JPH07226223A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPH07226223A JPH07226223A JP6035457A JP3545794A JPH07226223A JP H07226223 A JPH07226223 A JP H07226223A JP 6035457 A JP6035457 A JP 6035457A JP 3545794 A JP3545794 A JP 3545794A JP H07226223 A JPH07226223 A JP H07226223A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- fuel cell
- high temperature
- heat load
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000007789 gas Substances 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 210000004027 cell Anatomy 0.000 claims description 27
- 210000005056 cell body Anatomy 0.000 claims description 12
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 238000002407 reforming Methods 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 3
- 238000010248 power generation Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 9
- 239000000498 cooling water Substances 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 239000003345 natural gas Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工場、ホテル、病院等
の施設に電力及び熱を供給する需要地設置型の燃料電池
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demand location type fuel cell for supplying electric power and heat to facilities such as factories, hotels and hospitals.
【0002】[0002]
【従来の技術】図1はこの種の燃料電池の概略系統図を
示したもので、燃料改質装置1には天然ガスとエゼクタ
7で吸入された水蒸気とが供給され、これらを触媒中で
反応させることによって得られた水素が燃料電池本体3
へ供給され、ここから出る排ガスの熱が排ガス凝縮器2
で回収される。燃料電池本体3では水素と空気中の酸素
とが反応して電気と熱を発生する。この電気は直流であ
るから、インバータ4で一般用途用の交流に変換され、
燃料電池本体3内で発生する熱は排熱回収装置5で回収
される。また排ガス凝縮器2で回収された水は、蒸気発
生器6で燃料電池本体3からの排熱によって蒸気に変換
され、上記エゼクタ7へ送られる。このように燃料電池
全体のエネルギ利用効率はきわめて高く、発電効率約4
0%、排熱回収効率約40%、排気等により廃棄される
熱は約20%である。2. Description of the Related Art FIG. 1 is a schematic system diagram of a fuel cell of this type, in which natural gas and water vapor taken in by an ejector 7 are supplied to a fuel reformer 1 and these are provided in a catalyst. The hydrogen obtained by the reaction is the fuel cell body 3
The heat of the exhaust gas supplied to the exhaust gas condenser 2
Will be collected at. In the fuel cell body 3, hydrogen reacts with oxygen in the air to generate electricity and heat. Since this electricity is DC, it is converted to AC for general use by the inverter 4,
The heat generated in the fuel cell body 3 is recovered by the exhaust heat recovery device 5. Further, the water recovered by the exhaust gas condenser 2 is converted into steam by the exhaust heat from the fuel cell main body 3 by the steam generator 6 and sent to the ejector 7. In this way, the energy utilization efficiency of the entire fuel cell is extremely high, and the power generation efficiency is about 4
0%, exhaust heat recovery efficiency is about 40%, and heat wasted by exhaust gas is about 20%.
【0003】図2は図1の構成を具体的に示したもの
で、図1における排熱回収装置5は、蒸気発生器として
の気水分離器6と燃料電池本体3のセパレータ及び高温
熱負荷7への経路中に介装する熱交換器等で構成されて
いる。気水分離器6内の圧力は6〜7気圧に保たれてお
り、ここから燃料電池本体3へ冷却水として約160℃
の温水が送り出され、排熱が約170℃の高温蒸気とし
て回収される。燃料電池本体3は、白金触媒を用いた燃
料極及び空気極の間に電解質マトリクスを挟持させた単
電池(セル)をセパレータを介して多数積層して構成し
たもので、このセパレータに穿設した多数の細孔に冷却
水を通して、セルを反応に適した約175〜190℃の
温度に維持しており、燃料電池本体3から出てくる高温
蒸気は高温熱負荷10で熱交換されて気水分離器6に戻
る。FIG. 2 specifically shows the configuration of FIG. 1. The exhaust heat recovery device 5 in FIG. 1 includes a steam separator 6 as a steam generator, a separator of the fuel cell body 3, and a high temperature heat load. It is composed of a heat exchanger and the like interposed in the route to 7. The pressure in the steam separator 6 is maintained at 6 to 7 atm, from which the fuel cell body 3 is cooled to about 160 ° C. as cooling water.
Hot water is sent out, and the exhaust heat is recovered as high temperature steam of about 170 ° C. The fuel cell main body 3 is formed by stacking a large number of single cells (cells) in which an electrolyte matrix is sandwiched between a fuel electrode and an air electrode using a platinum catalyst with a separator interposed therebetween, and the fuel cell main body 3 is provided in this separator. Cooling water is passed through a large number of pores to maintain the cell at a temperature of about 175 to 190 ° C. suitable for the reaction, and the high temperature steam coming out of the fuel cell main body 3 is heat-exchanged by the high temperature heat load 10 to be steamed. Return to separator 6.
【0004】気水分離器6で蒸発した水蒸気は、燃料改
質装置1の天然ガス供給口に設けられたエゼクタ7によ
り天然ガス(主成分:CH4 )に混入されて水素を発生
する原料となり、定常状態では燃料改質装置1内の反応
に要する熱は、燃料電池本体3の燃料極から戻ってくる
余剰水素の燃焼によって供給される。従って燃料改質装
置1からの排ガス中には多量の水蒸気を含んでおり、こ
の水蒸気が排ガス凝縮器2で凝縮して、純水装置8で純
化されたのち、気水分離器6に戻される。このときの凝
縮熱が、排ガス凝縮器2から約55℃の温水として取り
出され、ポンプ9によって低温熱負荷11へ循環供給さ
れているのである。The water vapor evaporated in the steam separator 6 becomes a raw material for generating hydrogen by being mixed with natural gas (main component: CH4) by the ejector 7 provided at the natural gas supply port of the fuel reformer 1. In the steady state, the heat required for the reaction in the fuel reformer 1 is supplied by the combustion of the surplus hydrogen returning from the fuel electrode of the fuel cell body 3. Therefore, the exhaust gas from the fuel reforming apparatus 1 contains a large amount of water vapor, and this water vapor is condensed in the exhaust gas condenser 2, purified by the pure water device 8, and then returned to the steam separator 6. . The heat of condensation at this time is taken out from the exhaust gas condenser 2 as hot water of about 55 ° C., and is circulated and supplied to the low temperature heat load 11 by the pump 9.
【0005】[0005]
【発明が解決しようとする課題】従来の燃料電池におい
ては、熱回収効率は上述のように約40%であり、回収
される熱の約半分は160℃〜170℃の高温蒸気の形
で高温熱負荷10に供給されるために利用価値が高い
が、残りの半分は約55℃と比較的低温の温水として低
温熱負荷11に供給されるために利用価値が低く、適当
な低温熱利用設備が見つからないような場合もあって、
実質的な熱回収効率はそれほど高くないという問題があ
った。そこで本発明は、燃料電池の排熱回収装置に改良
を加えて、高温熱利用設備で利用できる良質の熱量の比
率を増加させることを目的とするものである。In the conventional fuel cell, the heat recovery efficiency is about 40% as described above, and about half of the heat recovered is high in the form of high temperature steam at 160 ° C to 170 ° C. The utility value is high because it is supplied to the thermal load 10, but the other half is low in utility value because it is supplied to the low-temperature heat load 11 as hot water having a relatively low temperature of about 55 ° C. Sometimes you can't find
There was a problem that the substantial heat recovery efficiency was not so high. Therefore, an object of the present invention is to improve the exhaust heat recovery device of a fuel cell to increase the ratio of good quality heat quantity that can be used in high temperature heat utilization equipment.
【0006】[0006]
【課題を解決するための手段】本発明による燃料電池
は、図3〜4に示すように、発電に伴って発生する熱量
が高温飽和蒸気及び低温温水として取り出される燃料電
池において、上記低温温水を蒸発器に導き、上記高温飽
和蒸気の経路中に介装したエゼクタにより上記蒸発器中
の蒸気を吸引せしめ、上記エゼクタの出力蒸気を高温熱
負荷に供給すると共に、上記蒸発器に残留した低温温水
を低温熱負荷に供給するようにしたものである。The fuel cell according to the present invention, as shown in FIGS. 3 to 4, is a fuel cell in which the amount of heat generated by power generation is taken out as high temperature saturated steam and low temperature hot water. Lead to the evaporator, suck the vapor in the evaporator by the ejector interposed in the path of the high temperature saturated vapor, supply the output vapor of the ejector to the high temperature heat load, and the low temperature hot water remaining in the evaporator. Is supplied to the low temperature heat load.
【0007】[0007]
【作用】蒸発器13では約55℃の温水が噴霧器14で
噴蒸され、その蒸気がエゼクタ12に吸引されるため
に、蒸発気3内は0.1気圧程度まで減圧され、吸引さ
れる蒸気に気化熱を奪われて45℃程度まで温度が低下
する。高温側では約170℃、6〜7気圧の蒸気に低温
側から45℃の飽和蒸気が潜熱と共に大量に吸引されて
くるために、エゼクタ12の出力側では圧力及び温度が
約2気圧120℃と低下するものの流量が大幅に増加
し、結局エネルギ有効利用率の高い高温熱負荷10に従
来の1.5倍程度の熱量が供給されることになる。In the evaporator 13, hot water of about 55 ° C. is steamed by the sprayer 14, and the vapor is sucked by the ejector 12. Therefore, the vaporized gas 3 is depressurized to about 0.1 atm, and the sucked vapor. The heat of vaporization is deprived of by and the temperature drops to about 45 ° C. On the high temperature side, a large amount of saturated steam of 45 ° C. is sucked into the steam of about 170 ° C. and 6 to 7 atm from the low temperature side together with the latent heat. Although the flow rate decreases, the flow rate increases significantly, and as a result, about 1.5 times as much heat as the conventional amount is supplied to the high temperature heat load 10 having a high energy effective utilization rate.
【0008】[0008]
【実施例】図3は本発明の一実施例を示したもので、気
水分離器6から送出される高温温水が燃料電池本体3で
各セル間のセパレータに設けられた冷却用細孔に通さ
れ、出てきた高温蒸気が高温熱負荷7で熱交換されて凝
縮し、気水分離器6へ戻る。一方燃料電池本体3へ水素
を供給する燃料改質装置1の排ガスから水を回収するた
めの排ガス凝縮器2には、冷却用の低温温水を循環させ
て、この低温温水が低温熱負荷11に供給されるように
なっている。本発明は、この低温熱負荷11に供給され
ている熱量の一部を高温熱負荷10へ振り向けるように
したもので、気水分離器6から高温熱負荷10への経路
中に介装されたエゼクタ12により、この低温温水の経
路中に設けられた蒸発器12から飽和蒸気を吸引して、
エゼクタ12の出力蒸気を高温熱負荷7に供給すると共
に、蒸発器13に残留した低温温水を低温熱負荷11に
供給するようにしたものであり、エゼクタ12と蒸発器
13とによって、低温側から高温側へ熱を汲み上げるヒ
ートポンプAを形成したものである。EXAMPLE FIG. 3 shows an example of the present invention, in which high temperature hot water sent from the steam separator 6 is supplied to the cooling pores provided in the separator between the cells of the fuel cell body 3. The high-temperature steam that has been passed through and is heat-exchanged by the high-temperature heat load 7 is condensed and returns to the steam separator 6. On the other hand, low temperature hot water for cooling is circulated in the exhaust gas condenser 2 for recovering water from the exhaust gas of the fuel reforming apparatus 1 which supplies hydrogen to the fuel cell body 3, and the low temperature hot water is applied to the low temperature heat load 11. It is being supplied. In the present invention, a part of the heat quantity supplied to the low-temperature heat load 11 is directed to the high-temperature heat load 10, and is inserted in the path from the steam separator 6 to the high-temperature heat load 10. The ejector 12 sucks saturated vapor from the evaporator 12 provided in the path of the low temperature hot water,
The output steam of the ejector 12 is supplied to the high temperature heat load 7, and the low temperature hot water remaining in the evaporator 13 is supplied to the low temperature heat load 11. The ejector 12 and the evaporator 13 allow the low temperature side water to flow from the low temperature side. The heat pump A for pumping heat to the high temperature side is formed.
【0009】図3において、6〜7気圧160℃の気水
分離器6から送出される高温温水で燃料電池本体3を冷
却し、燃料電池本体3から出てきた高温蒸気を高温熱負
荷7へ送る配管中にエゼクタ12を設け、排ガス凝縮器
2から約55℃の低温温水がポンプ9により低温熱負荷
11へ循環供給される配管中に噴霧器14を備えた蒸発
器13を設け、この蒸発器13から蒸発した約45℃の
飽和蒸気をエゼクタ12により吸引して、エゼクタ12
の出力蒸気を高温熱負荷7に供給すると共に、蒸発器1
3に残留した約45℃の低温温水を低温熱負荷11に供
給するようにしており、エゼクタ12と蒸発器13とで
形成されたヒートポンプAによって、低温熱負荷11に
供給されていた熱量の約半分を高温側へ汲み上げること
が可能である。同図中15は蒸気を遮断して凝縮水のみ
を通す蒸気トラップであり、16は液面スイッチ17に
より制御される電磁弁で、エゼクタ12に吸引された蒸
気量に見合う凝縮水を蒸発器13内へ戻すためのもので
ある。この構成によって、熱量の有効利用率の高い高温
熱負荷10へ天然ガス入力の従来の1.5倍の約30
%、有効利用率の低い低温熱負荷11へは従来の半分の
10%の熱量を供給するようにし、回収熱の質を向上す
ることができた。In FIG. 3, the fuel cell main body 3 is cooled by the high temperature hot water sent from the steam separator 6 at 6 to 7 atmospheres 160 ° C., and the high temperature steam discharged from the fuel cell main body 3 is applied to the high temperature heat load 7. An ejector 12 is provided in the sending pipe, and an evaporator 13 provided with a sprayer 14 is provided in the pipe in which low temperature hot water of about 55 ° C. is circulated and supplied from the exhaust gas condenser 2 to the low temperature heat load 11 by the pump 9. The ejector 12 sucks saturated vapor at a temperature of about 45 ° C. evaporated from the ejector 12.
The output steam of the above is supplied to the high temperature heat load 7, and the evaporator 1
The low temperature hot water of about 45 ° C. remaining in 3 is supplied to the low temperature heat load 11, and the heat pump A formed by the ejector 12 and the evaporator 13 reduces the amount of heat supplied to the low temperature heat load 11. It is possible to pump half up to the hot side. In the figure, 15 is a steam trap that cuts off steam and allows only condensed water to pass through, and 16 is an electromagnetic valve controlled by a liquid level switch 17, and the condensed water corresponding to the amount of steam sucked by the ejector 12 is evaporated 13 It is for returning to the inside. With this configuration, the high temperature heat load 10 with a high effective utilization rate of heat quantity is about 30 times as much as 1.5 times the conventional input of natural gas.
%, 10% of the heat amount, which is half that in the conventional case, is supplied to the low-temperature heat load 11 having a low effective utilization rate, and the quality of recovered heat could be improved.
【0010】図4は本発明の他の実施例を示したもの
で、気水分離器6から燃料電池本体3へ循環させた高温
の冷却水を負荷10へ送らずに一旦気水分離器6へ戻
し、気水分離器6から約160℃の高温蒸気を高温熱負
荷10へ送るようにし、この高温蒸気配管に上記ヒート
ポンプAのエゼクタ12を設けたものであり、その他の
構成は図3と同じである。FIG. 4 shows another embodiment of the present invention, in which the hot-water cooling water circulated from the steam-water separator 6 to the fuel cell main body 3 is not sent to the load 10 and is once steam-water separator 6. The high temperature steam of about 160 ° C. is sent from the steam separator 6 to the high temperature heat load 10, and the high temperature steam pipe is provided with the ejector 12 of the heat pump A. Other configurations are shown in FIG. Is the same.
【0011】[0011]
【発明の効果】本発明によれば上述のように、従来燃料
電池から回収される排熱のうち、有効利用され易い高温
の熱量の比率を50%から75%に高めることができ、
それによって実質的な熱回収効率を向上し得るという利
点がある。As described above, according to the present invention, of the exhaust heat recovered from the conventional fuel cell, the ratio of the amount of heat at high temperature that can be effectively used can be increased from 50% to 75%.
This has the advantage that the substantial heat recovery efficiency can be improved.
【図1】従来の燃料電池の概略系統図。FIG. 1 is a schematic system diagram of a conventional fuel cell.
【図2】同上の具体的系統図。FIG. 2 is a specific system diagram of the above.
【図3】本発明の一実施例の系統図。FIG. 3 is a system diagram of an embodiment of the present invention.
【図4】本発明の他の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the present invention.
1 燃料改質装置 2 排ガス凝縮器 3 燃料電池本体 4 インバータ 5 排熱回収装置 6 気水分離器 7 エゼクタ 8 純水装置 9 ポンプ 10 高温熱負荷 11 低温熱負荷 12 エゼクタ 13 蒸発器 A ヒートポンプ 1 Fuel Reforming Device 2 Exhaust Gas Condenser 3 Fuel Cell Body 4 Inverter 5 Exhaust Heat Recovery Device 6 Steam-Water Separator 7 Ejector 8 Pure Water Device 9 Pump 10 High Temperature Heat Load 11 Low Temperature Heat Load 12 Ejector 13 Evaporator A Heat Pump
Claims (3)
気及び低温温水として取り出される燃料電池において、
上記低温温水を蒸発器に導き、上記高温飽和蒸気の経路
中に介装したエゼクタにより上記蒸発器中の蒸気を吸引
して、上記エゼクタの出力蒸気を高温熱負荷に供給する
と共に、上記蒸発器に残留した低温温水を低温熱負荷に
供給するようにして成る燃料電池。1. A fuel cell in which the amount of heat generated by power generation is taken out as high temperature saturated steam and low temperature hot water,
The low-temperature hot water is guided to an evaporator, and the vapor in the evaporator is sucked by an ejector interposed in the path of the high-temperature saturated vapor, and the output steam of the ejector is supplied to a high-temperature heat load, and the evaporator is also provided. A fuel cell configured to supply low temperature hot water remaining in the fuel cell to a low temperature heat load.
料電池本体で各セル間のセパレータに設けられた冷却用
細孔に通し、出てきた高温蒸気を高温熱負荷で熱交換し
て凝縮させたのち気水分離器に戻すようにし、燃料電池
本体へ水素を供給する燃料改質装置の排ガスから水を回
収する排ガス凝縮器に冷却用の低温温水を循環させ、該
低温温水を低温熱負荷に供給するようにした燃料電池に
おいて、上記高温蒸気の経路中に介装したエゼクタによ
り上記低温温水の経路中に設けた蒸発器から蒸気を吸引
せしめて成る燃料電池。2. High-temperature hot water sent from a steam separator is passed through cooling pores provided in a separator between cells in a fuel cell body, and the high-temperature steam that comes out is heat-exchanged by a high-temperature heat load. After being condensed, it is returned to the steam separator, and low-temperature hot water for cooling is circulated in the exhaust gas condenser that collects water from the exhaust gas of the fuel reformer that supplies hydrogen to the fuel cell body, and the low-temperature hot water is cooled to a low temperature. A fuel cell configured to supply heat load, in which vapor is sucked from an evaporator provided in the path of the low-temperature hot water by an ejector interposed in the path of the high-temperature steam.
高温蒸気を循環させると共に、気水分離器から高温熱負
荷へ送出した高温蒸気を該負荷で凝縮させて気水分離器
へ戻すようにし、燃料電池本体へ水素を供給する燃料改
質装置の排ガスから水を回収する排ガス凝縮器に冷却用
の低温温水を循環させ、該低温温水を低温熱負荷に供給
するようにした燃料電池において、上記気水分離器から
高温熱負荷への経路中に介装したエゼクタにより上記低
温温水の経路中に設けた蒸発器から蒸発を吸引せしめて
成る燃料電池。3. The high-temperature steam for cooling is circulated from the steam-water separator to the fuel cell main body, and the high-temperature steam sent from the steam-water separator to the high-temperature heat load is condensed by the load and returned to the steam-water separator. A low temperature hot water for cooling is circulated in an exhaust gas condenser for recovering water from an exhaust gas of a fuel reforming device for supplying hydrogen to a fuel cell body, and the low temperature hot water is supplied to a low temperature heat load. In the fuel cell, in which the evaporation is sucked from the evaporator provided in the path of the low temperature hot water by the ejector interposed in the path from the steam separator to the high temperature heat load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03545794A JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03545794A JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07226223A true JPH07226223A (en) | 1995-08-22 |
JP3359146B2 JP3359146B2 (en) | 2002-12-24 |
Family
ID=12442325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03545794A Expired - Fee Related JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3359146B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823743A3 (en) * | 1996-08-07 | 1998-03-11 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack with dual cooling system |
FR2829069A1 (en) * | 2001-09-03 | 2003-03-07 | Renault | EJECTOR COOLING SYSTEM FOR ELECTRIC VEHICLE |
JP2005172352A (en) * | 2003-12-11 | 2005-06-30 | Jfe Engineering Kk | Air conditioner for moving body |
-
1994
- 1994-02-08 JP JP03545794A patent/JP3359146B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823743A3 (en) * | 1996-08-07 | 1998-03-11 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack with dual cooling system |
FR2829069A1 (en) * | 2001-09-03 | 2003-03-07 | Renault | EJECTOR COOLING SYSTEM FOR ELECTRIC VEHICLE |
EP1289039A3 (en) * | 2001-09-03 | 2005-11-16 | Renault s.a.s. | Cooling system with ejector for electric vehicle |
JP2005172352A (en) * | 2003-12-11 | 2005-06-30 | Jfe Engineering Kk | Air conditioner for moving body |
Also Published As
Publication number | Publication date |
---|---|
JP3359146B2 (en) | 2002-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104577168B (en) | Methanol water hydrogen production power generation system and hydrogen production power generation method | |
JPH0434861A (en) | Molten carbonate fuel cell power generation device with CO↓2 separation device using LNG cold energy | |
JPH0821403B2 (en) | How to operate a fuel cell power plant | |
JPH06101932A (en) | Absorption heat pump and cogeneration system using waste heat | |
JP2000510637A (en) | Method for utilizing enthalpy contained in exhaust gas of low temperature fuel cell and apparatus for implementing the method | |
TW201607133A (en) | Fuel cell power generating system | |
CN106252693A (en) | Battery system | |
CN110635150B (en) | A thermal management system and method for combining multiple fuel cell modules | |
CN107093757B (en) | Proton exchange membrane fuel cell waste heat recovery system and method | |
CN105757978B (en) | A ship-mounted heat pump water heater system and heating method | |
JPS6257072B2 (en) | ||
JP2004111397A (en) | Humidification of reactant flow in fuel cells | |
CN114628732A (en) | A solar-assisted fuel cell waste heat recovery integrated system and method | |
JPH11102720A (en) | Fuel cell power generating device | |
JP3359146B2 (en) | Fuel cell | |
JPH11214022A (en) | Fuel cell generator | |
KR20030073679A (en) | Cooling water recycling system for fuel cell | |
JPS60158561A (en) | Fuel cell-thermal power generating complex system | |
JPH0260060A (en) | Fuel cell system with waste heat energy recovery device | |
JP2000208159A (en) | Fuel cell system | |
CN111943296B (en) | Fresh water-electricity combined supply system with coupling of fuel cell complementary energy and absorption type water generator | |
CN110690478B (en) | Thermal management system and method for combination of multiple fuel cell modules | |
JP2002100382A (en) | Fuel cell generator | |
JP3557104B2 (en) | Phosphoric acid fuel cell power plant | |
JPH05225993A (en) | Phosphoric acid type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |