JP3359146B2 - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JP3359146B2 JP3359146B2 JP03545794A JP3545794A JP3359146B2 JP 3359146 B2 JP3359146 B2 JP 3359146B2 JP 03545794 A JP03545794 A JP 03545794A JP 3545794 A JP3545794 A JP 3545794A JP 3359146 B2 JP3359146 B2 JP 3359146B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- temperature
- low
- fuel cell
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04029—Heat exchange using liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、工場、ホテル、病院等
の施設に電力及び熱を供給する需要地設置型の燃料電池
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell installed in a demand area for supplying electric power and heat to facilities such as factories, hotels, hospitals and the like.
【0002】[0002]
【従来の技術】図1はこの種の燃料電池の概略系統図を
示したもので、燃料改質装置1には天然ガスとエゼクタ
7で吸入された水蒸気とが供給され、これらを触媒中で
反応させることによって得られた水素が燃料電池本体3
へ供給され、ここから出る排ガスの熱が排ガス凝縮器2
で回収される。燃料電池本体3では水素と空気中の酸素
とが反応して電気と熱を発生する。この電気は直流であ
るから、インバータ4で一般用途用の交流に変換され、
燃料電池本体3内で発生する熱は排熱回収装置5で回収
される。また排ガス凝縮器2で回収された水は、蒸気発
生器6で燃料電池本体3からの排熱によって蒸気に変換
され、上記エゼクタ7へ送られる。このように燃料電池
全体のエネルギ利用効率はきわめて高く、発電効率約4
0%、排熱回収効率約40%、排気等により廃棄される
熱は約20%である。2. Description of the Related Art FIG. 1 is a schematic system diagram of a fuel cell of this type, in which a natural gas and steam sucked by an ejector 7 are supplied to a fuel reformer 1, and these are fed to a catalyst. The hydrogen obtained by the reaction is converted into the fuel cell body 3
The heat of the exhaust gas is supplied to the exhaust gas condenser 2
Collected at. In the fuel cell body 3, hydrogen reacts with oxygen in the air to generate electricity and heat. Since this electricity is DC, it is converted into AC for general use by the inverter 4,
The heat generated in the fuel cell body 3 is recovered by the exhaust heat recovery device 5. The water collected by the exhaust gas condenser 2 is converted into steam by the exhaust heat from the fuel cell body 3 by the steam generator 6 and sent to the ejector 7. As described above, the energy use efficiency of the entire fuel cell is extremely high, and the power generation efficiency is about 4%.
0%, waste heat recovery efficiency is about 40%, and heat wasted by exhaust gas is about 20%.
【0003】図2は図1の構成を具体的に示したもの
で、図1における排熱回収装置5は、蒸気発生器として
の気水分離器6と燃料電池本体3のセパレータ及び高温
熱負荷10への経路中に介装する熱交換器等で構成され
ている。気水分離器6内の圧力は6〜7気圧に保たれて
おり、ここから燃料電池本体3へ冷却水として約160
℃の温水が送り出され、排熱が約170℃の高温蒸気と
して回収される。燃料電池本体3は、白金触媒を用いた
燃料極及び空気極の間に電解質マトリクスを挟持させた
単電池(セル)をセパレータを介して多数積層して構成
したもので、このセパレータに穿設した多数の細孔に冷
却水を通して、セルを反応に適した約175〜190℃
の温度に維持しており、燃料電池本体3から出てくる高
温蒸気は高温熱負荷10で熱交換されて気水分離器6に
戻る。FIG. 2 specifically shows the configuration of FIG. 1. An exhaust heat recovery device 5 in FIG. 1 includes a steam-water separator 6 as a steam generator, a separator of the fuel cell body 3, and a high-temperature heat load. It is composed of a heat exchanger and the like interposed in the path to 10 . The pressure in the steam separator 6 is maintained at 6 to 7 atm.
° C hot water is sent out, and the exhaust heat is recovered as high temperature steam of about 170 ° C. The fuel cell body 3 is formed by stacking a large number of cells (cells) each having an electrolyte matrix sandwiched between a fuel electrode using a platinum catalyst and an air electrode with a separator interposed therebetween, and is provided in the separator. Cooling water is passed through a number of pores to make the cell about 175 to 190 ° C suitable for the reaction.
The high-temperature steam coming out of the fuel cell main body 3 undergoes heat exchange with the high-temperature heat load 10 and returns to the steam separator 6.
【0004】気水分離器6で蒸発した水蒸気は、燃料改
質装置1の天然ガス供給口に設けられたエゼクタ7によ
り天然ガス(主成分:CH4 )に混入されて水素を発生
する原料となり、定常状態では燃料改質装置1内の反応
に要する熱は、燃料電池本体3の燃料極から戻ってくる
余剰水素の燃焼によって供給される。従って燃料改質装
置1からの燃焼排ガス中には多量の水蒸気を含んでお
り、この水蒸気が排ガス凝縮器2で凝縮して、純水装置
8で純化されたのち、気水分離器6に戻される。このと
きの凝縮熱が、排ガス凝縮器2から約55℃の温水とし
て取り出され、ポンプ9によって低温熱負荷11へ循環
供給されているのである。[0004] The steam evaporated in the steam separator 6 is mixed with natural gas (main component: CH4) by an ejector 7 provided at a natural gas supply port of the fuel reformer 1 to become a raw material for generating hydrogen. In a steady state, the heat required for the reaction in the fuel reformer 1 is supplied by combustion of excess hydrogen returning from the fuel electrode of the fuel cell body 3. Therefore, the combustion exhaust gas from the fuel reformer 1 contains a large amount of water vapor, and this water vapor is condensed in the exhaust gas condenser 2, purified by the pure water device 8, and returned to the steam separator 6. It is. The heat of condensation at this time is taken out of the exhaust gas condenser 2 as hot water of about 55 ° C., and is circulated and supplied to the low-temperature heat load 11 by the pump 9.
【0005】[0005]
【発明が解決しようとする課題】従来の燃料電池におい
ては、熱回収効率は上述のように約40%であり、回収
される熱の約半分は160℃〜170℃の高温蒸気の形
で高温熱負荷10に供給されるために利用価値が高い
が、残りの半分は約55℃と比較的低温の温水として低
温熱負荷11に供給されるために利用価値が低く、適当
な低温熱利用設備が見つからないような場合もあって、
実質的な熱回収効率はそれほど高くないという問題があ
った。そこで本発明は、燃料電池の排熱回収装置に改良
を加えて、高温熱利用設備で利用できる良質の熱量の比
率を増加させることを目的とするものである。In the conventional fuel cell, the heat recovery efficiency is about 40% as described above, and about half of the recovered heat is high in the form of high-temperature steam at 160 ° C. to 170 ° C. Although the utility value is high because it is supplied to the thermal load 10, the other half is low utility value because it is supplied to the low-temperature heat load 11 as hot water having a relatively low temperature of about 55 ° C. May not be found,
There is a problem that the actual heat recovery efficiency is not so high. Therefore, an object of the present invention is to improve the exhaust heat recovery device of a fuel cell to increase the ratio of high-quality heat that can be used in high-temperature heat utilization equipment.
【0006】[0006]
【課題を解決するための手段】本発明による燃料電池
は、図3〜4に示すように、発電に伴って発生する熱量
が高温飽和蒸気及び低温温水として取り出される燃料電
池において、上記低温温水を蒸発器に導き、上記高温飽
和蒸気の経路中に介装したエゼクタにより上記蒸発器中
の蒸気を吸引せしめ、上記エゼクタの出力蒸気を高温熱
負荷に供給すると共に、上記蒸発器に残留した低温温水
を低温熱負荷に供給するようにしたものである。As shown in FIGS. 3 and 4, the fuel cell according to the present invention is characterized in that the amount of heat generated during power generation is extracted as high-temperature saturated steam and low-temperature hot water. The steam in the evaporator is sucked by an ejector that is guided to the evaporator and inserted in the path of the high-temperature saturated steam, the output steam of the ejector is supplied to a high-temperature heat load, and the low-temperature hot water remaining in the evaporator is supplied. Is supplied to a low-temperature heat load.
【0007】[0007]
【作用】蒸発器13では約55℃の温水が噴霧器14で
噴蒸され、その蒸気がエゼクタ12に吸引されるため
に、蒸発器13内は0.1気圧程度まで減圧され、吸引
される蒸気に気化熱を奪われて45℃程度まで温度が低
下する。高温側では約170℃、6〜7気圧の蒸気に低
温側から45℃の飽和蒸気が潜熱と共に大量に吸引され
てくるために、エゼクタ12の出力側では圧力及び温度
が約2気圧120℃と低下するものの流量が大幅に増加
し、結局エネルギ有効利用率の高い高温熱負荷10に従
来の1.5倍程度の熱量が供給されることになる。In the evaporator 13, hot water of about 55 ° C. is vaporized by the sprayer 14, and the vapor is sucked into the ejector 12, so that the pressure in the evaporator 13 is reduced to about 0.1 atm. Then, the heat of vaporization is lost, and the temperature drops to about 45 ° C. On the high temperature side, a large amount of saturated steam of 45 ° C. is sucked together with latent heat from the low temperature side into steam of about 170 ° C. and 6 to 7 atm. Although the flow rate is reduced, the flow rate is greatly increased, and as a result, about 1.5 times the amount of heat is supplied to the high-temperature heat load 10 having a high effective energy utilization rate.
【0008】[0008]
【実施例】図3は本発明の一実施例を示したもので、気
水分離器6から送出される高温温水が燃料電池本体3で
各セル間のセパレータに設けられた冷却用細孔に通さ
れ、出てきた高温蒸気が高温熱負荷10で熱交換されて
凝縮し、気水分離器6へ戻る。一方燃料電池本体3へ水
素を供給する燃料改質装置1の燃焼排ガスから水を回収
するための排ガス凝縮器2には、冷却用の低温温水を循
環させて、この排ガス凝縮器2から出た低温温水が低温
熱負荷11に供給されるようになっている。本発明は、
この低温熱負荷11に供給されている熱量の一部を高温
熱負荷10へ振り向けるようにしたもので、気水分離器
6から高温熱負荷10への経路中に介装されたエゼクタ
12により、この排ガス凝縮器の下流側の低温温水の経
路中に設けられた蒸発器13から飽和蒸気を吸引して、
エゼクタ12の出力蒸気を高温熱負荷7に供給すると共
に、蒸発器13に残留した低温温水を低温熱負荷11に
供給するようにしたものであり、エゼクタ12と蒸発器
13とによって、低温側から高温側へ熱を汲み上げるヒ
ートポンプAを形成したものである。FIG. 3 shows an embodiment of the present invention, in which high-temperature hot water sent from a steam separator 6 is supplied to cooling pores provided in a separator between cells in the fuel cell body 3. The high-temperature steam that has passed through is subjected to heat exchange at the high-temperature heat load 10 to condense, and returns to the steam separator 6. On the other hand, low-temperature hot water for cooling is circulated through an exhaust gas condenser 2 for recovering water from the combustion exhaust gas of the fuel reformer 1 that supplies hydrogen to the fuel cell body 3, and exits from the exhaust gas condenser 2. Low-temperature hot water is supplied to the low-temperature heat load 11. The present invention
A part of the heat supplied to the low-temperature heat load 11 is directed to the high-temperature heat load 10. The ejector 12 is interposed in the path from the steam separator 6 to the high-temperature heat load 10. Sucking saturated steam from an evaporator 13 provided in a path of low-temperature hot water downstream of the exhaust gas condenser ,
The output steam of the ejector 12 is supplied to the high-temperature heat load 7, and the low-temperature hot water remaining in the evaporator 13 is supplied to the low-temperature heat load 11. A heat pump A for pumping heat to a high temperature side is formed.
【0009】図3において、6〜7気圧160℃の気水
分離器6から送出される高温温水で燃料電池本体3を冷
却し、燃料電池本体3から出てきた高温蒸気を高温熱負
荷7へ送る配管中にエゼクタ12を設け、排ガス凝縮器
2から約55℃の低温温水がポンプ9により低温熱負荷
11へ循環供給される配管中に噴霧器14を備えた蒸発
器13を設け、この蒸発器13から蒸発した約45℃の
飽和蒸気をエゼクタ12により吸引して、エゼクタ12
の出力蒸気を高温熱負荷7に供給すると共に、蒸発器1
3に残留した約45℃の低温温水を低温熱負荷11に供
給するようにしており、エゼクタ12と蒸発器13とで
形成されたヒートポンプAによって、低温熱負荷11に
供給されていた熱量の約半分を高温側へ汲み上げること
が可能である。同図中15は蒸気を遮断して凝縮水のみ
を通す蒸気トラップであり、16は液面スイッチ17に
より制御される電磁弁で、エゼクタ12に吸引された蒸
気量に見合う凝縮水を蒸発器13内へ戻すためのもので
ある。この構成によって、熱量の有効利用率の高い高温
熱負荷10へ天然ガス入力の従来の1.5倍の約30
%、有効利用率の低い低温熱負荷11へは従来の半分の
10%の熱量を供給するようにし、回収熱の質を向上す
ることができた。In FIG. 3, the fuel cell body 3 is cooled by high-temperature hot water sent from a steam-water separator 6 at a pressure of 6 to 7 atm 160 ° C., and high-temperature steam coming out of the fuel cell body 3 is sent to a high-temperature heat load 7. An ejector 12 is provided in a pipe for feeding, and an evaporator 13 having a sprayer 14 is provided in a pipe in which low-temperature hot water of about 55 ° C. is circulated from a waste gas condenser 2 to a low-temperature heat load 11 by a pump 9. The saturated steam of about 45 ° C. evaporated from the evaporator 13 is sucked by the ejector 12 and
Is supplied to the high-temperature heat load 7 and the evaporator 1
3 is supplied to the low-temperature heat load 11 by the heat pump A formed by the ejector 12 and the evaporator 13. It is possible to pump half to the hot side. In the figure, reference numeral 15 denotes a steam trap which shuts off steam and allows only condensed water to pass therethrough. Reference numeral 16 denotes an electromagnetic valve controlled by a liquid level switch 17 and condensed water corresponding to the amount of steam sucked into the ejector 12 is supplied to the evaporator 13. It is for returning inside. With this configuration, the high-temperature heat load 10 having a high effective utilization rate of heat is about 30 times that of the conventional natural gas input, which is 1.5 times that of the conventional case.
%, The low-temperature heat load 11 having a low effective utilization rate is supplied with a heat amount of 10% which is half of the conventional heat load, and the quality of the recovered heat can be improved.
【0010】図4は本発明の他の実施例を示したもの
で、気水分離器6から燃料電池本体3へ循環させた高温
の冷却水を負荷10へ送らずに一旦気水分離器6へ戻
し、気水分離器6から約160℃の高温蒸気を高温熱負
荷10へ送るようにし、この高温蒸気配管に上記ヒート
ポンプAのエゼクタ12を設けたものであり、その他の
構成は図3と同じである。FIG. 4 shows another embodiment of the present invention, in which the high-temperature cooling water circulated from the steam separator 6 to the fuel cell main body 3 is not sent to the load 10 but is temporarily stopped. The high-temperature steam of about 160 ° C. is sent from the steam separator 6 to the high-temperature heat load 10. The high-temperature steam pipe is provided with the ejector 12 of the heat pump A. Is the same.
【0011】[0011]
【発明の効果】本発明によれば上述のように、従来燃料
電池から回収される排熱のうち、有効利用され易い高温
の熱量の比率を50%から75%に高めることができ、
それによって実質的な熱回収効率を向上し得るという利
点がある。According to the present invention, as described above, of the waste heat recovered from the conventional fuel cell, the ratio of the high-temperature heat that can be effectively used can be increased from 50% to 75%.
Thereby, there is an advantage that the substantial heat recovery efficiency can be improved.
【図1】従来の燃料電池の概略系統図。FIG. 1 is a schematic system diagram of a conventional fuel cell.
【図2】同上の具体的系統図。FIG. 2 is a specific system diagram of the above.
【図3】本発明の一実施例の系統図。FIG. 3 is a system diagram of one embodiment of the present invention.
【図4】本発明の他の実施例の系統図。FIG. 4 is a system diagram of another embodiment of the present invention.
1 燃料改質装置 2 排ガス凝縮器 3 燃料電池本体 4 インバータ 5 排熱回収装置 6 気水分離器 7 エゼクタ 8 純水装置 9 ポンプ 10 高温熱負荷 11 低温熱負荷 12 エゼクタ 13 蒸発器 A ヒートポンプ DESCRIPTION OF SYMBOLS 1 Fuel reformer 2 Exhaust gas condenser 3 Fuel cell main body 4 Inverter 5 Exhaust heat recovery device 6 Steam separator 7 Ejector 8 Pure water device 9 Pump 10 High temperature heat load 11 Low temperature heat load 12 Ejector 13 Evaporator A Heat pump
Claims (3)
気及び低温温水として取り出される燃料電池において、
上記低温温水を蒸発器に導き、上記高温飽和蒸気の経路
中に介装したエゼクタにより上記蒸発器中の蒸気を吸引
して、上記エゼクタの出力蒸気を高温熱負荷に供給する
と共に、上記蒸発器に残留した低温温水を低温熱負荷に
供給するようにして成る燃料電池。1. A fuel cell in which the amount of heat generated during power generation is taken out as high-temperature saturated steam and low-temperature hot water,
The low-temperature hot water is led to an evaporator, and the steam in the evaporator is sucked by an ejector interposed in a path of the high-temperature saturated steam, and the output steam of the ejector is supplied to a high-temperature heat load, and the evaporator is A low-temperature hot water remaining in the fuel cell is supplied to a low-temperature heat load.
料電池本体で各セル間のセパレータに設けられた冷却用
細孔に通し、出てきた高温蒸気を高温熱負荷で熱交換し
て凝縮させたのち気水分離器に戻すようにし、燃料電池
本体へ水素を供給する燃料改質装置の燃焼排ガスから水
を回収する排ガス凝縮器に冷却用の低温温水を循環さ
せ、該低温温水を低温熱負荷に供給するようにした燃料
電池において、上記高温蒸気の経路中に介装したエゼク
タにより上記排ガス凝縮器の下流側の低温温水の経路中
に設けた蒸発器から蒸気を吸引せしめて成る燃料電池。2. The high-temperature hot water sent from the steam-water separator is passed through cooling pores provided in the separator between the cells in the fuel cell body, and the high-temperature steam that has come out is subjected to heat exchange with a high-temperature heat load. After being condensed, return to the steam-water separator, and circulate low-temperature hot water for cooling to an exhaust gas condenser that collects water from the combustion exhaust gas of the fuel reformer that supplies hydrogen to the fuel cell main body. In a fuel cell adapted to supply to a low-temperature heat load, an ejector interposed in the path of the high-temperature steam causes steam to be sucked from an evaporator provided in a path of low-temperature hot water downstream of the exhaust gas condenser. Fuel cell.
高温蒸気を循環させると共に、気水分離器から高温熱負
荷へ送出した高温蒸気を該負荷で凝縮させて気水分離器
へ戻すようにし、燃料電池本体へ水素を供給する燃料改
質装置の燃焼排ガスから水を回収する排ガス凝縮器に冷
却用の低温温水を循環させ、該低温温水を低温熱負荷に
供給するようにした燃料電池において、上記気水分離器
から高温熱負荷への経路中に介装したエゼクタにより上
記排ガス凝縮器の下流側の低温温水の経路中に設けた蒸
発器から蒸気を吸引せしめて成る燃料電池。3. A high-temperature steam for cooling is circulated from the steam separator to the fuel cell main body, and the high-temperature steam sent from the steam separator to the high-temperature heat load is condensed by the load and returned to the steam separator. A low-temperature hot water for cooling is circulated through an exhaust gas condenser for collecting water from a combustion exhaust gas of a fuel reformer for supplying hydrogen to the fuel cell body, and the low-temperature hot water is supplied to a low-temperature heat load. A fuel cell comprising a battery, wherein an ejector interposed in a path from the steam-water separator to a high-temperature heat load sucks steam from an evaporator provided in a path of low-temperature hot water downstream of the exhaust gas condenser .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03545794A JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03545794A JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07226223A JPH07226223A (en) | 1995-08-22 |
JP3359146B2 true JP3359146B2 (en) | 2002-12-24 |
Family
ID=12442325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03545794A Expired - Fee Related JP3359146B2 (en) | 1994-02-08 | 1994-02-08 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3359146B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3499090B2 (en) * | 1996-08-07 | 2004-02-23 | 本田技研工業株式会社 | Fuel cell |
FR2829069B1 (en) * | 2001-09-03 | 2005-03-18 | Renault | EJECTOR COOLING SYSTEM FOR ELECTRIC VEHICLE |
JP4380312B2 (en) * | 2003-12-11 | 2009-12-09 | Jfeエンジニアリング株式会社 | Air conditioner for moving body |
-
1994
- 1994-02-08 JP JP03545794A patent/JP3359146B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07226223A (en) | 1995-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5345786A (en) | Absorption heat pump and cogeneration system utilizing exhaust heat | |
CA2628004C (en) | An electrolysis-fuel cell hybrid apparatus | |
US4333992A (en) | Method for producing steam from the liquid in a moist gas stream | |
JPH0821403B2 (en) | How to operate a fuel cell power plant | |
JPH0434861A (en) | Molten carbonate fuel cell power generation device with CO↓2 separation device using LNG cold energy | |
BRPI0617890A2 (en) | electrolysis | |
CN113278992B (en) | Water vapor turbocharged fuel cell electrolytic cell system and working method thereof | |
CN106252693A (en) | Battery system | |
CN206921929U (en) | Proton Exchange Membrane Fuel Cells WHRS | |
CN113889648B (en) | MW-level combined heat and power supply fuel cell power station | |
CN107093757B (en) | Proton exchange membrane fuel cell waste heat recovery system and method | |
JPS6257072B2 (en) | ||
JP3359146B2 (en) | Fuel cell | |
JP2000200617A (en) | Fuel-cell composite power generating plant system | |
CN114628732A (en) | A solar-assisted fuel cell waste heat recovery integrated system and method | |
JPH11102720A (en) | Fuel cell power generating device | |
JP2000208159A (en) | Fuel cell system | |
JP3557104B2 (en) | Phosphoric acid fuel cell power plant | |
JP2002100382A (en) | Fuel cell generator | |
CN111943296A (en) | Fresh water-electricity combined supply system with coupling of fuel cell complementary energy and absorption type water generator | |
JP2702030B2 (en) | Fuel cell system | |
JPH0629036A (en) | Heat collection system of fuel cell power-generation device | |
WO2024119391A1 (en) | Renewable energy utilization system based on nitrogen-free combustion and carbon dioxide circulation | |
JPS63241872A (en) | Fuel cell generating plant | |
JPS6257073B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |