる)を下記表2の試料3に示
した。
EXAMPLES Examples of the present invention will be described below. (Example 1) Chromium oxide (Cr) having a particle size of 0.2 μm
2 O 3 ) and carbon powder (C) having a particle size of 0.1 μm are used as Cr 3
After blending so that the composition becomes C 2 , the raw material powders are mixed by a high-speed rotary mixer, and then a binder is used to prepare pellets having a diameter of 1 to 2 mm and a length of 2 to 5 mm. The granulated material was dried to prepare a raw material powder. This granulated product was reacted at 1100 ° C. in a hydrogen stream using a rotary furnace. At this time, the rotary furnace has an inner diameter of 85 mm and a length of 2400 mm.
40mm in diameter and 2620mm in length in the graphite cylinder
The graphite heater is installed and the cylinder is 3 rp.
It was rotated at m and tilted about 6 degrees with respect to the horizontal. In the rotary furnace, hydrogen gas was flowed at 1.0 m 3 / hour, and a graphite cylinder was electrically heated by a heater to keep the inside of the cylinder at 1100 ° C. In this state, pellets of which the size was adjusted were charged from the upper part of the rotary furnace at a rate of 100 g / min. The residence time of the pellets in the furnace was about 10 minutes. The analytical values and production conditions of the thus-obtained chromium carbide according to Example 1 of the present invention are shown in Sample 1 of Table 2 below. Also,
A photograph of the particle structure of Sample 1 taken by a scanning electron microscope is shown in FIG. As Comparative Examples 1 and 2 which are implementation exceptions of the present invention, the analytical values of chromium carbide treated at a carbonization temperature of 1000 ° C. (in this case, unreduced oxygen remains) are shown in Sample 2 of Table 2 below.
In addition, the analytical value of the chromium carbide treated at the carbonization temperature of 1400 ° C. (in this case, the grain size becomes coarse) is shown in Sample 3 of Table 2 below.

【0021】比較例3として,酸化クロムと炭素粉末を
配合した粉末を従来法であるプッシャータイプの連続炉
にて,1500℃に保ち,水素ガスを1.2m3 /時間
流し,長さ300mmの黒鉛製ボートに造粒体を入れた
ボートを15分間隔で炉へ挿入した。この時,ヒートゾ
ーン滞在時間は約10分であった。このようにして得ら
れた炭化クロムを衝撃粉砕機で粉砕した炭化クロム粉末
の分析値を下記表2の試料4に超硬ボールにて粉砕した
炭化クロム粉末の分析値を下記2の試料5に示す。ま
た,試料4の粒子構造を示す走査型電子顕微鏡写真を図
2に示す。更に,1800℃で加熱処理した粉末を超硬
ボールにて粉砕した炭化クロム粉末の分析値を下記表2
の試料6に示す。また,試料6の粒子構造を示す走査型
電子顕微鏡写真を図3に示す。下記表1のTCは全炭素
含有量,Oは酸素含有量,Fe(原子吸光法)は鉄含有
量を夫々示している。図1乃至3の比較から,本発明の
実施例に係る試料1の炭化クロム(図1)は,比較例に
係る試料4及び6(図2及び3)よりも,極めて微粒で
あることが判る。 (実施例2)粒径0.2μmのCr2 3 と粒径0.1
μmの炭素粉末とをCr236 になるように配合した
後,原料粉末を高速回転混合機にて混合した後,バイン
ダーを使用し,直径1〜2mm,長さ2〜5mmのペレ
ットに整粒し,得られた造粒体を乾燥して原料粉末とし
た。この造粒体を回転炉を用いて水素気流中1250℃
で反応せしめた。この時の回転炉は,内径85mm,長
さ2400mmの黒鉛製の円筒内に,径40mm,長さ
2620mmの黒鉛製ヒータを設置したものであり,円
筒を3rpmで回転させ,水平に対し約6度傾けて使用
した。回転炉内は,水素ガスを1.0m3 /時間で流
し,かつ,黒鉛製の円筒ヒーターに通電加熱することに
より,円筒内を1250℃に保った。この状態で,回転
炉上部より整粒したペレットを100g/分の割合で投
入した。このペレットの炉内滞在時間は,約10分であ
った。このようにして得られた本発明品の分析値と製造
条件を下記表2の試料7に示した。
As Comparative Example 3, a powder prepared by mixing chromium oxide and carbon powder was kept at 1500 ° C. in a conventional pusher type continuous furnace, hydrogen gas was flowed at 1.2 m 3 / hour, and the length was 300 mm. A boat in which the granulated material was placed in a graphite boat was inserted into the furnace at intervals of 15 minutes. At this time, the stay time in the heat zone was about 10 minutes. The analytical values of the chromium carbide powder obtained by crushing the thus obtained chromium carbide with an impact pulverizer are shown in Sample 4 of Table 2 below, and the analytical values of the chromium carbide powder crushed with cemented carbide balls are shown in Sample 5 of 2 below. Show. A scanning electron micrograph showing the particle structure of Sample 4 is shown in FIG. Further, the analytical values of the chromium carbide powder obtained by crushing the powder heat-treated at 1800 ° C. with a carbide ball are shown in Table 2 below.
Sample 6 is shown. Further, a scanning electron micrograph showing the particle structure of Sample 6 is shown in FIG. In Table 1 below, TC indicates the total carbon content, O indicates the oxygen content, and Fe (atomic absorption method) indicates the iron content. From the comparison of FIGS. 1 to 3, it can be seen that the chromium carbide of the sample 1 according to the example of the present invention (FIG. 1) is much finer than the samples 4 and 6 (FIGS. 2 and 3) according to the comparative example. . (Example 2) Cr 2 O 3 having a particle size of 0.2 μm and a particle size of 0.1
After blending with carbon powder of μm so as to be Cr 23 C 6 , the raw material powders are mixed with a high speed rotary mixer, and then a binder is used to prepare pellets with a diameter of 1 to 2 mm and a length of 2 to 5 mm. The granules were granulated, and the obtained granules were dried to obtain a raw material powder. This granule was heated at 1250 ° C in a hydrogen stream using a rotary furnace.
It was made to react with. The rotary furnace at this time was one in which a graphite heater with an inner diameter of 85 mm and a length of 2400 mm was installed with a graphite heater with a diameter of 40 mm and a length of 2620 mm. I used it at an angle. Hydrogen gas was flowed in the rotary furnace at 1.0 m 3 / hour, and the temperature inside the cylinder was maintained at 1250 ° C. by electrically heating the cylinder heater made of graphite. In this state, pellets of which the size was adjusted were charged from the upper part of the rotary furnace at a rate of 100 g / min. The residence time of the pellets in the furnace was about 10 minutes. The analytical values and production conditions of the product of the present invention thus obtained are shown in Sample 7 of Table 2 below.

【0022】[0022]

【表2】 上記表2から本発明品(試料1及び試料7)は,FSS
S粒径及びBET粒径共に小さく,また,炭素含有量
(TC),O含有量,及びFe含有量も工具の製造に最
も適していることが分かる。また,配合時に炭素粉末量
を変えれば,Cr7 3 やその他の低級炭化物を製造す
ることもできる。
[Table 2] From Table 2 above, the products of the present invention (Sample 1 and Sample 7)
It can be seen that both the S particle diameter and the BET particle diameter are small, and the carbon content (TC), the O content, and the Fe content are most suitable for manufacturing the tool. Also, Cr 7 C 3 and other lower carbides can be produced by changing the amount of carbon powder during compounding.

【0023】[0023]

【発明の効果】以上,説明したように,本発明の微粒炭
化クロムは,高純度かつ,均粒で粒径1μm以下の工具
に適した炭化クロムを提供することができる。
As described above, the fine-grained chromium carbide of the present invention can provide a highly purified chromium carbide having a uniform grain size and a grain size of 1 μm or less, which is suitable for a tool.

【0024】本発明の製造方法は,微粒な原料を使用す
ることにより,低い温度での炭化することができ,コス
ト面で有利になるばかりではなく,量産にも適してい
る。
The production method of the present invention can carbonize at a low temperature by using a fine-grained raw material, which is not only advantageous in terms of cost but also suitable for mass production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る試料1の炭化クロムの粒
子構造を示す走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing a grain structure of chromium carbide of Sample 1 according to an example of the present invention.

【図2】比較例に係る試料4の炭化クロムの粒子構造を
示す走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph showing a grain structure of chromium carbide of Sample 4 according to a comparative example.

【図3】比較例に係る試料6の炭化クロムの粒子構造を
示す走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph showing a grain structure of chromium carbide of Sample 6 according to a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湊 嘉洋 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshihiro Minato 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries Itami Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全炭素含有量が5.5〜13.5wt%
であり,酸素の含有量が0.3wt%以下,鉄の含有量
0.05wt%以下で残部が実質的にクロムからなり,
粒径1μm以下であることを特徴とする微粒炭化クロ
ム。
1. The total carbon content is 5.5 to 13.5 wt%
The oxygen content is 0.3 wt% or less, the iron content is 0.05 wt% or less, and the balance is substantially chromium.
Fine-grained chromium carbide having a particle size of 1 μm or less.
【請求項2】 粒径0.5μm以下の微粒な酸化クロム
粉末と粒径1μm以下の微粒な炭素粉末とを混合し,バ
インダーを用いてペレット状に成形後,このペレットを
回転炉を用いて水素気流中において,1100〜125
0℃で処理して粒径1μm以下の均粒微粒な炭化クロム
粉末を得ることを特徴とする微粒炭化クロムの製造方
法。
2. A fine chromium oxide powder having a particle size of 0.5 μm or less and a fine carbon powder having a particle size of 1 μm or less are mixed and molded into a pellet using a binder, and the pellet is then placed in a rotary furnace. In a hydrogen stream, 1100 to 125
A method for producing fine chromium carbide, which comprises treating at 0 ° C. to obtain a uniform fine chromium carbide powder having a particle diameter of 1 μm or less.
JP6049999A 1994-02-24 1994-02-24 Method for producing fine chromium carbide Expired - Lifetime JP2958851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6049999A JP2958851B2 (en) 1994-02-24 1994-02-24 Method for producing fine chromium carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6049999A JP2958851B2 (en) 1994-02-24 1994-02-24 Method for producing fine chromium carbide

Publications (2)

Publication Number Publication Date
JPH07237915A true JPH07237915A (en) 1995-09-12
JP2958851B2 JP2958851B2 (en) 1999-10-06

Family

ID=12846712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6049999A Expired - Lifetime JP2958851B2 (en) 1994-02-24 1994-02-24 Method for producing fine chromium carbide

Country Status (1)

Country Link
JP (1) JP2958851B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104925810A (en) * 2015-05-20 2015-09-23 河北工程大学 Preparation method for nano chromium carbide powder
CN111484015A (en) * 2020-06-17 2020-08-04 王景军 Smelting method of chromium carbide
CN114506846A (en) * 2022-02-15 2022-05-17 厦门金鹭特种合金有限公司 Production method and production device of superfine carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104925810A (en) * 2015-05-20 2015-09-23 河北工程大学 Preparation method for nano chromium carbide powder
CN111484015A (en) * 2020-06-17 2020-08-04 王景军 Smelting method of chromium carbide
CN114506846A (en) * 2022-02-15 2022-05-17 厦门金鹭特种合金有限公司 Production method and production device of superfine carbide

Also Published As

Publication number Publication date
JP2958851B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4097275A (en) Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture
JP4257690B2 (en) Sintered active metal powders and alloy powders for powder metallurgy applications, methods for their production and their use
WO2007011397A2 (en) Molybdenum metal powder and production thereof
CN109336612B (en) Preparation method of superfine titanium carbonitride powder
KR100346762B1 (en) PRODUCTION METHOD FOR NANOPHASE WC/TiC/Co COMPOSITE POWDER
JP2617140B2 (en) Ultrafine WC powder and method for producing the same
US4454105A (en) Production of (Mo,W) C hexagonal carbide
CN113716565B (en) Superfine tungsten carbide powder and preparation method thereof and hard alloy
JP3413625B2 (en) Method for producing titanium carbonitride powder
JP2958851B2 (en) Method for producing fine chromium carbide
JP2008031016A (en) Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method
JP4405694B2 (en) Titanium carbonitride powder and method for producing the same
US3914113A (en) Titanium carbide preparation
CN106573775A (en) Novel process and product
JPS58213617A (en) Production method of titanium carbonitride powder
JPS58213618A (en) Manufacturing method of composite carbonitride solid solution powder
US3786133A (en) Titanium carbide preparation
JP2593112B2 (en) Method for producing composite carbonitride
JP2700988B2 (en) Fine-grained composite carbide solid solution and method for producing the same
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JPH0233647B2 (en) FUKUGOTANCHITSUKABUTSUKOYOTAIFUNMATSUNOSEIZOHO
JP3801252B2 (en) Method for producing silicon nitride
JPH0375485B2 (en)
JP2003112916A (en) Method for producing high purity pulverized carbonized tungsten powder without necessitating grinding process
JP2007045670A (en) Manufacturing method of metal carbide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990623

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term