JPH07220301A - Optical pickup device - Google Patents
Optical pickup deviceInfo
- Publication number
- JPH07220301A JPH07220301A JP6009820A JP982094A JPH07220301A JP H07220301 A JPH07220301 A JP H07220301A JP 6009820 A JP6009820 A JP 6009820A JP 982094 A JP982094 A JP 982094A JP H07220301 A JPH07220301 A JP H07220301A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light beam
- diffraction grating
- objective lens
- monitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 41
- 238000012544 monitoring process Methods 0.000 claims abstract description 25
- 238000005259 measurement Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 5
- 230000004907 flux Effects 0.000 abstract description 28
- 239000004065 semiconductor Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 241000849798 Nita Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Optical Recording Or Reproduction (AREA)
- Optical Head (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、微小変位測定装置等の
分野で応用される光ピックアップ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup device applied in the field of minute displacement measuring devices and the like.
【0002】[0002]
【従来の技術】従来、測定物の微小変位量を測定するも
のとして用いられている光ピックアップ装置としては、
例えば、特願平5−330593号に「微小変位測定装
置及び光ピックアップ装置」として本出願人により出願
されているものがある。図6は、その装置の構成例を示
すものである。今、光源としての半導体レーザ1から出
射した光は、コリメートレンズ2により平行光とされた
後、ビームスプリッタ3により反射され、対物レンズ4
により集光されたビームとなって測定物5の面上に照射
される。その測定物5からの反射光は、再び対物レンズ
4を通過した後、今度はビームスプリッタ3を透過して
干渉縞発生手段としての二重回折格子6に入射する。こ
の二重回折格子6は、±n次光の第1回折光を発生する
第1回折格子6aと、この第1回折格子6aとは格子ピ
ッチが異なり±m次光の第2回折光を発生する第2回折
格子6bとよりなっている。そして、その二重回折格子
6の第2回折光の間で発生した干渉縞を受光素子7に導
くことにより、その干渉縞の位相及びピッチの測定を行
う。これにより、その受光素子7の面上における周期的
な光量分布の変化を求めることにより、測定物5のX方
向への変位量を算出することができる。例えば、測定物
5として光ディスクを用い、フォーカスエラー信号から
ディスク面のデフォーカス量を求めて合焦状態を判断す
ることができる。2. Description of the Related Art Conventionally, as an optical pickup device used for measuring a minute displacement of an object to be measured,
For example, there is a patent application filed by the applicant of the present application in Japanese Patent Application No. 5-330593 as "a minute displacement measuring device and an optical pickup device". FIG. 6 shows a configuration example of the device. Now, the light emitted from the semiconductor laser 1 as the light source is collimated by the collimator lens 2 and then reflected by the beam splitter 3 to obtain the objective lens 4
As a result, it becomes a focused beam and is irradiated onto the surface of the object to be measured 5. The reflected light from the object to be measured 5 again passes through the objective lens 4 and then passes through the beam splitter 3 to enter the double diffraction grating 6 as the interference fringe generating means. The double diffraction grating 6 differs from the first diffraction grating 6a that generates the first diffracted light of the ± n-order light and the second diffracted light of the ± m-order light that is different in grating pitch from the first diffraction grating 6a. It is composed of the generated second diffraction grating 6b. Then, by guiding the interference fringes generated between the second diffracted lights of the double diffraction grating 6 to the light receiving element 7, the phase and pitch of the interference fringes are measured. Accordingly, the displacement amount of the measurement object 5 in the X direction can be calculated by obtaining the periodic change in the light amount distribution on the surface of the light receiving element 7. For example, an in-focus state can be determined by using an optical disc as the measurement object 5 and obtaining the defocus amount of the disc surface from the focus error signal.
【0003】[0003]
【発明が解決しようとする課題】上述した装置の検出方
式は、基本的には、二重回折格子6を透過して得られた
干渉縞の波面の平面度を測定する方式となっている。こ
のため、対物レンズ4への入射光が「完全な平面波」で
ある場合には、フォーカスエラー信号の値が0の時に光
スポットはディスク面で合焦状態となる。しかし、現実
には、入射光を完全に平面波にすることは不可能であ
り、また、意図的に収束光又は発散光を対物レンズ4に
入射させるような場合もある。このような場合には、フ
ォーカスエラー信号の値が0でも光スポットはディスク
面で合焦状態にあるとは言えず、フォーカスエラー信号
にオフセットが含まれてしまい、正確な信号検出を行う
ことができない。The detection method of the above-mentioned device is basically a method of measuring the flatness of the wavefront of the interference fringes obtained by passing through the double diffraction grating 6. . Therefore, when the incident light on the objective lens 4 is a "perfect plane wave", the light spot is in focus on the disk surface when the value of the focus error signal is zero. However, in reality, it is impossible to completely make the incident light a plane wave, and in some cases, convergent light or divergent light may be intentionally made incident on the objective lens 4. In such a case, even if the value of the focus error signal is 0, it cannot be said that the light spot is in focus on the disk surface, and the focus error signal includes an offset, so that accurate signal detection can be performed. Can not.
【0004】[0004]
【課題を解決するための手段】請求項1記載の発明で
は、光源からの出射光を対物レンズ側に向かわせる測定
用光束と前記対物レンズ側に向かわせないモニタ用光束
とに分離する光束分離手段を設け、この分離された一方
の前記測定用光束を前記対物レンズにより集光して測定
物に照射しその反射された光束が再び前記対物レンズ及
び前記光束分離手段を通過した光路中にその光束が入射
することにより±n次光の第1回折光を発生させる第1
回折格子と、この第1回折格子に対向配置され前記第1
回折光が入射することにより±m次光の第2回折光を発
生させる第2回折格子とを有し前記第2回折光の間での
干渉により干渉縞を発生させる測定用干渉縞発生手段を
設け、この測定用干渉縞発生手段により発生した干渉縞
の位相とピッチの変化を検出する測定用受光素子を設
け、前記光束分離手段により前記対物レンズに入射する
前に分離された他方の前記モニタ用光束の光路中にその
光束が入射することにより±n次光の第1回折光を発生
させる第1回折格子と、この第1回折格子に対向配置さ
れ前記第1回折光が入射することにより±m次光の第2
回折光を発生させる第2回折格子とを有し前記第2回折
光の間での干渉により干渉縞を発生させるモニタ用干渉
縞発生手段を設け、このモニタ用干渉縞発生手段により
発生した干渉縞の位相とピッチの変化を検出するモニタ
用受光素子を設けた。According to a first aspect of the present invention, a light beam is separated so that light emitted from a light source is separated into a measuring light beam that is directed toward the objective lens side and a monitoring light beam that is not directed toward the objective lens side. Means is provided, and the separated one of the measuring light beams is condensed by the objective lens to irradiate the object to be measured, and the reflected light beam is again in the optical path passing through the objective lens and the light beam separating means. The first diffracted light of ± n-order light is generated by the incidence of the light flux.
The diffraction grating and the first diffraction grating arranged to face the first diffraction grating.
And a second diffraction grating for generating a second diffracted light of ± m-order light when diffracted light is incident, and a measuring interference fringe generating means for generating an interference fringe by interference between the second diffracted light. A measuring light receiving element for detecting a change in phase and pitch of the interference fringes generated by the measuring interference fringe generating means is provided, and the other monitor separated by the light beam separating means before entering the objective lens. A first diffraction grating that generates a first diffracted light of ± n-order light when the light beam enters the optical path of the working light beam, and the first diffracted light that is arranged so as to face the first diffraction grating Second of ± mth order light
An interference fringe generating unit for monitoring, which has a second diffraction grating for generating diffracted light and generates interference fringes due to interference between the second diffracted light, is provided, and the interference fringe generated by the interference fringe generating unit for monitor. A monitor light-receiving element for detecting changes in the phase and pitch is provided.
【0005】請求項2記載の発明では、請求項1記載の
発明において、対物レンズへ向かわないモニタ用光束
と、対物レンズに入射し測定物により反射された測定用
光束とを光束分離手段により同一方向へ分離するように
した。According to a second aspect of the present invention, in the first aspect of the invention, the monitor light flux that does not go to the objective lens and the measurement light flux that is incident on the objective lens and reflected by the object to be measured are made the same by the light flux separating means. It was made to separate in the direction.
【0006】請求項3記載の発明では、請求項1又は2
記載の発明において、対物レンズへ向かわないモニタ用
光束と対物レンズに入射し測定物により反射された測定
用光束とに分離する光束分離手段の入射面及び出射面を
光軸に対して傾けて配置した。According to the invention of claim 3, claim 1 or 2
In the invention described above, the incident surface and the emission surface of the light beam separating means for separating the monitoring light beam that does not go to the objective lens and the measuring light beam that enters the objective lens and is reflected by the measurement object are arranged with an inclination with respect to the optical axis. did.
【0007】請求項4記載の発明では、請求項1又は2
記載の発明において、モニタ用受光素子の出力をもと
に、光源からの出射光の出力制御を行う出射光出力制御
手段を設けた。According to the invention of claim 4, claim 1 or 2
In the invention described above, the emitted light output control means for controlling the output of the emitted light from the light source is provided based on the output of the monitor light receiving element.
【0008】[0008]
【作用】請求項1記載の発明においては、対物レンズに
入射する前の光束である出射光を光束分離手段により測
定用光束とモニタ用光束とに分離し、一方のモニタ用光
束をモニタ用干渉縞発生手段に入射して得られた波面
と、他方の測定用光束が測定物により反射され測定用干
渉縞発生手段に入射して得られた波面とを比較すること
により、オフセットが除去されたフォーカスエラー信号
を得ることが可能となる。According to the first aspect of the present invention, the emitted light, which is a light beam before entering the objective lens, is separated into a measuring light beam and a monitoring light beam by the light beam separating means, and one of the monitoring light beams is interfered with by the monitor. The offset was removed by comparing the wavefront obtained upon incidence on the fringe generation means with the wavefront obtained upon incidence on the measurement interference fringe generation means when the other measuring light beam was reflected by the object to be measured. It is possible to obtain the focus error signal.
【0009】請求項2記載の発明においては、モニタ用
光束と測定用光束とを同一方向へ分離することにより、
モニタ用干渉縞発生手段と測定用干渉縞発生手段とを1
枚の素子で構成することが可能となり、また、これに伴
いモニタ用受光素子と測定用受光素子とも1枚の基板上
に構成することが可能となる。According to the second aspect of the present invention, by separating the monitor light beam and the measurement light beam in the same direction,
1 for the monitor interference fringe generation means and 1 for the measurement interference fringe generation means
It is possible to configure with a single element, and accordingly, it is possible to configure both the monitor light receiving element and the measurement light receiving element on a single substrate.
【0010】請求項3記載の発明においては、光束分離
手段の入射面と出射面とを光軸に対して傾けて配置した
ことにより、光束分離手段の内部反射光と、モニタ用光
束又は測定用光束との干渉を低減させることが可能とな
る。According to the third aspect of the present invention, the incident surface and the emission surface of the light beam separating means are arranged so as to be inclined with respect to the optical axis, so that the internal reflected light of the light beam separating means and the monitor light beam or the measuring light beam are measured. It is possible to reduce the interference with the light flux.
【0011】請求項4記載の発明においては、出射光出
力制御手段を設けたことにより、新たに出力制御用の光
学素子を設けなくても、出射光を制御するための外部モ
ニタを行うことが可能となる。According to the fourth aspect of the present invention, since the emitted light output control means is provided, it is possible to perform an external monitor for controlling the emitted light without newly providing an optical element for output control. It will be possible.
【0012】[0012]
【実施例】請求項1記載の発明の一実施例を図1〜図3
に基づいて説明する。なお、従来例(図6参照)と同一
部分についての説明は省略し、その同一部分については
同一符号を用いる。本装置の全体構成を図1に基づいて
述べる。光源としての半導体レーザ1から発散した出射
光Aは、コリメートレンズ2により平行光とされた後、
光束分離手段としてのビームスプリッタ3に入射する。
このビームスプリッタ3により出射光Aは、そのまま透
過する光束B(測定用光束)と、反射する光束C(モニ
タ用光束)とに分離される。その一方の透過した光束B
は、対物レンズ4により集光され、測定物としての光デ
ィスク5の面上で反射され、再び対物レンズ4に入射し
て、ビームスプリッタ3により反射され、測定用干渉縞
発生手段としての二重回折格子8に入射する。この二重
回折格子8は、±n次光の第1回折光B1を発生させる
第1回折格子8aと、±m次光の第2回折光B2を発生
させる第2回折格子8bとからなっている。これによ
り、光ディスク5により反射された光束Bが第1回折格
子8aに入射することにより第1回折光B1が発生し、
この第1回折光B1が第2回折格子8bに入射すること
により第2回折光B2が発生する。そして、第2回折光
B2間の干渉により発生した干渉縞を測定用受光素子と
しての2分割受光素子9で受光することにより、演算回
路(図示せず)を通して差出力F1を得る。また、対物
レンズ4に入射する前にビームスプリッタ3により反射
された他方の光束Cは、モニタ用干渉縞発生手段として
の二重回折格子10に入射する。この二重回折格子10
は、±n次光の第1回折光B1を発生させる第1回折格
子10aと、±m次光の第2回折光B2を発生させる第
2回折格子10bとからなっている。これにより、光束
Cが第1回折格子10aに入射することにより第1回折
光C1が発生し、この第1回折光C1が第2回折格子8
bに入射することにより第2回折光C2が発生する。そ
して、第2回折光C2間の干渉により発生した干渉縞を
モニタ用受光素子としての2分割受光素子11で受光す
ることにより、前記演算回路とは極性を逆にした演算回
路(図示せず)を通して差出力F0を得る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the invention described in claim 1 is shown in FIGS.
It will be described based on. The description of the same parts as those of the conventional example (see FIG. 6) is omitted, and the same parts are denoted by the same reference numerals. The overall configuration of this device will be described with reference to FIG. The emitted light A diverging from the semiconductor laser 1 as the light source is collimated by the collimator lens 2 and
The light enters the beam splitter 3 as a light beam separating means.
The emitted light A is split by the beam splitter 3 into a light beam B (measuring light beam) that is transmitted as it is and a reflected light beam C (monitoring light beam). One of the transmitted light flux B
Is condensed by the objective lens 4, is reflected on the surface of the optical disk 5 as the object to be measured, is incident on the objective lens 4 again, is reflected by the beam splitter 3, and is doubled as a measuring interference fringe generating means. It enters the folding grating 8. The double diffraction grating 8 includes a first diffraction grating 8a that generates a first diffracted light beam B1 of ± n-order light and a second diffraction grating 8b that generates a second diffracted light beam B2 of ± m-order light. ing. As a result, the light beam B reflected by the optical disk 5 is incident on the first diffraction grating 8a to generate the first diffracted light B1,
When the first diffracted light B1 is incident on the second diffraction grating 8b, the second diffracted light B2 is generated. Then, the interference fringes generated by the interference between the second diffracted lights B2 are received by the two-divided light receiving element 9 as the light receiving element for measurement, and the differential output F1 is obtained through the arithmetic circuit (not shown). Further, the other light flux C reflected by the beam splitter 3 before entering the objective lens 4 enters a double diffraction grating 10 as a monitor interference fringe generating means. This double diffraction grating 10
Is composed of a first diffraction grating 10a for generating a first diffracted light B1 of ± n-order light and a second diffraction grating 10b for generating a second diffracted light B2 of ± m-order light. As a result, the light beam C is incident on the first diffraction grating 10a to generate the first diffracted light C1, and the first diffracted light C1 is generated by the second diffraction grating 8a.
The second diffracted light C2 is generated by being incident on b. Then, the interference fringes generated by the interference between the second diffracted lights C2 are received by the two-divided light receiving element 11 as the light receiving element for monitoring, so that an arithmetic circuit (not shown) whose polarity is opposite to that of the arithmetic circuit is obtained. To obtain the differential output F0.
【0013】そして、今、対物レンズ4により集光され
る光スポットが光ディスク5の面上で合焦状態ならば、
そのディスク面により反射される光束Bの波面は、対物
レンズ4に入射する前の光束Cの波面と原理的には同一
となる。図2は、デフォーカスにより変動してS字曲線
を描く差出力F1の曲線の波形を示すものである。S字
のゼロ点(差出力F1=0の値)は、反射光束Bの波面
が完全にフラットな状態であるが、ディスク面上のスポ
ットが合焦状態の時とは限らない。そこで、合焦状態の
S字の値をQとすると、PとQの差がオフセットΔであ
り、Qの値はほぼF0の値であるため、差出力F0と差
出力F1とを比較することにより、オフセットΔの生じ
ないフォーカスエラー信号Feを求めることができる。
具体例として、2分割受光素子9,11の各々の和信号
の値をS1,S0とすると、フォーカスエラー信号Fe
の値は、 Fe=(F1/S1)−(F0/S0) …(1) として求めることができる。If the light spot focused by the objective lens 4 is in focus on the surface of the optical disk 5,
In principle, the wavefront of the light beam B reflected by the disk surface is the same as the wavefront of the light beam C before entering the objective lens 4. FIG. 2 shows a waveform of a curve of the differential output F1 which changes due to defocus and draws an S-shaped curve. At the S-shaped zero point (the value of the difference output F1 = 0), the wavefront of the reflected light beam B is completely flat, but this is not always the case when the spot on the disk surface is in focus. Therefore, assuming that the S-shaped value in the focused state is Q, the difference between P and Q is the offset Δ, and the value of Q is almost F0. Therefore, the difference output F0 and the difference output F1 should be compared. Thus, the focus error signal Fe without the offset Δ can be obtained.
As a specific example, assuming that the values of the sum signals of the two-divided light receiving elements 9 and 11 are S1 and S0, respectively, the focus error signal Fe
The value of can be calculated as Fe = (F1 / S1)-(F0 / S0) (1).
【0014】この場合、図3に示すように、光束Bのレ
ンズ側に凸の波面12が対物レンズ4に入射したとす
る。この時、モニタ側の2分割受光素子11に入射する
波面13は受光面側に凸の状態であり、光ディスク5に
入射する光スポットが合焦時ならば測定用の2分割受光
素子9に入射する波面14は受光面側に凹となる。この
ため、同様な形状の2分割受光面で同様な演算回路を用
いた場合、検出される波面の凹凸が逆な関係であるため
に差出力F0,F1の符号が一致しない。そこで、両方
の演算回路の極性を逆にする。この時、波面13,14
は、共に曲率半径が数10m以上であり、図中の受光素
子間の距離Lは100mm(0.1m)程度であること
から、略平行でほぼ曲率半径の等しい波面であると考え
られ、これにより差出力F0,F1の絶対値はほぼ等し
くなる。In this case, as shown in FIG. 3, it is assumed that a convex wavefront 12 is incident on the objective lens 4 on the lens side of the light beam B. At this time, the wavefront 13 incident on the monitor-side two-divided light receiving element 11 is in a convex state on the light-receiving surface side. The wave front 14 is concave on the light receiving surface side. Therefore, when the same arithmetic circuit is used for the two-divided light receiving surfaces having the same shape, the signs of the difference outputs F0 and F1 do not match because the detected wavefront unevenness has an inverse relationship. Therefore, the polarities of both arithmetic circuits are reversed. At this time, the wavefronts 13 and 14
Since both have a radius of curvature of several tens of meters or more and the distance L between the light receiving elements in the figure is about 100 mm (0.1 m), it is considered that the wavefronts are substantially parallel and have substantially the same radius of curvature. Therefore, the absolute values of the differential outputs F0 and F1 are substantially equal.
【0015】上述したように、対物レンズ4に入射する
前の光束である出射光Aをビームスプリッタ3により測
定用の光束Bとモニタ用の光束Cとに分離し、一方のモ
ニタ用の光束Cを二重回折格子10に入射させた後の波
面13をモニタし、そのモニタされた光束Cの波面13
と、他方の測定用の光束Bが光ディスク5により反射さ
れ二重回折格子8に入射した後の波面14とを(1)式
を用いて比較することにより、オフセットΔの除去され
たフォーカスエラー信号Feを求めることができる。従
って、このようなことから、対物レンズ4に入射する光
束Bが完全な平面波でなくても、フォーカスエラー信号
Feにオフセットが生じるようなことがなく、常に精度
の良いフォーカス制御を行うことができる。また、経時
的に半導体レーザ1とコリメートレンズ2との間隔がズ
レたり、波長変動等によりコリメート光の平行度が変化
しても常に出射側の波面13をモニタし、合焦時のフォ
ーカスエラー信号Feの値を計算できるため、経時的変
化や温度特性などで発生するオフセットもキャンセルす
ることができ、これにより一段と信頼性の高いフォーカ
ス制御を行うことができる。As described above, the outgoing light A, which is a light flux before entering the objective lens 4, is split by the beam splitter 3 into a measurement light flux B and a monitoring light flux C, and one of the monitor light fluxes C. Is incident on the double diffraction grating 10, and the wavefront 13 of the monitored light beam C is monitored.
And the wavefront 14 after the other measuring light beam B is reflected by the optical disk 5 and is incident on the double diffraction grating 8 by using the equation (1), the focus error with the offset Δ removed. The signal Fe can be obtained. Therefore, even if the light beam B entering the objective lens 4 is not a perfect plane wave, an offset does not occur in the focus error signal Fe and focus control can always be performed with high accuracy. . Further, even if the distance between the semiconductor laser 1 and the collimator lens 2 deviates over time, or the parallelism of the collimated light changes due to wavelength fluctuations or the like, the wavefront 13 on the emission side is constantly monitored to provide a focus error signal at the time of focusing. Since the value of Fe can be calculated, it is possible to cancel an offset that occurs due to a change with time or a temperature characteristic, so that focus control with higher reliability can be performed.
【0016】次に、請求項2記載の発明の一実施例を図
4に基づいて説明する。なお、前述した請求項1記載の
発明と同一部分についての説明は省略し、その同一部分
については同一符号を用いる。本実施例では、請求項1
記載の発明の光ピックアップ装置(図1参照)におい
て、図4に示すように、対物レンズ4の方向へ向かわな
いモニタ用の光束Cと、対物レンズ4に入射し光ディス
ク5により反射された測定用の光束Bとを、光束分離手
段としてのビームスプリッタ3により同一方向へ分離す
るようにしたものである。ここでは、光束B,Cを同一
方向に分離するために、ビームスプリッタ3を3個の三
角状のプリズムを用いて構成した。Next, an embodiment of the invention described in claim 2 will be described with reference to FIG. The description of the same parts as those in the first aspect of the present invention will be omitted, and the same reference numerals will be used for the same parts. In the present embodiment, claim 1
In the optical pickup device (see FIG. 1) of the described invention, as shown in FIG. 4, a monitoring light flux C that does not go toward the objective lens 4 and a measurement light beam that is incident on the objective lens 4 and reflected by the optical disk 5 The light beam B and the light beam B are separated in the same direction by a beam splitter 3 as a light beam separating means. Here, in order to separate the light beams B and C in the same direction, the beam splitter 3 is configured by using three triangular prisms.
【0017】このようにモニタ用の光束Cと測定用の光
束Bとを同一方向へ分離することにより、二重回折格子
8の第1及び第2回折格子8a,8bと二重回折格子1
0の第1及び第2回折格子10a,10bとを1枚の素
子(例えば、1枚の透明基板)上で形成することができ
る。また、これに伴い、モニタ用の2分割受光素子11
の受光面と測定用の2分割受光素子9の受光面とも1枚
の同一基板上に形成することができるようになる。従っ
て、このようなことから、回折格子及び受光素子の数を
前述した請求項1記載の発明の実施例の約1/2に減ら
すことができ、これにより光学系の部品点数を大幅に削
減することができ、小型、軽量で安価な装置を提供する
ことができる。By thus separating the monitor light beam C and the measurement light beam B in the same direction, the first and second diffraction gratings 8a and 8b of the double diffraction grating 8 and the double diffraction grating 8 are separated. 1
The first and second diffraction gratings 10a and 10b of 0 can be formed on one element (for example, one transparent substrate). Along with this, the two-divided light receiving element 11 for monitoring
It is possible to form both the light receiving surface of and the light receiving surface of the two-divided light receiving element 9 for measurement on one same substrate. Therefore, from the above, the number of diffraction gratings and light receiving elements can be reduced to about 1/2 of that of the embodiment of the invention described in claim 1, thereby significantly reducing the number of parts of the optical system. It is possible to provide a small, lightweight, and inexpensive device.
【0018】次に、請求項3記載の発明の一実施例を図
5に基づいて説明する。なお、前述した請求項1,2記
載の発明と同一部分についての説明は省略し、その同一
部分については同一符号を用いる。本実施例では、請求
項1又は2記載の発明の光ピックアップ装置(図1参
照)において、図5に示すように、対物レンズ4へ向か
わないモニタ用の光束Cと、対物レンズ4に入射し光デ
ィスク5により反射された測定用の光束Bとに分離する
光束分離手段としてのビームスプリッタ3の入射面3a
及び出射面3bを光軸に対して傾けて配置したものであ
る。Next, an embodiment of the invention described in claim 3 will be described with reference to FIG. The description of the same parts as those of the first and second aspects of the present invention will be omitted, and the same reference numerals will be used for the same parts. In this embodiment, in the optical pickup device according to the first or second aspect of the present invention (see FIG. 1), as shown in FIG. 5, a monitoring light flux C that does not go to the objective lens 4 and is incident on the objective lens 4. Incident surface 3a of a beam splitter 3 as a light beam separating means for separating the light beam B for measurement reflected by the optical disk 5 into a light beam B for measurement.
And the emission surface 3b is arranged so as to be inclined with respect to the optical axis.
【0019】具体的には、図5(a)では、立方体のビ
ームスプリッタ3の光源側の入射面3aと対物レンズ4
側の出射面3bとを光軸に対して傾けて配置したもので
ある(なお、この図中、r1〜r4は、各面における一部
の反射光を示す)。図5(b)では、ビームスプリッタ
3の2分割受光素子9,11側へ向かう出射面3c,3
dを光軸に対して傾けて配置したものである。図5
(c)では、ビームスプリッタ3の対物レンズ4方向へ
向かう光束Bの入射面3e及び出射面3fを光軸に対し
て傾けて配置したものである。従って、このようにビー
ムスプリッタ3の光束入射面及び出射面を光軸に対して
傾けて配置したことにより、ビームスプリッタ3内部の
反射光と、モニタ用の光束C又は測定用の光束Bとの間
の干渉を低減させることができ、これにより、一段と精
度の良いフォーカスエラー信号を求めることができる。Specifically, in FIG. 5A, the incident surface 3a on the light source side of the cubic beam splitter 3 and the objective lens 4 are shown.
The light exit surface 3b on the side is arranged so as to be inclined with respect to the optical axis (note that in this figure, r 1 to r 4 represent a part of the reflected light on each surface). In FIG. 5B, the emission surfaces 3c and 3 of the beam splitter 3 toward the two-divided light receiving elements 9 and 11 side.
d is inclined with respect to the optical axis. Figure 5
In (c), the incident surface 3e and the exit surface 3f of the light beam B of the beam splitter 3 toward the objective lens 4 are arranged so as to be inclined with respect to the optical axis. Therefore, by arranging the light-incident surface and the light-exiting surface of the beam splitter 3 with respect to the optical axis in this manner, the reflected light inside the beam splitter 3 and the light flux C for monitoring or the light flux B for measurement are separated. It is possible to reduce the interference between them, which makes it possible to obtain a more accurate focus error signal.
【0020】次に、請求項4記載の発明の一実施例につ
いて説明する。なお、前述した請求項1〜3記載の発明
と同一部分についての説明は省略し、その同一部分につ
いては同一符号を用いる。本実施例では、請求項1又は
2記載の発明の光ピックアップ装置(図1参照)におい
て、モニタ用の2分割受光素子11の出力をもとに、半
導体レーザ1からの出射光Aの出力制御を行う出射光出
力制御手段(図示せず)を設けたものである。Next, an embodiment of the invention described in claim 4 will be described. The description of the same parts as those in the first to third aspects of the present invention will be omitted, and the same reference numerals will be used for the same parts. In this embodiment, in the optical pickup device according to the first or second aspect of the present invention (see FIG. 1), the output control of the emission light A from the semiconductor laser 1 is performed based on the output of the two-division light receiving element 11 for monitoring. Emission light output control means (not shown) for performing the above is provided.
【0021】一般に、LD(半導体レーザ1)制御の方
法としては、出力パワーを一定に保つAPC制御があ
る。このAPC制御方法は、素子内部にLDの後方出射
光をモニタするPD(受光素子)を備えたものであり、
この時のAPC動作はそのPDから検出された信号をも
とに行う。しかし、このような後方出射光をモニタする
方法では戻り光の影響を受けやすいという欠点がある。
そこで、本実施例のように、前方出射光である光束Cを
用い、出射光出力制御手段により出射光Aの制御を行う
ことによって、戻り光の影響を受けずに正確な出力制御
を行うことができる。従って、このようなことから、出
力制御を行うための光学素子を新たに設けなくても、出
射光Aを制御するための外部モニタを行うことができ、
しかも、このような外部モニタを行うことにより、フォ
ーカス制御のための信頼性も向上させることができる。Generally, as a method for controlling the LD (semiconductor laser 1), there is APC control for keeping the output power constant. In this APC control method, a PD (light receiving element) for monitoring the backward emission light of the LD is provided inside the element,
The APC operation at this time is performed based on the signal detected from the PD. However, such a method of monitoring the backward emission light has a drawback that it is easily affected by the return light.
Therefore, as in the present embodiment, the outgoing light A is controlled by the outgoing light output control means by using the light flux C which is the forward outgoing light, thereby performing accurate output control without being affected by the return light. You can Therefore, from the above, an external monitor for controlling the emitted light A can be performed without newly providing an optical element for controlling the output,
Moreover, by performing such external monitoring, the reliability for focus control can be improved.
【0022】[0022]
【発明の効果】請求項1記載の発明は、光源からの出射
光を対物レンズ側に向かわせる測定用光束と前記対物レ
ンズ側に向かわせないモニタ用光束とに分離する光束分
離手段を設け、この分離された一方の前記測定用光束を
前記対物レンズにより集光して測定物に照射しその反射
された光束が再び前記対物レンズ及び前記光束分離手段
を通過した光路中にその光束が入射することにより±n
次光の第1回折光を発生させる第1回折格子と、この第
1回折格子に対向配置され前記第1回折光が入射するこ
とにより±m次光の第2回折光を発生させる第2回折格
子とを有し前記第2回折光の間での干渉により干渉縞を
発生させる測定用干渉縞発生手段を設け、この測定用干
渉縞発生手段により発生した干渉縞の位相とピッチの変
化を検出する測定用受光素子を設け、前記光束分離手段
により前記対物レンズに入射する前に分離された他方の
前記モニタ用光束の光路中にその光束が入射することに
より±n次光の第1回折光を発生させる第1回折格子
と、この第1回折格子に対向配置され前記第1回折光が
入射することにより±m次光の第2回折光を発生させる
第2回折格子とを有し前記第2回折光の間での干渉によ
り干渉縞を発生させるモニタ用干渉縞発生手段を設け、
このモニタ用干渉縞発生手段により発生した干渉縞の位
相とピッチの変化を検出するモニタ用受光素子を設けた
ので、対物レンズに入射する前に出射光を測定用光束と
モニタ用光束とに分離し、そのモニタされたモニタ用光
束の波面と他方の測定物により反射された測定用光束の
波面とを比較することにより、オフセットの除去された
フォーカスエラー信号を求めることができ、これによ
り、対物レンズに入射する測定用光束の波面が完全な平
面波でなくても、オフセットがない常に精度の良いフォ
ーカス制御を行うことができる。また、経時的に光源と
コリメートレンズとの間隔がズレたり、波長変動等によ
りコリメート光の平行度が変化しても常に出射光側の波
面をモニタし、合焦時のフォーカスエラー信号の値を計
算できるため、経時的変化や温度特性などで発生するオ
フセットも同時にキャンセルすることができ、これによ
り一段と信頼性の高いフォーカス制御を行うことができ
る。According to the first aspect of the present invention, there is provided a light beam separating means for separating the light beam emitted from the light source into a measuring light beam which is directed to the objective lens side and a monitor light beam which is not directed to the objective lens side. The separated one of the measuring light beams is condensed by the objective lens and applied to the object to be measured, and the reflected light beam again enters the optical path passing through the objective lens and the light beam separating means. ± n
A first diffraction grating that generates a first diffracted light of the next light, and a second diffraction grating that is disposed so as to face the first diffracted light and that receives the first diffracted light to generate a second diffracted light of ± m-order light. A measuring interference fringe generating means for generating an interference fringe due to interference between the second diffracted light having a grating, and detecting a change in phase and pitch of the interference fringe generated by the measuring interference fringe generating means. The first diffracted light of the ± n-order light is obtained by providing the measuring light receiving element, and causing the light beam to enter the optical path of the other monitor light beam separated before entering the objective lens by the light beam separating means. And a second diffraction grating that is disposed opposite to the first diffraction grating and that generates the second diffracted light of ± m-order light when the first diffracted light is incident on the first diffraction grating. Interference between two diffracted lights causes interference fringes Provided an interference fringe generating means for Nita,
Since the monitor light receiving element for detecting the change in the phase and pitch of the interference fringes generated by the monitor interference fringe generating means is provided, the emitted light is separated into the measuring light flux and the monitoring light flux before entering the objective lens. Then, the offset-removed focus error signal can be obtained by comparing the wavefront of the monitored light beam for monitoring with the wavefront of the measurement light beam reflected by the other object to be measured. Even if the wavefront of the measuring light beam incident on the lens is not a perfect plane wave, there is no offset and focus control can always be performed with high accuracy. In addition, even if the distance between the light source and the collimator lens deviates over time, or the parallelism of the collimated light changes due to wavelength fluctuations, etc., the wavefront on the outgoing light side is constantly monitored to determine the value of the focus error signal during focusing. Since the calculation can be performed, it is possible to cancel the offset caused by the change with time or the temperature characteristic at the same time, and thereby, the focus control with higher reliability can be performed.
【0023】請求項2記載の発明は、請求項1記載の発
明において、対物レンズへ向かわないモニタ用光束と、
対物レンズに入射し測定物により反射された測定用光束
とを光束分離手段により同一方向へ分離するようにした
ので、モニタ用干渉縞発生手段と測定用干渉縞発生手段
とを1枚の素子で構成することができ、しかも、これに
伴ってモニタ用受光素子と測定用受光素子とも1枚の同
一基板上に構成することができるため、部品点数を大幅
に削減することができ、これにより、小型、軽量で安価
な装置を提供することができる。According to a second aspect of the present invention, in the first aspect of the invention, a monitor luminous flux that does not go to the objective lens,
Since the measuring light beam incident on the objective lens and reflected by the object to be measured is separated by the light beam separating means in the same direction, the monitor interference fringe generating means and the measuring interference fringe generating means are formed by a single element. Since the monitor light receiving element and the measurement light receiving element can be formed on the same substrate, the number of components can be significantly reduced. A small, lightweight, and inexpensive device can be provided.
【0024】請求項3記載の発明は、請求項1又は2記
載の発明において、対物レンズへ向かわないモニタ用光
束と対物レンズに入射し測定物により反射された測定用
光束とに分離する光束分離手段の入射面及び出射面を光
軸に対して傾けて配置したので、光束分離手段の内部で
発生する反射光とモニタ用光束又は測定用光束との間で
生じる干渉を低減させることができ、これにより一段と
精度の良いフォーカスエラー信号を得ることができる。
また、これにより光源への戻り光も低減することができ
る。According to a third aspect of the present invention, in the first or second aspect of the present invention, a light beam separating beam which does not go to the objective lens and a measuring light beam which enters the objective lens and is reflected by the object to be measured is separated. Since the entrance surface and the exit surface of the means are arranged to be inclined with respect to the optical axis, it is possible to reduce interference that occurs between the reflected light generated inside the light beam splitting means and the monitor light beam or the measurement light beam, This makes it possible to obtain a more accurate focus error signal.
Further, this also reduces the return light to the light source.
【0025】請求項4記載の発明は、請求項1又は2記
載の発明において、モニタ用受光素子の出力をもとに、
光源からの出射光の出力制御を行う出射光出力制御手段
を設けたので、新たに出力制御用の光学素子を設けなく
ても、出射光を制御するための外部モニタを行うことが
でき、これにより、フォーカス制御の信頼性を一段と高
めることができる。According to a fourth aspect of the invention, in the invention according to the first or second aspect, based on the output of the monitor light receiving element,
Since the output light output control means for controlling the output of the output light from the light source is provided, an external monitor for controlling the output light can be performed without newly providing an optical element for output control. Thereby, the reliability of focus control can be further improved.
【図1】請求項1記載の発明の一実施例である光ピック
アップ装置の全体構成を示す平面図である。FIG. 1 is a plan view showing an overall configuration of an optical pickup device according to an embodiment of the present invention.
【図2】デフォーカスの状態によりS字曲線を描くフォ
ーカスエラー信号の様子を示す波形図である。FIG. 2 is a waveform diagram showing a state of a focus error signal that draws an S-shaped curve depending on a defocus state.
【図3】ビームスプリッタにより分離される各光束の波
面の状態を示す平面図である。FIG. 3 is a plan view showing a state of a wavefront of each light beam separated by a beam splitter.
【図4】請求項2記載の発明の一実施例である光ピック
アップ装置の全体構成を示す平面図である。FIG. 4 is a plan view showing an overall configuration of an optical pickup device according to an embodiment of the invention as set forth in claim 2.
【図5】請求項3記載の発明の一実施例である光束分離
手段の入射面や出射面を光軸に対して各状態に傾けて配
置した場合の様子を示す平面図である。FIG. 5 is a plan view showing a state in which an entrance surface and an exit surface of a light beam splitting means that is an embodiment of the invention described in claim 3 are arranged so as to be inclined in each state with respect to the optical axis.
【図6】従来例を示す平面図である。FIG. 6 is a plan view showing a conventional example.
1 光源 3 光束分離手段 3a,3e 入射面 3b,3c,3d,3f 出射面 4 対物レンズ 5 測定物 8 測定物干渉縞発生手段 8a 第1回折格子 8b 第2回折格子 9 測定用受光素子 10 モニタ用干渉縞発生手段 10a 第1回折格子 10b 第2回折格子 11 モニタ用受光素子 15 光軸 B1,C1 第1回折光 B2,C2 第2回折光 DESCRIPTION OF SYMBOLS 1 light source 3 luminous flux separation means 3a, 3e incident surface 3b, 3c, 3d, 3f exit surface 4 objective lens 5 measured object 8 measured object interference fringe generation means 8a first diffraction grating 8b second diffraction grating 9 measurement light receiving element 10 monitor Interference fringe generating means 10a First diffraction grating 10b Second diffraction grating 11 Monitor light-receiving element 15 Optical axis B1, C1 First diffracted light B2, C2 Second diffracted light
Claims (4)
わせる測定用光束と前記対物レンズ側に向かわせないモ
ニタ用光束とに分離する光束分離手段を設け、この分離
された一方の前記測定用光束を前記対物レンズにより集
光して測定物に照射しその反射された光束が再び前記対
物レンズ及び前記光束分離手段を通過した光路中にその
光束が入射することにより±n次光の第1回折光を発生
させる第1回折格子と、この第1回折格子に対向配置さ
れ前記第1回折光が入射することにより±m次光の第2
回折光を発生させる第2回折格子とを有し前記第2回折
光の間での干渉により干渉縞を発生させる測定用干渉縞
発生手段を設け、この測定用干渉縞発生手段により発生
した干渉縞の位相とピッチの変化を検出する測定用受光
素子を設け、前記光束分離手段により前記対物レンズに
入射する前に分離された他方の前記モニタ用光束の光路
中にその光束が入射することにより±n次光の第1回折
光を発生させる第1回折格子と、この第1回折格子に対
向配置され前記第1回折光が入射することにより±m次
光の第2回折光を発生させる第2回折格子とを有し前記
第2回折光の間での干渉により干渉縞を発生させるモニ
タ用干渉縞発生手段を設け、このモニタ用干渉縞発生手
段により発生した干渉縞の位相とピッチの変化を検出す
るモニタ用受光素子を設けたことを特徴とする光ピック
アップ装置。1. A light beam splitting means for splitting a light beam emitted from a light source into a measuring light beam that is directed toward the objective lens side and a monitoring light beam that is not directed toward the objective lens side, and one of the separated measurement beams is provided. The object light beam is condensed by the objective lens and applied to the object to be measured, and the reflected light beam is again incident on the optical path that has passed through the objective lens and the light beam separating means. A first diffraction grating that generates one diffracted light, and a second diffraction light of ± mth order when the first diffracted light is incident on the first diffraction grating so as to face the first diffraction grating.
A second diffraction grating for generating diffracted light is provided, and measurement interference fringe generation means for generating interference fringes by interference between the second diffracted light is provided, and the interference fringe generated by the measurement interference fringe generation means. By providing a measuring light receiving element for detecting a change in the phase and pitch of the light beam, the light beam is incident on the optical path of the other monitor light beam separated before entering the objective lens by the light beam separating means. A first diffraction grating for generating a first diffracted light of the nth order light, and a second diffraction grating arranged to face the first diffracted light and to generate a second diffracted light of the ± mth order light by incidence of the first diffracted light. A monitor interference fringe generating means for generating interference fringes by interference between the second diffracted light having a diffraction grating is provided, and a change in phase and pitch of the interference fringes generated by the monitor interference fringe generating means is provided. Photodetector for monitor to detect An optical pickup device comprising:
と、対物レンズに入射し測定物により反射された測定用
光束とを光束分離手段により同一方向へ分離するように
したことを特徴とする請求項1記載の光ピックアップ装
置。2. A light beam for monitoring which does not go to the objective lens and a light beam for measurement which is incident on the objective lens and reflected by the object to be measured are separated by the light beam separating means in the same direction. 1. The optical pickup device described in 1.
対物レンズに入射し測定物により反射された測定用光束
とに分離する光束分離手段の入射面及び出射面を光軸に
対して傾けて配置したことを特徴とする請求項1又は2
記載の光ピックアップ装置。3. An incident surface and an emission surface of a light beam separating means for separating a monitor light beam which does not go to the objective lens and a measurement light beam which is incident on the objective lens and reflected by the object to be measured, are arranged so as to be inclined with respect to the optical axis. The method according to claim 1 or 2, wherein
The optical pickup device described.
からの出射光の出力制御を行う出射光出力制御手段を設
けたことを特徴とする請求項1又は2記載の光ピックア
ップ装置。4. The optical pickup device according to claim 1, further comprising an emitted light output control means for controlling the output of the emitted light from the light source based on the output of the monitor light receiving element.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6009820A JPH07220301A (en) | 1994-01-31 | 1994-01-31 | Optical pickup device |
US08/364,140 US5572323A (en) | 1993-12-27 | 1994-12-27 | Infinitesimal displacement measuring apparatus and optical pick-up unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6009820A JPH07220301A (en) | 1994-01-31 | 1994-01-31 | Optical pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07220301A true JPH07220301A (en) | 1995-08-18 |
Family
ID=11730787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6009820A Pending JPH07220301A (en) | 1993-12-27 | 1994-01-31 | Optical pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07220301A (en) |
-
1994
- 1994-01-31 JP JP6009820A patent/JPH07220301A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100231388B1 (en) | Tracking error detector of optical head | |
US4850673A (en) | Optical scanning apparatus which detects scanning spot focus error | |
JPH0743834B2 (en) | Optical scanning device | |
JP2755757B2 (en) | Measuring method of displacement and angle | |
US5182444A (en) | Split lens displaced long from each other along plane of cut | |
US5572323A (en) | Infinitesimal displacement measuring apparatus and optical pick-up unit | |
US5822293A (en) | Magnetooptical recording/reproducing apparatus | |
US7054095B2 (en) | Displacement detection apparatus, and magnetic recording apparatus and encoder using the displacement detection apparatus | |
JP3300536B2 (en) | Displacement measuring device and optical pickup | |
JPH07220301A (en) | Optical pickup device | |
JPH07294231A (en) | Optical surface roughness meter | |
JP3303250B2 (en) | Displacement measuring device and optical pickup | |
JPH0447532A (en) | Optical head | |
JP2761180B2 (en) | Micro displacement measuring device and optical pickup device | |
JPS6331858B2 (en) | ||
JPH1173655A (en) | Optical head | |
JPH07182666A (en) | Optical pickup system | |
JPS5897008A (en) | Positioning method for semiconductor laser and collimator lens | |
JPH07182665A (en) | Optical pickup system | |
JPH0425787A (en) | Doppler speed indicator | |
JP2007033098A (en) | Lens measuring method and lens measuring device | |
JPH05205294A (en) | Optical information recording and reproducing device | |
JP2686323B2 (en) | Focus error detection device | |
JP3439124B2 (en) | Optical head device | |
JPH0323977B2 (en) |