[go: up one dir, main page]

JPH07213100A - Sensorless inverter apparatus provided with resistance-change compensation - Google Patents

Sensorless inverter apparatus provided with resistance-change compensation

Info

Publication number
JPH07213100A
JPH07213100A JP6014856A JP1485694A JPH07213100A JP H07213100 A JPH07213100 A JP H07213100A JP 6014856 A JP6014856 A JP 6014856A JP 1485694 A JP1485694 A JP 1485694A JP H07213100 A JPH07213100 A JP H07213100A
Authority
JP
Japan
Prior art keywords
resistance
initial value
speed
current
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6014856A
Other languages
Japanese (ja)
Other versions
JP2850091B2 (en
Inventor
Yoichi Omori
洋一 大森
Hirokazu Kobayashi
弘和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP6014856A priority Critical patent/JP2850091B2/en
Publication of JPH07213100A publication Critical patent/JPH07213100A/en
Application granted granted Critical
Publication of JP2850091B2 publication Critical patent/JP2850091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To restrain the control accuracy of a speed from being degraded by providing a resistance change estimation means which estimates a change in a secondary resistor on the basis of the current of an output from a current detection means and on the basis of the operating time so as to output the change to a speed operation means. CONSTITUTION:A resistance-change estimation device 111 to which a current is input estimates a rise in the temperature of an electric motor 4 by means of Formula I, it estimates a change in a secondary resistor by means of Formula II, and it outputs a corrected secondary resistor R2 to a current-system magnetic-flux operation device 62 and a speed operation device 72. A secondary resistor R2n in Formula II at this time is sent by a resistance measuring and setting device 12. Thereby, arithmetic is performed by using the corrected secondary resistor in the current-system magnetic-flux operation device 62 and the speed operation device 72.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インバータにより誘導
電動機を駆動する速度センサレス方式の装置に係り、特
に温度変化に伴う特性変化を抑制した抵抗補償付きセン
サレスインバータ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a speed sensorless type device for driving an induction motor by an inverter, and more particularly to a sensorless inverter device with resistance compensation which suppresses characteristic changes due to temperature changes.

【0002】[0002]

【従来の技術】誘導電動機に速度検出器を付けず電動機
のトルクと速度を高精度,高速に制御する従来技術のセ
ンサレスインバータ装置は図4の如きものである。図4
においては、1はインバータ、2は電流検出器、3は電
圧検出器、4は誘導電動機(以下単に電動機という)、
5は電圧系磁束演算器、61は電流系磁束演算器、71は速
度演算器、8はトルク演算器、9は速度制御器、10はト
ルク磁束制御器である。
2. Description of the Related Art A prior art sensorless inverter device for controlling the torque and speed of an electric motor with high accuracy and high speed without attaching a speed detector to the induction motor is shown in FIG. Figure 4
, 1 is an inverter, 2 is a current detector, 3 is a voltage detector, 4 is an induction motor (hereinafter simply referred to as an electric motor),
5 is a voltage-based magnetic flux calculator, 61 is a current-based magnetic flux calculator, 71 is a speed calculator, 8 is a torque calculator, 9 is a speed controller, and 10 is a torque-flux controller.

【0003】インバータ1はトルク磁束制御器10出力の
スイッチング信号を入力し、そのスイッチング信号に応
じてインバータ1が動作させられる。インバータ1出力
は電流検出器2や電圧検出器3を介して電動機4に接続
されており、インバータ1により電動機4に電圧を印加
することができる。電圧系磁束演算器5は電流検出器2
出力の電流iと電圧検出器3出力の電圧vを入力し、ま
た電流系磁束演算器61出力の磁束ψi を入力し、磁束ψ
v を式(1)により演算する。
The inverter 1 receives a switching signal output from the torque flux controller 10, and the inverter 1 is operated according to the switching signal. The output of the inverter 1 is connected to the electric motor 4 via the current detector 2 and the voltage detector 3, and the inverter 1 can apply a voltage to the electric motor 4. The voltage system magnetic flux calculator 5 is the current detector 2
Input the output current i and the voltage detector 3 output voltage v, and also input the current system magnetic flux calculator 61 output magnetic flux ψi, and
Calculate v according to equation (1).

【0004】[0004]

【数1】 [Equation 1]

【0005】ここで、L1 は一次自己インダクタンス、
L2 は二次自己インダクタンス、Mは相互インダクタン
ス、R1 は一次抵抗、Kはドリフト補償ゲインである。
速度演算器7は磁束ψv と電流iより回転速度ωm を式
(2)より演算する。
Where L1 is the primary self-inductance,
L2 is a secondary self-inductance, M is a mutual inductance, R1 is a primary resistance, and K is a drift compensation gain.
The speed calculator 7 calculates the rotation speed ωm from the magnetic flux ψv and the current i according to the equation (2).

【0006】[0006]

【数2】 [Equation 2]

【0007】ここで、ωは磁束ψv の回転角速度であ
り、R2 は二次抵抗である。電流系磁束演算器61は磁束
ψi を式(3)で演算する。
Here, ω is the rotational angular velocity of the magnetic flux ψv, and R2 is the secondary resistance. The current system magnetic flux calculator 61 calculates the magnetic flux ψi by the equation (3).

【0008】[0008]

【数3】 [Equation 3]

【0009】トルク演算器8では磁束ψi と電流iより
トルクTを演算し、トルク磁束制御器10に出力する。ト
ルク磁束制御器10ではその他にトルク指令T*と磁束指
令ψ*と磁束ψiとを入力し、トルクと磁束がそれらの
指令に追従するようなスイッチング信号をインバータ1
に出力する。速度制御器9では速度指令ωm *と演算に
よる回転速度ωm を入力し、速度が指令に追従するよう
なトルク指令T*を出力する。
The torque calculator 8 calculates the torque T from the magnetic flux ψi and the current i, and outputs it to the torque magnetic flux controller 10. In addition to the torque command T *, the magnetic flux command ψ *, and the magnetic flux ψi, the torque magnetic flux controller 10 inputs a switching signal such that the torque and the magnetic flux follow these commands.
Output to. The speed controller 9 inputs the speed command ωm * and the calculated rotation speed ωm, and outputs the torque command T * such that the speed follows the command.

【0010】[0010]

【発明が解決しようとする課題】かように従来技術では
回転速度ωm の演算に二次抵抗R2 を用いているが、こ
の値は電動機の温度によって変動し、温度変動によりω
m に演算誤差が生じる。よって、速度の制御精度が悪化
してしまう。
As described above, in the prior art, the secondary resistance R2 is used to calculate the rotation speed ωm, but this value fluctuates depending on the temperature of the electric motor, and ω depends on the temperature fluctuation.
A calculation error occurs in m. Therefore, the speed control accuracy deteriorates.

【0011】[0011]

【課題を解決するための手段】本発明は、上述したよう
な課題を解消すべく、つぎの如き構成をなすものであ
る。しかして、センサレスインバータ装置において、冷
温時の電動機の二次抵抗を計測しインバータに設定する
抵抗計測設定手段と、電流検出手段出力の電流と運転時
間より電動機の二次抵抗変動を推定し速度演算手段に出
力する抵抗変動推定手段とを備えてなるものである。
The present invention has the following construction in order to solve the above-mentioned problems. Therefore, in the sensorless inverter device, resistance measurement setting means for measuring the secondary resistance of the electric motor when it is cold and setting it in the inverter, and the secondary resistance fluctuation of the electric motor are estimated from the current output from the current detection means and the operating time to calculate the speed. And a resistance fluctuation estimating means for outputting to the means.

【0012】また、センサレスインバータ装置の制御電
源がオンされた直後の電動機温度上昇を推定するため
に、抵抗およびコンデンサによる充放電回路と、センサ
レスインバータ装置の制御電源がオンされた後に充放電
回路のコンデンサ電圧を計測することにより制御電源が
オフしていた時間を推定し、その時間と制御電源がオフ
した時の抵抗変動推定手段出力の電動機温度上昇値から
制御電源がオンした時の電動機温度上昇値を推定し、抵
抗変動推定手段の初期値とする第1の初期値計測手段と
を具備し構成したものである。
Further, in order to estimate the temperature rise of the motor immediately after the control power supply of the sensorless inverter device is turned on, the charge / discharge circuit of the resistor and the capacitor and the charge / discharge circuit of the sensorless inverter device after the control power supply of the sensorless inverter device are turned on. The time when the control power supply is off is estimated by measuring the capacitor voltage, and the motor temperature rise when the control power supply is turned on from that time and the motor temperature rise value of the resistance fluctuation estimation means output when the control power supply is turned off. A first initial value measuring unit that estimates a value and sets it as an initial value of the resistance variation estimating unit is configured.

【0013】さらにまた、前述の第1の初期値計測手段
に代え、センサレスインバータ装置の制御電源がオンさ
れた後の運転開始時に電動機の抵抗を計測して抵抗変動
推定手段の初期値とする第2の初期値計測手段を具備し
構成したものである。
Furthermore, in place of the above-mentioned first initial value measuring means, the resistance of the electric motor is measured at the start of operation after the control power supply of the sensorless inverter device is turned on, and is set as the initial value of the resistance fluctuation estimating means. It is configured by including two initial value measuring means.

【0014】さらには、第2の初期値計測手段における
電動機抵抗計測手段は、第1に、インバータより直流電
圧を電動機に印加し、そのときの電流と電圧より電動機
の抵抗を計測するようにしたものである。第2に、短時
間の矩形波電圧をインバータより電動機に印加し、その
際の電流の立ち上がり特性より電動機の抵抗を計測する
ようにしたものである。
Further, firstly, the motor resistance measuring means in the second initial value measuring means applies the DC voltage from the inverter to the motor and measures the resistance of the motor from the current and voltage at that time. It is a thing. Secondly, a rectangular wave voltage for a short time is applied to the electric motor from the inverter, and the resistance of the electric motor is measured from the current rising characteristic at that time.

【0015】[0015]

【作用】さて、電動機から発生する熱は殆どが電動機の
巻線抵抗に電流が流れることにより発生し、その発生熱
は電流Iの2乗に比例すると考えられる。また、外気と
の熱抵抗や熱容量を考慮すると、電動機の温度上昇θは
式(4)のように一次遅れで近似できる。
Most of the heat generated from the electric motor is generated by the current flowing through the winding resistance of the electric motor, and it is considered that the generated heat is proportional to the square of the current I. Further, in consideration of the heat resistance and heat capacity with the outside air, the temperature rise θ of the electric motor can be approximated by a first-order delay as shown in equation (4).

【0016】[0016]

【数4】 [Equation 4]

【0017】ここで、Kは換算ゲイン、Tは時定数であ
る。そして、巻線の抵抗はほぼ温度に比例し、したがっ
て、二次抵抗R2 は式(5)で推定できる。
Here, K is a conversion gain, and T is a time constant. The resistance of the winding is almost proportional to the temperature, and therefore the secondary resistance R2 can be estimated by the equation (5).

【0018】[0018]

【数5】 [Equation 5]

【0019】ここで、K1 は温度と抵抗の変換係数であ
り、R2nは電動機の温度が周囲温度と同じ時の二次抵抗
であり、抵抗計測手段によって設定されたものである。
かようにして、前述の解決手段記載の抵抗変動推定手段
では、以上の計算により温度変化による二次抵抗の変動
を推定する。
Here, K1 is a conversion coefficient between temperature and resistance, R2n is a secondary resistance when the temperature of the motor is the same as the ambient temperature, and is set by the resistance measuring means.
In this way, the resistance fluctuation estimating means described in the above-mentioned solving means estimates the fluctuation of the secondary resistance due to the temperature change by the above calculation.

【0020】ここに、センサレスインバータの制御電源
がオフすると式(4)の演算ができなくなる。そこで、
第1の初期値計測手段では、抵抗とコンデンサによる充
放電回路のコンデンサ電圧Vc の制御電源がオフする直
前の値Vc1と、制御電源がオンした直後の値Vc2とを計
測し、それらの電圧比より制御電源がオフしていた時間
を推定し、その時間と制御電源がオフする直前の式
(4)の温度上昇値θ1 より、式(4)に従って制御電
源がオンした直後の電動機温度上昇値であり式(4)の
初期値であるθ0 を求めることができる。
If the control power supply of the sensorless inverter is turned off, the calculation of the equation (4) cannot be performed. Therefore,
The first initial value measuring means measures a value Vc1 of the capacitor voltage Vc of the charging / discharging circuit by the resistor and the capacitor immediately before the control power supply is turned off and a value Vc2 immediately after the control power supply is turned on, and the voltage ratio thereof is measured. Estimate the time when the control power supply was off, and from that time and the temperature increase value θ1 in equation (4) immediately before the control power supply was turned off, the motor temperature rise value immediately after the control power supply was turned on according to equation (4) And θ0 which is the initial value of the equation (4) can be obtained.

【0021】また、第2の初期値計測手段において、電
動機にPWM制御で平均的に直流電圧を印加し、この印
加時間が長ければ印加電圧と電流より一次抵抗を計測す
ることができる。一次抵抗R1 の温度上昇と二次抵抗R
2 の温度上昇が同じとすれば、式(6)より、式(4)
の初期値を求めることができる。
Further, in the second initial value measuring means, the DC voltage is applied to the electric motor by PWM control on average, and if the application time is long, the primary resistance can be measured from the applied voltage and the current. Temperature rise of primary resistance R1 and secondary resistance R
If the temperature rise of 2 is the same, from equation (6), equation (4)
The initial value of can be obtained.

【0022】[0022]

【数6】 [Equation 6]

【0023】ここで、R1nは電動機か周囲温度と同じと
きの一次抵抗である。その印加時間が短い場合は、一定
時間後の電流Ix を計測する。二次抵抗R2nのときの同
様な方法による電流Ix0値に対する第2の初期値計測手
段での電流値の変動の割り合いは、抵抗変動の割り合い
とほぼ一致し、式(7)より式(4)の初期値を求める
ことができる。
Here, R1n is the primary resistance when the motor or the ambient temperature is the same. When the application time is short, the current Ix after a fixed time is measured. The ratio of the fluctuation of the current value in the second initial value measuring means to the value of the current Ix0 by the similar method in the case of the secondary resistance R2n is almost the same as the ratio of the resistance fluctuation, and from the formula (7), the formula (7) The initial value of 4) can be obtained.

【0024】[0024]

【数7】 [Equation 7]

【0025】つまり、第1,第2の初期値計測では制御
電源がオンした時の電動機の温度上昇を求め、抵抗変動
推定手段では運転中の電動機の温度上昇を推定すること
により、温度上昇による二次抵抗の変動を推定し、速度
演算手段に用いる二次抵抗を修正することによって温度
変動による速度変動を制御することができる。また、第
2の初期値計測手段は、抵抗を計測することにより電動
機の温度上昇が停電回復後も性格に把握でき、第1の初
期値計測手段より汎用性が向上する。
That is, in the first and second initial value measurements, the temperature rise of the electric motor when the control power source is turned on is obtained, and the resistance variation estimating means estimates the temperature rise of the electric motor during operation, so that the temperature rise By estimating the fluctuation of the secondary resistance and correcting the secondary resistance used in the speed calculation means, the speed fluctuation due to the temperature fluctuation can be controlled. In addition, the second initial value measuring means can measure the resistance to accurately grasp the temperature rise of the electric motor even after the power failure is recovered, and the versatility is improved as compared with the first initial value measuring means.

【0026】[0026]

【実施例】図1は本発明の一実施例の要部構成を示すも
ので、62は電流系磁束演算器、72は速度演算器、111 は
抵抗変動推定器、12は抵抗計測設定器である。図中、図
4と同符号のものは同じ機能を有する構成部分を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a main structure of an embodiment of the present invention. 62 is a current system magnetic flux calculator, 72 is a speed calculator, 111 is a resistance fluctuation estimator, and 12 is a resistance measurement setting device. is there. In the figure, the same reference numerals as those in FIG. 4 indicate components having the same functions.

【0027】かかる回路構成において、抵抗変動推定器
111 は電流Iを入力して式(4)により電動機4の温度
上昇を推定し、式(5)により二次抵抗変動は推定し、
修正した二次抵抗R2 を電流系磁束演算器62や速度演算
器72に出力する。そのときの式(5)のR2nは抵抗計測
設定器12で設定されたものである。これにより、電流系
磁束演算器62や速度演算器72では修正された二次抵抗を
用いて演算し得るものとなる。
In such a circuit configuration, the resistance fluctuation estimator
111 inputs the current I, estimates the temperature rise of the electric motor 4 by the equation (4), estimates the secondary resistance variation by the equation (5),
The corrected secondary resistance R2 is output to the current system magnetic flux calculator 62 and the speed calculator 72. R2n in the equation (5) at that time is set by the resistance measurement setting device 12. As a result, the current system magnetic flux calculator 62 and the speed calculator 72 can be calculated using the modified secondary resistance.

【0028】図1において制御電源がオンした直後の電
動機の温度上昇値が未定であり、抵抗変動推定器111 の
式(4)の温度上昇値の初期値が設定できない。そこ
で、図2または図3のような構成とする。図2は本発明
による一例の初期値計測手段が用いられた回路例を示す
もので、112 は抵抗変動推定器、131 は初期値計測器、
14は充放電回路である。すなわち、抵抗変動推定器112
に、初期値計測手段としての初期値計測器131 および充
放電回路14が追加されてなるものである。
In FIG. 1, the temperature rise value of the electric motor immediately after the control power source is turned on is undetermined, and the initial value of the temperature rise value of the equation (4) of the resistance fluctuation estimator 111 cannot be set. Therefore, the configuration as shown in FIG. 2 or FIG. 3 is adopted. FIG. 2 shows an example of a circuit in which an initial value measuring means according to the present invention is used. 112 is a resistance fluctuation estimator, 131 is an initial value measuring device,
14 is a charging / discharging circuit. That is, the resistance variation estimator 112
In addition, an initial value measuring device 131 as an initial value measuring means and a charging / discharging circuit 14 are added.

【0029】ここに、充放電回路14においては、141 は
制御電源、142 は充電抵抗、143 は充電ダイオード、14
4 は放電抵抗、145 はコンデンサである。初期値計測器
131 は、充放電回路14のコンデンサ145 出力を得るもの
であり、コンデンサ電圧を、制御電源141 がオフする直
前とオンした直後に計測する。そして、初期値計測器13
1 はその電圧比から制御電源がオフしていた時間を推定
し、式(4)に従って制御電源がオンした時の電動機の
温度上昇θ0 を推定して抵抗変動推定器112 に出力す
る。抵抗変動推定器112 はこのθ0 を式(4)の初期値
とする。
In the charging / discharging circuit 14, 141 is a control power source, 142 is a charging resistor, 143 is a charging diode, and 14 is a charging diode.
4 is a discharge resistor and 145 is a capacitor. Initial value measuring instrument
Reference numeral 131 is for obtaining the output of the capacitor 145 of the charge / discharge circuit 14, and measures the capacitor voltage immediately before the control power supply 141 is turned off and immediately after it is turned on. Then, the initial value measuring device 13
1 estimates the time during which the control power supply is off from the voltage ratio, estimates the temperature rise θ 0 of the electric motor when the control power supply is on according to equation (4), and outputs it to the resistance variation estimator 112. The resistance variation estimator 112 uses this θ0 as the initial value of the equation (4).

【0030】図3は本発明による他の例の初期値計測手
段が用いられた回路例を示すもので、113 は抵抗変動推
定器、132 は初期値計測器、15はスイッチである。すな
わち、抵抗変動推定器113 に、初期値計測手段としての
初期値計測器132 およびスイッチ15が付設されてなるも
のである。そして、制御電源がオンした直後の運転開始
時にのみスイッチ15が初期値計測器132 側に閉路し得
る。さらには、初期値計測器132 出力のスイッチング信
号でインバータ1を運転できるものとなる。このスイッ
チング信号により電動機4には直流電圧が印加され、初
期値計測器132 はこのときの電動機の電流Ix を計測
し、また式(7)より温度上昇値θ0を推定して抵抗変
動推定器113 に出力する。また、初期値計測器132 出力
のスイッチング信号を短時間の矩形波電圧としてインバ
ータ1に印加し、その際の電流の立ち上がり特性を得る
ものとしてもよく、同様に電動機の抵抗を計測すること
ができる。
FIG. 3 shows an example of a circuit in which another example of the initial value measuring means according to the present invention is used. 113 is a resistance fluctuation estimator, 132 is an initial value measuring device, and 15 is a switch. That is, the resistance variation estimator 113 is provided with an initial value measuring device 132 and a switch 15 as initial value measuring means. Then, the switch 15 can be closed to the initial value measuring instrument 132 side only when the operation is started immediately after the control power supply is turned on. Further, the inverter 1 can be operated by the switching signal output from the initial value measuring device 132. A DC voltage is applied to the electric motor 4 by this switching signal, and the initial value measuring device 132 measures the electric current Ix of the electric motor at this time, and also estimates the temperature rise value θ0 from the equation (7) to estimate the resistance variation estimator 113. Output to. Further, the switching signal output from the initial value measuring device 132 may be applied to the inverter 1 as a rectangular wave voltage for a short time to obtain the rising characteristic of the current at that time, and the resistance of the electric motor can be measured in the same manner. .

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、誘
導電動機の温度上昇による二次の抵抗変動での速度の制
御精度の劣化を抑制した格別な装置を提供できる。
As described above, according to the present invention, it is possible to provide a special device in which the deterioration of the speed control accuracy due to the secondary resistance fluctuation due to the temperature rise of the induction motor is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の要部構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a main configuration of an embodiment of the present invention.

【図2】図2は本発明による一例の初期値計測手段が用
いられた回路例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a circuit in which an example initial value measuring means according to the present invention is used.

【図3】図3は本発明による他の例の初期値計測手段が
用いられた回路例を示すブロック図である。
FIG. 3 is a block diagram showing an example of a circuit in which an initial value measuring means of another example according to the present invention is used.

【図4】図4は従来例のセンサレスインバータ装置を示
すブロック図である。
FIG. 4 is a block diagram showing a conventional sensorless inverter device.

【符号の説明】[Explanation of symbols]

1 インバータ 2 電流検出器 3 電圧検出器 4 誘導電動機(電動機) 5 電圧系磁束演算器 61 電流計磁束演算器 62 電流計磁束演算器 71 速度演算器 72 速度演算器 8 トルク演算器 9 速度制御器 10 トルク磁束制御器 111 抵抗変動推定器 112 抵抗変動推定器 113 抵抗変動推定器 12 抵抗計測設定器 131 初期値計測器 132 初期値計測器 14 充放電回路 15 スイッチ 1 Inverter 2 Current detector 3 Voltage detector 4 Induction motor (motor) 5 Voltage system magnetic flux calculator 61 Ammeter magnetic flux calculator 62 Ammeter magnetic flux calculator 71 Speed calculator 72 Speed calculator 8 Torque calculator 9 Speed controller 10 Torque flux controller 111 Resistance fluctuation estimator 112 Resistance fluctuation estimator 113 Resistance fluctuation estimator 12 Resistance measurement setting device 131 Initial value measuring device 132 Initial value measuring device 14 Charge / discharge circuit 15 Switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘導電動機の入力電流を検出する電流検
出手段と、誘導電動機のトルクを制御するトルク制御手
段と、誘導電動機の回転速度を演算する速度演算手段
と、該速度演算手段出力の回転速度をその指令値に追従
させる速度制御手段とを具備してなるセンサレスインバ
ータ装置において、冷温時の誘導電動機の二次抵抗を計
測しインバータに設定する抵抗計測設定手段と、前記電
流検出手段出力の電流と運転時間より二次抵抗変動を推
定し前記速度演算手段に出力する抵抗変動推定手段とを
備えてなることを特徴とする抵抗変動補償付きセンサレ
スインバータ装置。
1. A current detection means for detecting an input current of an induction motor, a torque control means for controlling a torque of the induction motor, a speed calculation means for calculating a rotation speed of the induction motor, and a rotation of an output of the speed calculation means. In a sensorless inverter device comprising speed control means for making speed follow its command value, a resistance measurement setting means for measuring the secondary resistance of the induction motor at the time of cold temperature and setting it in the inverter, and a current detection means output. A sensorless inverter device with resistance variation compensation, comprising: a resistance variation estimating means for estimating a secondary resistance variation from an electric current and an operating time and outputting it to the speed computing means.
【請求項2】 センサレスインバータ装置の制御電源が
オンされた直後に抵抗およびコンデンサによる充放電回
路のコンデンサ電圧を計測することにより該制御電源が
オフしていた時間を推定し、かつその時間と制御電源が
オフした時の前記抵抗変動推定手段出力の電動機温度上
昇推定値から制御電源がオンした時の電動機温度上昇値
を推定し前記抵抗変動推定手段の初期値とする第1の初
期値計測手段を設けるようにした請求項1記載の抵抗変
動補償付きセンサレスインバータ装置。
2. The time when the control power supply is off is estimated by measuring the capacitor voltage of the charging / discharging circuit by the resistance and the capacitor immediately after the control power supply of the sensorless inverter device is turned on, and the time and control are performed. First initial value measuring means for estimating the motor temperature rise value when the control power source is turned on from the estimated motor temperature rise value output from the resistance variation estimating means when the power is off, and setting it as the initial value of the resistance variation estimating means. The sensorless inverter device with resistance fluctuation compensation according to claim 1, wherein
【請求項3】 センサレスインバータ装置の制御電源が
オンされた後の運転開始時に前記誘導電動機の抵抗を計
測して前記抵抗変動推定手段の初期値とする第2の初期
値計測手段を設けるようにした請求項1記載の抵抗変動
補償付きセンサレスインバータ装置。
3. A second initial value measuring means for measuring the resistance of the induction motor and setting the initial value of the resistance fluctuation estimating means at the start of operation after the control power source of the sensorless inverter device is turned on. The sensorless inverter device with resistance fluctuation compensation according to claim 1.
JP6014856A 1994-01-13 1994-01-13 Sensorless inverter device with resistance fluctuation compensation Expired - Fee Related JP2850091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6014856A JP2850091B2 (en) 1994-01-13 1994-01-13 Sensorless inverter device with resistance fluctuation compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6014856A JP2850091B2 (en) 1994-01-13 1994-01-13 Sensorless inverter device with resistance fluctuation compensation

Publications (2)

Publication Number Publication Date
JPH07213100A true JPH07213100A (en) 1995-08-11
JP2850091B2 JP2850091B2 (en) 1999-01-27

Family

ID=11872680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6014856A Expired - Fee Related JP2850091B2 (en) 1994-01-13 1994-01-13 Sensorless inverter device with resistance fluctuation compensation

Country Status (1)

Country Link
JP (1) JP2850091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737121A3 (en) * 1997-03-11 2007-02-28 Mitsubishi Denki Kabushiki Kaisha Induction motor controller
US8981694B2 (en) 2012-01-26 2015-03-17 Samsung Electronics Co., Ltd. Sensorless control apparatuses of motors and control methods thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106091A (en) * 1984-10-25 1986-05-24 Yaskawa Electric Mfg Co Ltd Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH048192A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Resistance measuring method and device for motor and control method and device for electric vehicle
JPH04364384A (en) * 1991-06-10 1992-12-16 Toyo Electric Mfg Co Ltd Resistance estimation starting system for induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106091A (en) * 1984-10-25 1986-05-24 Yaskawa Electric Mfg Co Ltd Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JPH048192A (en) * 1990-04-25 1992-01-13 Hitachi Ltd Resistance measuring method and device for motor and control method and device for electric vehicle
JPH04364384A (en) * 1991-06-10 1992-12-16 Toyo Electric Mfg Co Ltd Resistance estimation starting system for induction motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737121A3 (en) * 1997-03-11 2007-02-28 Mitsubishi Denki Kabushiki Kaisha Induction motor controller
US8981694B2 (en) 2012-01-26 2015-03-17 Samsung Electronics Co., Ltd. Sensorless control apparatuses of motors and control methods thereof

Also Published As

Publication number Publication date
JP2850091B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
JP3183759B2 (en) Load measuring device
JPH09304489A (en) Method for measuring motor constant of induction motor
US7948201B2 (en) Induction motor control device
JP4601900B2 (en) Induction motor control device
JPH0775399A (en) Variable speed device
JP4984472B2 (en) Control device for electric power steering device
JPH07213100A (en) Sensorless inverter apparatus provided with resistance-change compensation
US20220306133A1 (en) Method for Online Direct Estimation and Compensation of Flux and Torque Errors in Electric Drives
JP4273775B2 (en) Magnetic pole position estimation method and control device for permanent magnet type synchronous motor
JP2009526512A (en) Method and apparatus for determining torque of power equipment
JPH06225574A (en) Method and apparatus for controlling motor
JP4172563B2 (en) Control method of synchronous motor
JP2002165478A (en) Motor controller
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JP2004032848A (en) Motor controller and motor-driven power steering system
JPH11139339A (en) Electrically-driven steering control method and electrically-driven steering control device
JPH0530775A (en) Controller for induction motor
JPH06315291A (en) Magnetic flux position calculation method of induction motor and control method using it
JPS61106091A (en) Slip frequency calculator of induction motor and rotation controller of induction motor using the same
JP3145876B2 (en) Vector control method and device for induction motor
JP2713857B2 (en) Sensorless inverter device with resistance fluctuation compensation
JP3032681B2 (en) Method and apparatus for measuring secondary resistance of induction motor
JPH07107799A (en) Inverter apparatus provided with constant-measurement setting function
JP2003169406A (en) Electric vehicle control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees