[go: up one dir, main page]

JPH0375485B2 - - Google Patents

Info

Publication number
JPH0375485B2
JPH0375485B2 JP59227296A JP22729684A JPH0375485B2 JP H0375485 B2 JPH0375485 B2 JP H0375485B2 JP 59227296 A JP59227296 A JP 59227296A JP 22729684 A JP22729684 A JP 22729684A JP H0375485 B2 JPH0375485 B2 JP H0375485B2
Authority
JP
Japan
Prior art keywords
powder
partial pressure
titanium
nitrogen
nitrogen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59227296A
Other languages
Japanese (ja)
Other versions
JPS61106405A (en
Inventor
Yasuhiro Shimizu
Masaaki Tobioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22729684A priority Critical patent/JPS61106405A/en
Publication of JPS61106405A publication Critical patent/JPS61106405A/en
Publication of JPH0375485B2 publication Critical patent/JPH0375485B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、超硬合金やサーメツト等の切削工具
の原料となる炭窒化チタンを製造するに際し、所
望の組成からのずれの少ない、均粒微細な炭窒化
チタンを製造する方法に関する。 従来技術とその問題点 炭窒化チタンの製造法としては次の3つの方法
に大別することができる。炭化チタン粉末と窒化
チタン粉末の混合物を高温で加熱処理する方法
(方法Aと称する)、金属チタン粉末と炭素粉末の
混合物を窒素雰囲気下で加熱処理する方法(方法
Bと称する)及び酸化チタン粉末と炭素粉末の混
合物を窒素雰囲気下で加熱処理する方法(方法C
と称する)である。 まず方法Aについては、炭窒化チタン中の炭素
と窒素の比率のコントロールがやり易いという利
点があるが、炭化チタンと窒化チタンの固溶を十
分に行わせしめるには、通常2000℃以上の高温を
必要とし、このような高温下では粒子が粗大化す
ると同時に、粒子間で焼結が進行し、固結化する
ため、後行程としての粉砕が困難になるという問
題がある。これを回避するため低温で処理しよう
とすると固溶が完了するために長時間を必要とし
実用的でない。 また、一旦炭化および窒化した炭化チタン、窒
化チタンを原料として用いることはエネルギー的
にも無駄があり、コストの上昇を招く結果とな
る。 次に方法Bについては、微粒の粉末を得ようと
すると、出発原料の金属チタン粉末も微粒のもの
を使わざるを得ず、表面積が大きくなるため粉末
中の残存酸素量が大きくなるという問題がある。
また一般に金属チタン粉末は角ばつた形状をして
おり、得られる粉末もこの形を残しているため、
使用に際して粉砕を必要とする。 最後に方法Cは、出発原料の酸化チタン、炭素
粉末とも1μm以下の微粒の粉末を用いることが
でき、得られる粉末も、これに準ずる細かさのも
のが得られるのみならず、省エネルギー低コスト
という利点がある。それにも拘らず、この方法が
実用化されていないのは出発原料として酸化物を
使うため、得られる粉末中に酸素が残存しやすく
また、加えた炭素粉末が完全に固溶せず遊離炭素
として残ることに大きな原因がある。これを解決
する方法も提案されているが(特開昭58−213617
号)、残留酸素を除くために1700〜2000℃に加熱
しており、ある程度の粒成長は避けられず、また
窒素の割合の高い炭窒化物は、原理的に作り得な
い(後述)問題がある。 また出来る炭窒化物の炭素と窒素の割合もコン
トロールし難いという問題があつた。 問題点を解決するための手段 本発明者は上記問題点を解決し、所望の組成か
らのずれの少ない均粒微細の炭窒化チタンを得る
ためには温度のみでなく、窒素分圧のコントロー
ルが必要ではないかと考えた。 炭窒化チタンを製造する場合、炭化チタンは高
温で安定であるが窒化チタンは高温で金属チタン
と窒素に分解するため、製造中に加熱処理すると
窒素が分離し、所望の炭素と窒素の比率からずれ
たり、チタンに対する非金属元素の割合(Z値)
が低い粉末となり易い。 この分解が生じる圧力(平衡窒素分圧)は炭窒
化物の組成と温度が決まると一義的に決めること
ができる。 本発明者らは、この事実に基づき、酸化チタン
粉末と炭素粉末を所定の割合に混合し、温度と窒
素分圧をコントロールすることにより、所望の炭
素と窒素の割合で、Z値が1に近い、炭窒化チタ
ン粉末を得られることを見出した。 本発明は上記知見に基づきなされたもので、炭
窒化チタン粉末を製造するにあたり、酸化チタン
粉末と該酸化チタンを還元するとともに所望の組
成の炭窒化チタンにまで炭化するのに必要となる
量の炭素粉末を加え、十分に混合した後1600K〜
1900Kの温度でlog PN2=−4X−1.6×104・1/T +Y(10≦Y≦11)を満足する窒素分圧の範囲の
窒素を流しながら加熱し還元および炭窒化を行う
ことにより、所望の組成からのずれの少ない、均
粒微細な炭化チタン粉末を得ることに特徴を有す
るものである。 なお上記計算式でわかる様に、低温で処理すれ
ば同じ窒素分圧でも高窒素含有の粉末を得ること
ができる。しかし、これは平衡論から導かれる帰
結であり、工業的生産を考える場合は、反応速度
論をも考慮する必要がある。本発明者らの実験に
よれば1600K以下の温度では、反応を完了するの
に100時間以上を要し、実際的でないことが判明
した。 また、1900K以上では反応速度は、大きくなる
ものの特に有利になるほどでもなく、逆に粉末の
焼結、粗大化が起こり、後処理工程が複雑になる
問題がある。 また省エネルギーの観点からも、1900K以上の
高温は不利となる。 これらの点から、温度範囲を1600〜1900Kと定
めた。次に、窒素分圧であるが、組成と温度が決
まれば、平衡窒素分圧は決定される。しかし、こ
れは熱力学的データより計算される場合が多く、
真の分圧を計測した例は少ない。 従つて、本発明の実施にあたつては、求められ
た、平衡窒素分圧を厳密に適用することは必ずし
も的確ではなく、ある程度の許容幅をもつた窒素
分圧下で還元および炭窒化を行うことが適当であ
る。 窒素分圧の設定にある程度の幅をもたせてある
のはこの理由による。 この窒素分圧より高い場合は、窒化が進み所望
の組成からずれるとともに、遊離炭素が出やすく
なり、この窒素分圧より低い場合は、窒化が十分
進まず酸素が残りやすくなる傾向となり、好まし
くない。 以下、実施例によつて説明する。 実施例 1 TiCとTiNのモル比が1:9の炭窒化チタンを
製造するため酸化チタン粉末76.0%、炭素粉末
24.0%の割合に乾式混合した後この粉末を直径
1.5mm、長さ10〜15mmの円柱状に造粒し、1600K
〜1800Kの温度で1時間、炭窒化を行つた。その
際、窒素分圧を当該温度のTi(C0.1N0.9)の平衡
窒素分圧に保持しながらN2を流す本発明による
方法と1気圧に保持するだけの従来法の両者にて
製造を行つた。製造された粉末の分析結果と粒度
および計算された組成を、第1表に示す。
TECHNICAL FIELD The present invention relates to a method for producing titanium carbonitride with uniform grains and fine particles with little deviation from a desired composition when producing titanium carbonitride that is a raw material for cutting tools such as cemented carbide and cermet. Prior art and its problems Methods for producing titanium carbonitride can be roughly divided into the following three methods. A method of heat-treating a mixture of titanium carbide powder and titanium nitride powder at high temperatures (referred to as method A), a method of heat-treating a mixture of titanium metal powder and carbon powder under a nitrogen atmosphere (referred to as method B), and titanium oxide powder A method of heat-treating a mixture of carbon powder and carbon powder in a nitrogen atmosphere (Method C
). First, method A has the advantage that it is easy to control the ratio of carbon and nitrogen in titanium carbonitride, but in order to achieve a sufficient solid solution of titanium carbide and titanium nitride, a high temperature of 2000℃ or higher is usually required. Under such high temperatures, the particles become coarser, and at the same time, sintering progresses between the particles, resulting in solidification, making it difficult to grind as a post-process. If an attempt is made to process at a low temperature to avoid this, it will take a long time to complete the solid solution, which is impractical. Furthermore, using titanium carbide or titanium nitride that has been carbonized and nitrided as a raw material is wasteful in terms of energy, resulting in an increase in cost. Next, regarding method B, in order to obtain fine powder, the starting material, titanium metal powder, must also be fine-grained, which increases the surface area, which causes the problem that the amount of residual oxygen in the powder increases. be.
In addition, metal titanium powder generally has an angular shape, and the resulting powder also retains this shape.
Requires pulverization before use. Finally, method C can use fine particles of 1 μm or less for both titanium oxide and carbon powder as starting materials, and the resulting powder not only has a similar fineness, but also saves energy and costs. There are advantages. Despite this, the reason why this method has not been put to practical use is because it uses oxides as starting materials, oxygen tends to remain in the resulting powder, and the added carbon powder does not completely dissolve in solid solution, leaving it as free carbon. There is a big reason why they remain. A method to solve this problem has also been proposed (Japanese Patent Application Laid-Open No. 58-213617
(No.), heating is performed at 1,700 to 2,000℃ to remove residual oxygen, so some grain growth is unavoidable, and carbonitrides with a high proportion of nitrogen cannot be produced in principle (described later). be. Another problem was that it was difficult to control the ratio of carbon and nitrogen in the resulting carbonitride. Means for Solving the Problems In order to solve the above problems and obtain titanium carbonitride with uniform grains and fine particles with little deviation from the desired composition, it is necessary to control not only the temperature but also the nitrogen partial pressure. I thought it might be necessary. When producing titanium carbonitride, titanium carbide is stable at high temperatures, but titanium nitride decomposes into metallic titanium and nitrogen at high temperatures, so nitrogen separates during heat treatment during production, resulting in a change in the desired carbon to nitrogen ratio. The ratio of nonmetallic elements to titanium (Z value)
It tends to become a powder with low The pressure at which this decomposition occurs (equilibrium nitrogen partial pressure) can be uniquely determined by determining the composition and temperature of the carbonitride. Based on this fact, the present inventors mixed titanium oxide powder and carbon powder at a predetermined ratio and controlled the temperature and nitrogen partial pressure to achieve a Z value of 1 at the desired ratio of carbon and nitrogen. It has been found that it is possible to obtain titanium carbonitride powder similar to the above. The present invention has been made based on the above findings, and in producing titanium carbonitride powder, titanium oxide powder and the amount necessary to reduce the titanium oxide and carbonize it to titanium carbonitride with a desired composition. 1600K~ after adding carbon powder and mixing well
By heating at a temperature of 1900K while flowing nitrogen at a nitrogen partial pressure that satisfies log PN 2 = −4 This method is characterized in that titanium carbide powder with uniform grains and fine particles is obtained with little deviation from the desired composition. As can be seen from the above calculation formula, a powder with a high nitrogen content can be obtained even at the same nitrogen partial pressure by processing at a low temperature. However, this is a conclusion derived from equilibrium theory, and when considering industrial production, it is also necessary to consider reaction kinetics. According to experiments conducted by the present inventors, it has been found that at temperatures below 1600 K, it takes more than 100 hours to complete the reaction, which is not practical. In addition, at 1900K or higher, the reaction rate increases, but it is not particularly advantageous, and on the contrary, sintering and coarsening of the powder occur, complicating the post-treatment process. Also, from the point of view of energy conservation, high temperatures of 1900K or higher are disadvantageous. From these points, the temperature range was set at 1600-1900K. Next, regarding the nitrogen partial pressure, once the composition and temperature are determined, the equilibrium nitrogen partial pressure is determined. However, this is often calculated from thermodynamic data;
There are few examples of measuring true partial pressure. Therefore, in carrying out the present invention, it is not necessarily accurate to strictly apply the determined equilibrium nitrogen partial pressure, and reduction and carbonitriding are performed under a nitrogen partial pressure that has a certain allowable range. That is appropriate. This is the reason why the nitrogen partial pressure is set within a certain range. If it is higher than this nitrogen partial pressure, nitriding progresses and the composition deviates from the desired composition, and free carbon tends to come out. If it is lower than this nitrogen partial pressure, nitriding does not progress sufficiently and oxygen tends to remain, which is undesirable. . Examples will be explained below. Example 1 To produce titanium carbonitride with a molar ratio of TiC and TiN of 1:9, 76.0% titanium oxide powder and carbon powder were used.
This powder after dry mixing to a proportion of 24.0% diameter
Granulated into a cylindrical shape of 1.5 mm and 10 to 15 mm long, 1600K
Carbonitriding was carried out at a temperature of ~1800K for 1 hour. At that time, production was carried out using both the method according to the present invention in which N 2 is flowed while maintaining the nitrogen partial pressure at the equilibrium nitrogen partial pressure of Ti (C 0.1 N 0.9 ) at the relevant temperature, and the conventional method in which the nitrogen partial pressure is maintained at 1 atm. I went. The analysis results, particle size and calculated composition of the powder produced are shown in Table 1.

【表】 実施例 2 TiCとTiNのモル比が3:7の炭窒化チタンを
製造するため酸化チタン粉末74.3%;炭素粉末
25.7%の割合に乾式混合した後、この粉末を直径
1.5mm長さ10〜15mmの円柱状に造粒し1700〜
1900Kの温度で1時間、炭窒化を行つた。その
際、窒素分圧を当該温度のTi(C0.3N0.7)の平衡
窒素分圧に保持しながらN2を流す本発明による
方法と1気圧のままN2を流す従来法の両者にて
製造を行つた。製造されて粉末の分析結果と粒度
および計算されて組成を第2表に示す。
[Table] Example 2 To produce titanium carbonitride with a molar ratio of TiC and TiN of 3:7, titanium oxide powder 74.3%; carbon powder
After dry mixing to a proportion of 25.7%, this powder is
Granulate into a cylindrical shape with a length of 1.5 mm and 10 to 15 mm.
Carbonitriding was carried out at a temperature of 1900K for 1 hour. At that time, production was performed using both the method of the present invention in which N 2 is flowed while maintaining the nitrogen partial pressure at the equilibrium nitrogen partial pressure of Ti (C 0.3 N 0.7 ) at the relevant temperature, and the conventional method in which N 2 is flowed at 1 atmosphere. I went there. The analytical results and particle size of the powder produced and the calculated composition are shown in Table 2.

【表】 実施例 3 TiCとTiNのモル比が5:5の炭窒化チタンを
製造するため、酸化チタン粉末72.7% 炭素粉末
27.3%の割合に乾式混合した後この粉末を直径
1.5mm長さ10〜15mmの円柱状に造粒し、1700〜
2000Kの温度で1時間炭窒化を行つた。その際、
窒素分圧を当該温度のTi(C0.5N0.5)の平衡窒素
分圧に保持しながらN2を流す本発明による方法
と1気圧のままN2を流す従来法の両者にて製造
を行つた。製造された粉末の分析結果と粒度およ
び計算された組成を第3表に示す。
[Table] Example 3 To produce titanium carbonitride with a molar ratio of TiC and TiN of 5:5, titanium oxide powder 72.7% carbon powder
This powder after dry mixing to a proportion of 27.3% diameter
Granulate into a cylindrical shape with a length of 1.5 mm and 10 to 15 mm, and
Carbonitriding was carried out at a temperature of 2000K for 1 hour. that time,
Production was carried out using both the method of the present invention in which N 2 is flowed while maintaining the nitrogen partial pressure at the equilibrium nitrogen partial pressure of Ti (C 0.5 N 0.5 ) at the relevant temperature, and the conventional method in which N 2 is flowed at 1 atmosphere. . Table 3 shows the analysis results, particle size and calculated composition of the powder produced.

【表】 実施例 4 TiCとTiNのモル比が8:2の炭窒化チタンを
製造するため酸化チタン粉末70.4%、炭素粉末
29.6%の割合に乾式混合した後、この粉末を直径
1.5mm、長さ10〜15mmの円柱状に造粒し1800〜
2000Kの温度で1時間炭窒化を行つた。その際窒
素分圧を当該温度のTi(C0.8N0.2)の平衡窒素分
圧に保持しながらN2を流す本発明による方法と
1気圧のままN2を流す従来法の両者にて製造を
行つた。製造された粉末の分析結果と粒度、およ
び計算された組成を第4表に示す。
[Table] Example 4 To produce titanium carbonitride with a molar ratio of TiC and TiN of 8:2, 70.4% titanium oxide powder and carbon powder were used.
After dry mixing to a proportion of 29.6%, this powder is
Granulated into cylindrical shapes of 1.5mm and 10-15mm long, 1800~
Carbonitriding was carried out at a temperature of 2000K for 1 hour. At that time, production was carried out using both the method according to the present invention, in which N 2 is flowed while maintaining the nitrogen partial pressure at the equilibrium nitrogen partial pressure of Ti (C 0.8 N 0.2 ) at the relevant temperature, and the conventional method, in which N 2 is flowed at 1 atm. I went. Table 4 shows the analysis results and particle sizes of the powders produced, as well as the calculated compositions.

【表】 発明の効果 以上のように本発明の方法で所望の組成からな
る、均粒微細な炭窒化チタンを得ることが出来
る。
[Table] Effects of the Invention As described above, by the method of the present invention, titanium carbonitride with uniform grains and fine particles having a desired composition can be obtained.

Claims (1)

【特許請求の範囲】 1 酸化チタン粉末と該酸化チタン粉末を還元す
るとともに所望の組成の炭窒化チタンにまで炭化
するのに必要となる量の炭素粉末を加え、十分に
混合した後1600〜1900K(1327℃〜1627℃)の温
度で log PN2=−4X−1.6×104・1/T+Y(10≦Y≦ 11) 但しPN2:窒素分圧(atm) X:TiCN中のC/(C+N) T:絶対温度(K) を満足する窒素分圧の範囲の窒素を流しながら加
熱し、還元および炭窒化を行うことを特徴とする
炭窒化チタン粉末の製造法。
[Claims] 1. Add titanium oxide powder and carbon powder in an amount necessary to reduce the titanium oxide powder and carbonize it to titanium carbonitride with the desired composition, mix thoroughly, and then heat at 1600 to 1900K. At a temperature of (1327℃ to 1627℃) log PN 2 = -4X-1.6×10 4・1/T+Y (10≦Y≦11) where PN 2 : nitrogen partial pressure (atm) C+N) T: A method for producing titanium carbonitride powder, which is characterized by heating while flowing nitrogen at a nitrogen partial pressure that satisfies the absolute temperature (K) to perform reduction and carbonitriding.
JP22729684A 1984-10-29 1984-10-29 Production method of titanium carbonitride powder Granted JPS61106405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22729684A JPS61106405A (en) 1984-10-29 1984-10-29 Production method of titanium carbonitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22729684A JPS61106405A (en) 1984-10-29 1984-10-29 Production method of titanium carbonitride powder

Publications (2)

Publication Number Publication Date
JPS61106405A JPS61106405A (en) 1986-05-24
JPH0375485B2 true JPH0375485B2 (en) 1991-12-02

Family

ID=16858588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22729684A Granted JPS61106405A (en) 1984-10-29 1984-10-29 Production method of titanium carbonitride powder

Country Status (1)

Country Link
JP (1) JPS61106405A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277506A (en) * 1987-05-08 1988-11-15 Masahiro Yoshimura Method for synthesizing titanium nitride, titanium carbide or solid solution of both
CA2322707C (en) * 1998-03-16 2008-12-16 Sep Bienvenu-Lacoste Synthesis method for powder ceramic complexes of refractory metals
CN100443443C (en) * 2005-05-23 2008-12-17 哈尔滨工业大学 Combustion Synthesis Method of Submicron Titanium Nitride, Titanium Carbide and Titanium Carbonitride Powder
CN109721368B (en) * 2019-03-12 2021-06-25 厦门理工学院 Method for preparing titanium carbonitride with titanium carbonitride powder and hydrolyzable titanium source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213617A (en) * 1982-06-07 1983-12-12 Mitsubishi Metal Corp Production method of titanium carbonitride powder

Also Published As

Publication number Publication date
JPS61106405A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US2929126A (en) Process of making molded aluminum nitride articles
CA2037413C (en) Method for producing a fine grained powder consisting of nitrides and carbonitrides of titanium
JPS61151006A (en) Production of aluminum nitride powder
JPH0375485B2 (en)
US4500644A (en) Preparation and composition of sialon grain and powder
CN108517450B (en) Method for preparing vanadium silicon iron nitride
JPS61227910A (en) Manufacturing method of titanium-molybdenum composite carbonitride powder
JPS58213617A (en) Production method of titanium carbonitride powder
JPS58213618A (en) Manufacturing method of composite carbonitride solid solution powder
CN110512132B (en) Gradient hard alloy with long rod-shaped crystal grains as surface layer WC and no cubic phase and preparation method thereof
JPS623007A (en) Production of aluminum nitride powder
CN111847458A (en) Preparation method of high-purity and low-cost molybdenum disilicide
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
US3786133A (en) Titanium carbide preparation
JP2593112B2 (en) Method for producing composite carbonitride
JP2958851B2 (en) Method for producing fine chromium carbide
JPH0649565B2 (en) Method for producing α-type silicon nitride powder
JPS58213619A (en) Manufacturing method of composite carbonitride solid solution powder
JPH0242765B2 (en)
JPS58213606A (en) Manufacturing method of titanium nitride powder
JPS61132511A (en) Production of tib2 powder
JPH04321505A (en) Production of aluminum nitride
JPS6172606A (en) Production of hexagonal boron nitride with good sintering properties
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
KR820000588B1 (en) Process for the production of a hard solid solution