[go: up one dir, main page]

JP2007033098A - Lens measuring method and lens measuring device - Google Patents

Lens measuring method and lens measuring device Download PDF

Info

Publication number
JP2007033098A
JP2007033098A JP2005213675A JP2005213675A JP2007033098A JP 2007033098 A JP2007033098 A JP 2007033098A JP 2005213675 A JP2005213675 A JP 2005213675A JP 2005213675 A JP2005213675 A JP 2005213675A JP 2007033098 A JP2007033098 A JP 2007033098A
Authority
JP
Japan
Prior art keywords
lens
light
diffraction grating
correction plate
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213675A
Other languages
Japanese (ja)
Inventor
Kazumi Kobayashi
一三 小林
Kazumasa Takada
和政 高田
Hirokazu Furuta
寛和 古田
Yukio Imada
行雄 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005213675A priority Critical patent/JP2007033098A/en
Publication of JP2007033098A publication Critical patent/JP2007033098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens measuring method and a lens measuring instrument using a detection means of a simple structure. <P>SOLUTION: This lens measuring instrument comprises: a diffraction means for turning a beam output from a lens into diffracted beams of a different order to cause them to interfere with each other; a correction means having the same optical path length as that of the diffraction means as to a beam diffracted by the diffraction means; an aberration measuring means for finding the aberration of the lens based on the diffracted beams; and an inclination adjusting means for adjusting the inclination of the lens based on the aberration found by the measuring means. This measuring instrument is characterized in that the lens and a detection means have the same optical path length as to the optical axis of the beam output from the lens, with the detection means used for detecting the diffracted beams caused to interfere with each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ディスク方式の高密度情報記録媒体、例えば、青色レーザ光源を用いたBD、HD−DVDや、赤色レーザ光源を用いたDVD、CDなどに情報を読み書きする光ピックアップに用いるレンズ計測方法、及びレンズ計測装置に関するものである。   The present invention relates to a lens measurement method used for an optical pickup for reading and writing information on an optical disk type high-density information recording medium, for example, BD and HD-DVD using a blue laser light source, DVD and CD using a red laser light source, and the like. And a lens measuring device.

光ピックアップとは、レーザ光源からの光をレンズにより集束させて光ディスク形式の高密度情報記録媒体の表面に当て、その反射光を受光素子へと導くための光学部品である。   An optical pickup is an optical component that focuses light from a laser light source with a lens and strikes it on the surface of an optical disk type high-density information recording medium and guides the reflected light to a light receiving element.

近年、光ピックアップの光源に青色レーザなどが使用されることで、レーザ光源からの光の波長が短く光ディスク形式の高密度情報記録媒体の記録密度が増加している。このような状況から、光を目的の箇所に正確かつ精密に照射するためのより高精度な光ピックアップが要求されている。   In recent years, the use of a blue laser or the like as a light source of an optical pickup has increased the recording density of a high-density information recording medium in the form of an optical disk with a short wavelength of light from the laser light source. Under such circumstances, there is a demand for a more accurate optical pickup for accurately and precisely irradiating light to a target location.

ところが、光学系を構成する部品の特性や組み立て精度のばらつきにより、製造された光ピックアップごとに特性が大きく異なり、光ピックアップの特性が許容範囲を超えてしまう場合がある。そのため、光ピックアップの製造工程においては、その光学系の位置を個別に調整することが重要である。   However, due to variations in the characteristics of parts constituting the optical system and the assembly accuracy, the characteristics differ greatly for each manufactured optical pickup, and the characteristics of the optical pickup may exceed the allowable range. Therefore, in the optical pickup manufacturing process, it is important to individually adjust the position of the optical system.

現在、この課題を解決するための具体的な方式として、干渉計測で光ピックアップの対物レンズの収差を検出し、その検出結果に基づいて光源側の光学系の位置を調整する回折干渉方式(特許文献1参照)がある。   Currently, as a specific method for solving this problem, a diffraction interference method (patents) is used to detect the aberration of the objective lens of the optical pickup by interference measurement and adjust the position of the optical system on the light source side based on the detection result. Reference 1).

図4は、従来の光ピックアップの調整装置を示す図である。以下、特許文献1に記載の回折干渉方式の光ピックアップの調整装置を、図4を参照しながら説明する。   FIG. 4 is a view showing a conventional optical pickup adjusting device. Hereinafter, a diffraction interference type optical pickup adjusting device described in Patent Document 1 will be described with reference to FIG.

この光ピックアップの調整装置は、光を出射させる光ピックアップ1と、光を回折させる回折格子3、検出手段である組レンズ4、光を集光させる結像レンズ5、像を撮影するための撮像素子6、得られたデータより特性を検出する特性検出部7で構成される。次に、光ピックアップの調整方法を具体例を用いて説明する。   This optical pickup adjusting device includes an optical pickup 1 that emits light, a diffraction grating 3 that diffracts light, an assembled lens 4 that is a detection unit, an imaging lens 5 that collects light, and an imaging for photographing an image. The element 6 includes a characteristic detector 7 that detects a characteristic from the obtained data. Next, a method for adjusting the optical pickup will be described using a specific example.

図4において、光ピックアップ1から出射した光は、対物レンズ2により集光されて回折格子3に入射し、回折格子3で回折することで0次光と±1次光の回折光を生じる。組レンズ4において、生じた回折光の0次光と+1次光、0次光と−1次光が重なり合って干渉縞パターンを形成し、結像レンズ5を透過し、撮像素子6上に結像する。   In FIG. 4, the light emitted from the optical pickup 1 is collected by the objective lens 2, enters the diffraction grating 3, and is diffracted by the diffraction grating 3 to generate diffracted light of zero order light and ± first order light. In the group lens 4, the generated 0th-order light and + 1st-order light, and 0th-order light and −1st-order light overlap to form an interference fringe pattern, which passes through the imaging lens 5 and is coupled onto the image sensor 6. Image.

撮像素子6で得られた干渉縞パターンを特性検出部7で解析することにより、対物レンズ2の収差を検出する。   By analyzing the interference fringe pattern obtained by the image sensor 6 by the characteristic detector 7, the aberration of the objective lens 2 is detected.

組レンズ4には、正確な測定を行なうために収差の影響を軽減することが求められるが、その機能と入手の容易性を考慮して、図示したような顕微鏡の組レンズ4を用いている。この顕微鏡の組レンズ4は凸レンズや凹レンズ等の複数のレンズを組み合わせた構造となっている。
特開2001−108575号公報
The group lens 4 is required to reduce the influence of aberration in order to perform an accurate measurement. However, in consideration of its function and availability, the group lens 4 of the microscope as shown is used. . The microscope combination lens 4 has a structure in which a plurality of lenses such as a convex lens and a concave lens are combined.
JP 2001-108575 A

しかしながら、前記従来の構成における組レンズで構成された検出手段は複数のレンズを有しているため検出手段が複雑な構造となり、レンズ計測装置も複雑になってしまう課題を有していた。   However, since the detection means constituted by the combination lens in the conventional configuration has a plurality of lenses, the detection means has a complicated structure, and the lens measuring device also has a problem.

また、組レンズを使わずにレンズの計測を行なうと、従来の構成においては組レンズを用いることで修正されていた誤差が修正されなくなり、レンズ計測を行なうことはできなくなる課題が発生する。   In addition, when the lens is measured without using the group lens, the error corrected by using the group lens in the conventional configuration is not corrected, and there is a problem that the lens measurement cannot be performed.

本発明は、前記従来の課題を解決するためのもので、組レンズを用いずに、組レンズを用いた場合と同等の性能を有するレンズ計測方法及びレンズ計測装置を提供することを目的とする。   The present invention is intended to solve the above-described conventional problems, and an object thereof is to provide a lens measurement method and a lens measurement device having the same performance as the case of using a combined lens without using a combined lens. .

前記目的を達成するために、本発明のレンズ計測方法は、レンズから出射された光を回折格子で異なる次数に回折し、特定の次数の回折光が前記回折格子と同一の光路長を有する補正板に前記回折した光を透過させ、前記透過した光を検出手段で検出し、前記検出した結果より前記レンズの特性を計測することを特徴とする。   In order to achieve the above object, the lens measurement method of the present invention diffracts light emitted from a lens into different orders by a diffraction grating, and a correction in which a specific order of diffracted light has the same optical path length as the diffraction grating. The diffracted light is transmitted through a plate, the transmitted light is detected by detection means, and the characteristics of the lens are measured from the detection result.

以上のように、本発明のレンズ計測装置によれば、構造が複雑な組レンズを用いることなくレンズの計測を行なうことができる。   As described above, according to the lens measurement device of the present invention, it is possible to perform lens measurement without using a combined lens having a complicated structure.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1におけるレンズ計測装置を示す図である。図1において、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 1)
FIG. 1 is a diagram showing a lens measuring device according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in FIG.

図1において、本発明の実施の形態1のレンズ計測装置は、光源1a、ビームスプリッタ1b、受光素子1cを有する光ピックアップ1と、対物レンズ2と光源からの光を対物レンズ2から出射する手段と、対物レンズ2から入射した光を受光素子に導く手段を備えた光ピックアップ1を有し、対物レンズ2から出射された光の光軸上に対物レンズ2から見て順に光を回折するための回折格子3、平行平板よりなる補正板8、回折された光を検出するための検出レンズ9、光を集光するための結像レンズ5、像を撮影するための撮像素子6が配置される。また、撮像素子6と接続されて、得られたシェアリング干渉像より対物レンズ2の収差を測定するための特性検出器7を備える。   1, the lens measuring apparatus according to the first embodiment of the present invention includes an optical pickup 1 having a light source 1a, a beam splitter 1b, and a light receiving element 1c, and means for emitting light from the objective lens 2 and the light source from the objective lens 2. And an optical pickup 1 having means for guiding the light incident from the objective lens 2 to the light receiving element, and diffracts the light in order on the optical axis of the light emitted from the objective lens 2 when viewed from the objective lens 2. , A correction plate 8 made of a parallel plate, a detection lens 9 for detecting diffracted light, an imaging lens 5 for condensing the light, and an image sensor 6 for taking an image. The In addition, a characteristic detector 7 is provided which is connected to the image sensor 6 and measures the aberration of the objective lens 2 from the obtained sharing interference image.

このレンズ計測装置の動作を順に説明する。光ピックアップ1内の光源1aから出射し対物レンズ2に入射した光は、対物レンズ2から出射され、回折格子3へ入射する。回折格子3に入射した光は回折格子3で回折され、0次回折光と±1次回折光を生じ、この0次回折光と±1次回折光が重なり合うことでシェアリング干渉像を生じさせる。回折格子3において回折された光は、回折格子3と回折された光の内の特定の次数の回折光(ここでは0次光)が同一光路長を有する補正板8と、検出レンズ9を通り、結像レンズ5で集光され、撮像素子6で結像し、干渉縞を生じさせる。ここで、干渉縞における各点は固有の位相を有するため、回折格子3を光軸と直行する方向に一定の速度で移動し、回折光の干渉領域のある点における光強度の変化と別の点における光強度の変化の位相差を求め、その位相差を特性検出部7で解析して各収差を評価し、収差より対物レンズ2の良否の検査を行い、その検査結果に応じて調整を行うことが可能である。この時の収差は、通常単独では存在せず、コマ収差、球面収差、非点収差などが複合した形で現れる。収差抽出には、位相シフト法を用いる。   The operation of this lens measuring device will be described in order. Light emitted from the light source 1 a in the optical pickup 1 and incident on the objective lens 2 is emitted from the objective lens 2 and enters the diffraction grating 3. The light incident on the diffraction grating 3 is diffracted by the diffraction grating 3 to generate 0th order diffracted light and ± 1st order diffracted light, and this 0th order diffracted light and ± 1st order diffracted light are overlapped to generate a sharing interference image. The light diffracted by the diffraction grating 3 passes through the correction plate 8 having a specific optical path length of the diffracted light of a specific order (here, 0th order light) of the diffraction grating 3 and the diffracted light and the detection lens 9. The light is condensed by the imaging lens 5 and imaged by the image sensor 6 to generate interference fringes. Here, since each point in the interference fringe has a unique phase, the diffraction grating 3 is moved at a constant speed in a direction perpendicular to the optical axis, and the light intensity change at a certain point in the interference region of the diffracted light is different from that. The phase difference of the change of the light intensity at the point is obtained, the phase difference is analyzed by the characteristic detection unit 7, each aberration is evaluated, the quality of the objective lens 2 is inspected based on the aberration, and the adjustment is made according to the inspection result. Is possible. The aberration at this time usually does not exist alone, but appears in a form in which coma, spherical aberration, astigmatism, and the like are combined. A phase shift method is used for aberration extraction.

ここで、本発明の単レンズを用いたレンズ計測装置で、従来の組レンズを用いたレンズ計測装置と同じ精度の干渉画像が得られる原理を説明する。光ピックアップ内の対物レンズは、光ピックアップから出射した光を光ディスクで反射しその反射光を通すという実際に使用される状況を考慮し、光ディスクの厚み分の球面収差を補正して設計されている。そのため、光ディスクを用いずに検査を行なう回折干渉方式においては、光ディスクの厚み分の球面収差を補正する構造が必要となる。   Here, the principle of obtaining an interference image with the same accuracy as that of a conventional lens measuring device using a combined lens with a lens measuring device using a single lens of the present invention will be described. The objective lens in the optical pickup is designed by correcting the spherical aberration corresponding to the thickness of the optical disk in consideration of the actual use situation where the light emitted from the optical pickup is reflected by the optical disk and the reflected light is transmitted. . Therefore, in the diffraction interference method in which inspection is performed without using an optical disc, a structure for correcting spherical aberration corresponding to the thickness of the optical disc is required.

本発明の実施の形態1においては、この光ディスクの厚み分の球面収差を補正するために、回折格子3と同一の材料で同一の厚さの補正板8を、対物レンズ2と検出レンズ9の間に設置する。ここで、回折格子3及び補正板8の材料としては、例えば石英ガラスが用いられる。   In the first embodiment of the present invention, in order to correct the spherical aberration corresponding to the thickness of the optical disk, the correction plate 8 having the same material and the same thickness as the diffraction grating 3 is provided between the objective lens 2 and the detection lens 9. Install between. Here, as a material of the diffraction grating 3 and the correction plate 8, for example, quartz glass is used.

ここで、補正板8の厚さと材料を回折格子と同一としたのは、本発明の実施の形態1のような回折干渉方式において、回折格子3により生じる光路長と同じだけの光路長を、補正板8を通過することにより得ることができるためである。   Here, the reason that the thickness and the material of the correction plate 8 are the same as that of the diffraction grating is that the optical path length that is the same as the optical path length generated by the diffraction grating 3 in the diffraction interference method as in Embodiment 1 of the present invention, This is because it can be obtained by passing through the correction plate 8.

また、対物レンズ2と検出レンズ9のレンズの厚さは等しく、光源から出射された光に対するそれぞれのレンズの光路長は等しいものとする。   In addition, the thicknesses of the objective lens 2 and the detection lens 9 are equal, and the optical path length of each lens with respect to the light emitted from the light source is equal.

また、本発明の実施の形態1における補正板8は、回折格子3と同一の材料かつ同一の厚さであるため、新たな設計をする必要はなく、より容易に入手することができる。   In addition, since the correction plate 8 in the first embodiment of the present invention is made of the same material and the same thickness as the diffraction grating 3, it is not necessary to make a new design and can be obtained more easily.

また、顕微鏡などに用いられる組レンズで構成された検出手段は構造が複雑なため、小型化することが困難であるが、本発明の実施の形態1に用いた単レンズを用いれば、単レンズで構成された検出レンズを用いた光学系の装置であるため、容易に小型化することが可能となる。   In addition, the detection means composed of a combination lens used in a microscope or the like has a complicated structure and is difficult to reduce in size. However, if the single lens used in Embodiment 1 of the present invention is used, a single lens is used. Therefore, it is possible to easily reduce the size of the optical system.

また、回折格子3と補正板8が貼り合わされた構成だと、回折格子3や補正板8の界面の影響を軽減することができるため、より精度よく球面収差を補正することができる。ここで、回折格子3の焦点が存在する面、すなわち溝を有する面(格子面)と対向して補正板8を貼り合せると、よりディスクの構造に近いものとすることができる。また、回折格子3と補正板8を貼り合せるための手段としては、構造は簡単だが接着剤の特性が重要となる、屈折を生じない接着剤で接着する方法や、構造は複雑になるが量産しても一定の精度を保つことが容易となる、回折格子3と補正板8のそれぞれに凸部や凹部を設け嵌合させることにより嵌め合わせる方法などが考えられる。   Further, when the diffraction grating 3 and the correction plate 8 are bonded together, the influence of the interface between the diffraction grating 3 and the correction plate 8 can be reduced, so that the spherical aberration can be corrected more accurately. Here, when the correction plate 8 is bonded to the surface on which the focal point of the diffraction grating 3 exists, that is, the surface having a groove (grating surface), the structure of the disk can be made closer. In addition, as a means for bonding the diffraction grating 3 and the correction plate 8, the structure is simple but the characteristics of the adhesive are important. The method of adhering with an adhesive that does not cause refraction, and the structure is complicated but mass production. However, it is easy to maintain a certain degree of accuracy, and a method of fitting by providing a convex portion or a concave portion on each of the diffraction grating 3 and the correction plate 8 can be considered.

(実施の形態2)
図2は本発明の実施の形態2におけるレンズ計測装置を示す図である。図2において、図1、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 2 is a diagram showing a lens measuring device according to Embodiment 2 of the present invention. 2, the same components as those in FIGS. 1 and 4 are denoted by the same reference numerals, and description thereof is omitted.

図2において、図1のレンズ計測装置の構成要素に加えて、光ピックアップ1の対物レンズ2の姿勢を制御する姿勢制御機構10と、対物レンズ2をチャックする機構11が配置されている。   2, in addition to the components of the lens measurement device of FIG. 1, an attitude control mechanism 10 that controls the attitude of the objective lens 2 of the optical pickup 1 and a mechanism 11 that chucks the objective lens 2 are arranged.

対物レンズ2から出射された光は回折格子3にて回折され、撮像素子6上にてシェアリング干渉縞を形成し、そのシェアリング干渉縞を撮像素子6で撮像し、得られた干渉縞より特性検出部7で収差を測定する。光学系における理想結像状態からのずれを示す収差が発生している場合には、その光ピックアップは不良品となってしまうため、この収差を補正する必要がある。そのために、特性検出部7で検出された収差より、姿勢制御機構10を動かし、収差を打ち消す方向に対物レンズ2の姿勢を変更する。この収差測定と対物レンズ2の姿勢の変更を繰り返すことにより、対物レンズ2の出射光から測定される収差の影響を軽減し、光ピックアップを調整する。   The light emitted from the objective lens 2 is diffracted by the diffraction grating 3 to form a sharing interference fringe on the image sensor 6, and the sharing interference fringe is imaged by the image sensor 6. The characteristic detector 7 measures the aberration. If an aberration indicating a deviation from the ideal imaging state in the optical system is generated, the optical pickup becomes a defective product, and it is necessary to correct this aberration. For this purpose, the attitude control mechanism 10 is moved from the aberration detected by the characteristic detection unit 7 to change the attitude of the objective lens 2 in a direction to cancel the aberration. By repeating this aberration measurement and changing the posture of the objective lens 2, the influence of the aberration measured from the light emitted from the objective lens 2 is reduced, and the optical pickup is adjusted.

この構成により、収差の測定と対物レンズ2の傾き調整を連動させて行なうことができる。   With this configuration, aberration measurement and tilt adjustment of the objective lens 2 can be performed in conjunction.

(実施の形態3)
図3は、本発明の実施の形態3におけるレンズ計測装置を示す図である。図3において、図1、図2、図4と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 3)
FIG. 3 is a diagram showing a lens measuring device according to Embodiment 3 of the present invention. In FIG. 3, the same constituent elements as those in FIGS.

図3において、本発明の実施の形態3のレンズ計測装置は、2つの対物レンズ13、14を有している。対物レンズ13の光軸上に回折格子15、補正板17、検出レンズ19、結像レンズ22を有し、対物レンズ14の光軸上に回折格子16、補正板18、検出レンズ20、結像レンズ23を有する。回折格子15、16、補正板17、18、検出レンズ19、20、結像レンズ22、23は、設計上の対物レンズ13、14の中心間の距離と高さに応じて位置が決められている。また、回折格子16と補正板18、検出レンズ20は一体としてX、Y、Zの3方向に動くステージ24上に配置されている。   In FIG. 3, the lens measuring device according to the third embodiment of the present invention has two objective lenses 13 and 14. A diffraction grating 15, a correction plate 17, a detection lens 19 and an imaging lens 22 are provided on the optical axis of the objective lens 13, and a diffraction grating 16, a correction plate 18, a detection lens 20 and an imaging lens are provided on the optical axis of the objective lens 14. It has a lens 23. The positions of the diffraction gratings 15 and 16, the correction plates 17 and 18, the detection lenses 19 and 20, and the imaging lenses 22 and 23 are determined according to the distance and height between the centers of the designed objective lenses 13 and 14. Yes. The diffraction grating 16, the correction plate 18, and the detection lens 20 are integrally disposed on a stage 24 that moves in three directions of X, Y, and Z.

ここで、回折格子15と補正板17、回折格子16と補正板18は同一の材料、同一の厚さとする。また、対物レンズ13と検出レンズ19、対物レンズ14と検出レンズ20はそれぞれ厚さは等しく、それぞれの光源からの光に対する光路長も同一とする。   Here, the diffraction grating 15 and the correction plate 17 and the diffraction grating 16 and the correction plate 18 are made of the same material and the same thickness. The objective lens 13 and the detection lens 19, the objective lens 14 and the detection lens 20 have the same thickness, and the optical path lengths for the light from the respective light sources are also the same.

図3において、光ピックアップ12内の対物レンズ13側の光源12aから出射された光はコリメータレンズ12cを透過してミラー12fで反射され、対物レンズ13より出射される。その後、回折格子15において回折され、補正板17を透過し、検出レンズ19で平行光になり、結像レンズ22により結像される。また、対物レンズ14側の光源12bから出射された光はコリメータレンズ12d、ビームエクスパンダ12eを透過してミラー12fで反射され、対物レンズ14より出射される。その後、回折格子16において回折され、補正板18を透過し、検出レンズ20で平行光になり、ハーフミラー21によって光軸が曲げられ、結像レンズ23により結像される。対物レンズ13は、チャック機構11によりチャックされ、姿勢制御機構10により、位置や姿勢を変更することができる。対物レンズ14も同様に、位置や姿勢を変更することができる。   In FIG. 3, light emitted from the light source 12 a on the objective lens 13 side in the optical pickup 12 is transmitted through the collimator lens 12 c, reflected by the mirror 12 f, and emitted from the objective lens 13. Thereafter, the light is diffracted by the diffraction grating 15, passes through the correction plate 17, becomes parallel light by the detection lens 19, and forms an image by the imaging lens 22. The light emitted from the light source 12b on the objective lens 14 side passes through the collimator lens 12d and the beam expander 12e, is reflected by the mirror 12f, and is emitted from the objective lens 14. Thereafter, the light is diffracted by the diffraction grating 16, passes through the correction plate 18, becomes parallel light by the detection lens 20, the optical axis is bent by the half mirror 21, and an image is formed by the imaging lens 23. The objective lens 13 is chucked by the chuck mechanism 11, and the position and posture can be changed by the posture control mechanism 10. Similarly, the position and orientation of the objective lens 14 can be changed.

この構成により、2つのレーザ光源からの出射光を同時に取り込み、収差測定を行い、その収差を補正するようにレンズの位置や姿勢を調整することができる。光ピックアップの組み立て時の誤差により、2つの対物レンズの中心間距離やその高さにバラツキが生じる場合は、対物レンズ13側の光軸を検出レンズ19の光軸と一致させた後、対物レンズ13側の光軸を測定し、その測定結果より調整ステージ24を動かして対物レンズ14側の光軸と検出レンズ23の光軸を一致させる。これにより、光ピックアップ12の組み立て誤差によらず、2つの対物レンズの収差測定を同時に行うことができる。   With this configuration, it is possible to simultaneously capture the light emitted from the two laser light sources, measure the aberration, and adjust the position and orientation of the lens so as to correct the aberration. If the distance between the centers of the two objective lenses and the height thereof vary due to errors during assembly of the optical pickup, the objective lens 13 side is made to coincide with the optical axis of the detection lens 19 and then the objective lens. The optical axis on the 13th side is measured, and the adjustment stage 24 is moved from the measurement result so that the optical axis on the objective lens 14 side coincides with the optical axis of the detection lens 23. Thereby, the aberration measurement of the two objective lenses can be performed simultaneously regardless of the assembly error of the optical pickup 12.

また、青色レーザ光源を対物レンズ14側に用い、赤色レーザ光源を対物レンズ13側に用いる場合を考えると、青色レーザ光源に比べて精度を必要としない赤色レーザ光源を用いる対物レンズ13側を調整し、その後、対物レンズ14側を精密に調整することになる。そのため、対物レンズ14側が、対物レンズ13側よりも長い調整時間を必要とする場合は、あらかじめ対物レンズ14側がある程度調整されている状態でステージを動かすことになり、調整時間を短縮することができる。   Further, considering the case where the blue laser light source is used on the objective lens 14 side and the red laser light source is used on the objective lens 13 side, the objective lens 13 side using the red laser light source that does not require higher accuracy than the blue laser light source is adjusted. Thereafter, the objective lens 14 side is precisely adjusted. Therefore, when the objective lens 14 side requires a longer adjustment time than the objective lens 13 side, the stage is moved in a state where the objective lens 14 side is adjusted to some extent in advance, and the adjustment time can be shortened. .

本発明のレンズ計測方法及びレンズ計測装置は、組レンズのような複雑な検出手段を用いることなく回折格子の収差の影響を軽減することができる。そのため、回折干渉方式を用いて、レンズを計測する装置に適用することができる。   The lens measurement method and the lens measurement apparatus of the present invention can reduce the influence of the aberration of the diffraction grating without using complicated detection means such as a combined lens. Therefore, it can be applied to an apparatus for measuring a lens using a diffraction interference method.

本発明の実施の形態1におけるレンズ計測装置を示す図The figure which shows the lens measuring device in Embodiment 1 of this invention. 本発明の実施の形態2におけるレンズ計測装置を示す図The figure which shows the lens measuring device in Embodiment 2 of this invention. 本発明の実施の形態3におけるレンズ計測装置を示す図The figure which shows the lens measuring device in Embodiment 3 of this invention. 従来の光ピックアップ調整装置を示す図The figure which shows the conventional optical pick-up adjustment apparatus

符号の説明Explanation of symbols

1、12 光ピックアップ
1a 光源
1b ビームスプリッタ
1c 受光素子
2、13、14 対物レンズ
3、15、16 回折格子
4 組レンズ
5、22、23 結像レンズ
6 撮像素子
7 特性検出器
8、17、18 補正板
9、19、20 検出レンズ
10 姿勢制御機構
11 チャック機構
12a、12b 光源
12c、12d コリメータレンズ
12e ビームエクスパンダ
12f ミラー
21 ハーフミラー
24 調整ステージ
DESCRIPTION OF SYMBOLS 1,12 Optical pick-up 1a Light source 1b Beam splitter 1c Light receiving element 2, 13, 14 Objective lens 3, 15, 16 Diffraction grating 4 Pair lens 5, 22, 23 Imaging lens 6 Imaging element 7 Characteristic detector 8, 17, 18 Correction plate 9, 19, 20 Detection lens 10 Attitude control mechanism 11 Chuck mechanism 12a, 12b Light source 12c, 12d Collimator lens 12e Beam expander 12f Mirror 21 Half mirror 24 Adjustment stage

Claims (10)

レンズから出射された光を回折格子で異なる次数の光に回折し、特定の次数の回折光が前記回折格子と同一の光路長を有する補正板に前記回折した光を透過させ、前記透過した光を検出手段で検出し、前記検出した結果より前記レンズの特性を計測すること
を特徴とするレンズ計測方法。
The light emitted from the lens is diffracted into light of different orders by a diffraction grating, and the diffracted light of a specific order transmits the diffracted light to a correction plate having the same optical path length as the diffraction grating, and the transmitted light And a lens measurement method, wherein the characteristic of the lens is measured from the detection result.
前記検出手段で検出された光は、前記回折した光が干渉して形成されたシェアリング干渉光であること
を特徴とする請求項1記載のレンズ計測方法。
2. The lens measuring method according to claim 1, wherein the light detected by the detecting means is sharing interference light formed by interference of the diffracted light.
前記特定の次数の回折光は、0次の回折光であること
を特徴とする請求項1記載のレンズ計測方法。
The lens measuring method according to claim 1, wherein the specific order diffracted light is zero-order diffracted light.
前記検出した結果は、前記レンズの収差であること
を特徴とする請求項1記載のレンズ計測方法。
The lens measurement method according to claim 1, wherein the detected result is an aberration of the lens.
レンズから出射された光から異なる次数の回折光を形成する回折格子と、前記回折光を検出する検出手段と、前記レンズの光軸に対して前記回折格子と同一の光路長を有する補正板とを備え、
前記回折格子と前記検出手段との間に前記補正板が配置されたこと
を特徴とするレンズ計測装置。
A diffraction grating that forms diffracted light of a different order from the light emitted from the lens, a detection means that detects the diffracted light, and a correction plate having the same optical path length as the diffraction grating with respect to the optical axis of the lens; With
A lens measuring device, wherein the correction plate is arranged between the diffraction grating and the detecting means.
前記回折格子の格子面と前記補正板とが対向すること
を特徴とする請求項5記載のレンズ計測装置。
The lens measuring device according to claim 5, wherein a grating surface of the diffraction grating and the correction plate face each other.
前記回折格子と前記補正板とが接合されたこと
を特徴とする請求項5又は6記載のレンズ計測装置。
The lens measuring device according to claim 5 or 6, wherein the diffraction grating and the correction plate are joined.
前記回折格子と前記補正板とが透光性の接着剤で接合されたこと
を特徴とする請求項7記載のレンズ計測装置。
The lens measurement device according to claim 7, wherein the diffraction grating and the correction plate are bonded with a translucent adhesive.
前記回折格子と前記補正板とが嵌合により接合されたこと
を特徴とする請求項7記載のレンズ計測装置。
The lens measurement device according to claim 7, wherein the diffraction grating and the correction plate are joined by fitting.
請求項5から9のいずれかに記載のレンズ計測機構と同様のレンズ計測機構を更に有すること
を特徴とするレンズ計測装置。
A lens measurement device further comprising a lens measurement mechanism similar to the lens measurement mechanism according to claim 5.
JP2005213675A 2005-07-25 2005-07-25 Lens measuring method and lens measuring device Pending JP2007033098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213675A JP2007033098A (en) 2005-07-25 2005-07-25 Lens measuring method and lens measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213675A JP2007033098A (en) 2005-07-25 2005-07-25 Lens measuring method and lens measuring device

Publications (1)

Publication Number Publication Date
JP2007033098A true JP2007033098A (en) 2007-02-08

Family

ID=37792559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213675A Pending JP2007033098A (en) 2005-07-25 2005-07-25 Lens measuring method and lens measuring device

Country Status (1)

Country Link
JP (1) JP2007033098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020220A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Lens inspection device
KR100930368B1 (en) * 2008-01-22 2009-12-08 주식회사 코렌 Measuring system for optical lens and method for evaluating lens characteristics using same
WO2011102663A3 (en) * 2010-02-19 2012-03-01 Kim Woo Jun Optical system for forming square optical path and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020220A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Lens inspection device
KR100930368B1 (en) * 2008-01-22 2009-12-08 주식회사 코렌 Measuring system for optical lens and method for evaluating lens characteristics using same
WO2011102663A3 (en) * 2010-02-19 2012-03-01 Kim Woo Jun Optical system for forming square optical path and method thereof
US9075239B2 (en) 2010-02-19 2015-07-07 Woo Jun Kim Optical system for forming optical path of oblique angle and method thereof

Similar Documents

Publication Publication Date Title
JP5634138B2 (en) Displacement detector
JPH01169738A (en) Optical type scanner
JP3549047B2 (en) Optical pickup device, aberration correction method thereof, and aberration detection device
JP2009205775A (en) Optical pickup device
US8400900B2 (en) Lens, lens mounting method and optical pickup device
JP2007033098A (en) Lens measuring method and lens measuring device
JP4830837B2 (en) Lens measuring device
TWI249740B (en) Optical head and optical disk drive
JP4618202B2 (en) Lens inspection device
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
US8547814B2 (en) Semiconductor laser device, optical pickup apparatus, and method of manufacturing semiconductor laser device
JP4106191B2 (en) Optical system adjustment method
JP5066559B2 (en) Hologram laser device manufacturing apparatus and hologram laser device
US6950376B2 (en) Optical head and optical disk apparatus
JP4167181B2 (en) Adjustment method of optical pickup
JP5670664B2 (en) Displacement detector
JP2005276268A (en) Compound lens and optical head device
JP4184320B2 (en) Optical head adjustment device
JP2008076160A (en) Diffraction grating used for lens evaluation, lens evaluation method, and lens evaluation apparatus
JPH0237529A (en) Lens position detector
JP2006309833A (en) Optical pickup manufacturing method and apparatus
JP2012220292A (en) Displacement detection apparatus
JP2006252612A (en) Optical pickup device
JP2007052890A (en) Method for assembling optical pickup part
JP2007115301A (en) Optical pickup device