[go: up one dir, main page]

JP3032681B2 - Method and apparatus for measuring secondary resistance of induction motor - Google Patents

Method and apparatus for measuring secondary resistance of induction motor

Info

Publication number
JP3032681B2
JP3032681B2 JP6119204A JP11920494A JP3032681B2 JP 3032681 B2 JP3032681 B2 JP 3032681B2 JP 6119204 A JP6119204 A JP 6119204A JP 11920494 A JP11920494 A JP 11920494A JP 3032681 B2 JP3032681 B2 JP 3032681B2
Authority
JP
Japan
Prior art keywords
torque current
secondary resistance
induction motor
primary frequency
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6119204A
Other languages
Japanese (ja)
Other versions
JPH07325116A (en
Inventor
幸彦 岡村
裕明 湯浅
忠吉 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP6119204A priority Critical patent/JP3032681B2/en
Priority to DE69404927T priority patent/DE69404927T2/en
Priority to EP94306990A priority patent/EP0645879B1/en
Priority to US08/310,762 priority patent/US5598081A/en
Publication of JPH07325116A publication Critical patent/JPH07325116A/en
Application granted granted Critical
Publication of JP3032681B2 publication Critical patent/JP3032681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機のベクトル
制御装置を用いて誘導電動機の二次抵抗を計測する誘導
電動機の二次抵抗測定方法及びその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for measuring the secondary resistance of an induction motor, which measures the secondary resistance of the induction motor using a vector control device for the induction motor.

【0002】[0002]

【従来の技術】誘導電動機のベクトル制御方法では誘導
電動機の等価回路を制御モデルとして制御するため、等
価回路の定数を正確に設定する必要がある。特にすべり
角周波数ωs は二次抵抗、磁束指令値、トルク電流指令
値から(1)式より演算し
2. Description of the Related Art In a vector control method for an induction motor, since the equivalent circuit of the induction motor is controlled as a control model, it is necessary to accurately set the constant of the equivalent circuit. In particular, the slip angular frequency ω s is calculated from the secondary resistance, the magnetic flux command value, and the torque current command value according to equation (1).

【0003】[0003]

【数1】 (Equation 1)

【0004】…(1)ωs :すべり角周波数 r2 :二次抵抗 φ2d :磁束指令値 L2 :二次インダクタンス M:相互インダクタンス このすべり角周波数ωs を速度指令値に加算して一次周
波数ωとして制御する二次抵抗r2 の設定誤差は図3に
示すように速度精度に大きく影響する。
[0004] (1) ω s : slip angular frequency r 2 : secondary resistance φ 2d : magnetic flux command value L 2 : secondary inductance M: mutual inductance This slip angular frequency ω s is added to the speed command value to obtain a primary value. setting error of the secondary resistance r 2 for controlling the frequency ω greatly affects the speed accuracy as shown in FIG.

【0005】そのため二次抵抗演算を行う方法が、例え
ば特開昭62−114487号公報と特開平2−106
190号公報に示されるように提供されている。
For this reason, a method of performing a secondary resistance operation is disclosed in, for example, JP-A-62-114487 and JP-A-2-106.
No. 190 is provided.

【0006】[0006]

【発明が解決しようとする課題】上記従来例のうち前者
にあっては電流制御器、電圧検出器及び速度検出器が必
要であるという問題があった。また後者にあっては二次
抵抗演算に対数演算が必要で演算内容が複雑であるとい
う問題があった。本発明は上述の点に鑑みて為されたも
のであり、請求項1の発明の目的とするところは速度検
出器や電圧検出器を用いることなく簡単に二次抵抗測定
が行える誘導電動機の二次抵抗測定方法を提供するにあ
る。
The former of the above prior arts has a problem that a current controller, a voltage detector and a speed detector are required. In the latter case, there is a problem that logarithmic calculation is required for the secondary resistance calculation, and the calculation content is complicated. The present invention has been made in view of the above points, and an object of the present invention is to provide an induction motor capable of easily measuring a secondary resistance without using a speed detector or a voltage detector. It is to provide a method for measuring the next resistance.

【0007】請求項2の発明の目的とするところは、請
求項1の発明において、トルク電流の微分項により誤差
の影響を無くして正確な二次抵抗測定が行える誘導電動
機の二次抵抗測定方法を提供するにある。請求項3の発
明の目的とするところは、トルク電流の微分項により誤
差の影響を無くし且つすべり角周波数を推定できてより
正確に二次抵抗を測定することができる誘導電動機の二
次抵抗測定装置を提供するにある。
A second object of the present invention is to provide a method for measuring a secondary resistance of an induction motor in which an accurate secondary resistance can be measured without an influence of an error due to a differential term of a torque current. To provide. A third object of the present invention is to measure a secondary resistance of an induction motor in which the influence of an error can be eliminated by the differential term of the torque current, the slip angular frequency can be estimated, and the secondary resistance can be measured more accurately. In providing the device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明では、誘導電動機をインバータにより
制御し、誘導電動機のトルク電流成分と励磁電流成分を
独立して制御するベクトル演算装置を用い、トルク電流
により一次周波数を変化させるすべり補償を停止し、誘
導電動機が無負荷状態で一次周波数を変化させ、この変
化させたときの応答波形から二次抵抗を演算することを
特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a vector operation device controls an induction motor by an inverter and independently controls a torque current component and an excitation current component of the induction motor. The method is characterized in that the primary frequency is changed by the torque current, the slip compensation is stopped, the primary frequency is changed in a no-load state of the induction motor, and the secondary resistance is calculated from the response waveform when the change is made. .

【0009】請求項2の発明では、誘導電動機が無負荷
状態で一次周波数を変化させるときのトルク電流の最大
値を検出し、磁束指令値と一次周波数変化量を乗算した
値を前記トルク電流の応答波形の最大値で除算して二次
抵抗を演算することを特徴とする。請求項3の発明で
は、トルク電流により一次周波数を変化させるすべり補
償を停止させる手段と、一次周波数をステップ状に変化
させ、トルク電流の最大値と、一次周波数変化からトル
ク電流が最大値となるまでの時間及び再びトルク電流が
零に復帰するまでの時間を検出する手段と、磁束指令値
と一次周波数変化量を乗算した値を前記トルク電流応答
波形の最大値で除算した値に、再びトルク電流が零に復
帰するまでの時間からトルク電流が最大値となるまでの
時間を減算した減算値を乗算し、この乗算値をトルク電
流が零に復帰するまでの時間を除算摺る二次抵抗演算手
段とを備えたものである。
According to the second aspect of the present invention, the induction motor has no load.
The maximum value of the torque current when changing the primary frequency in the state is detected, and the value obtained by multiplying the magnetic flux command value and the amount of change in the primary frequency is divided by the maximum value of the response waveform of the torque current to calculate the secondary resistance. It is characterized by the following. According to the third aspect of the present invention, means for stopping the slip compensation for changing the primary frequency by the torque current, changing the primary frequency in a step-like manner, and the torque current becomes the maximum value from the maximum value of the torque current and the change in the primary frequency. Means for detecting the time until the torque current returns to zero again, and a value obtained by dividing the value obtained by multiplying the magnetic flux command value by the primary frequency change amount by the maximum value of the torque current response waveform. A secondary resistance calculation that multiplies a subtraction value obtained by subtracting a time required for the torque current to reach a maximum value from a time required for the current to return to zero, and divides the multiplied value by a time required for the torque current to return to zero. Means.

【0010】[0010]

【作用】請求項1の発明によれば、誘導電動機をインバ
ータにより制御し、誘導電動機のトルク電流成分と励磁
電流成分を独立して制御するベクトル演算装置を用い、
トルク電流により一次周波数を変化させるすべり補償を
停止し、誘導電動機が無負荷状態で一次周波数を変化さ
せ、この変化させたときの応答波形から二次抵抗を演算
するので、電圧検出器や、速度検出器を用いることなく
二次抵抗を簡単に測定でき、速度精度の向上が可能とな
る。
According to the first aspect of the present invention, a vector operation device that controls an induction motor by an inverter and independently controls a torque current component and an excitation current component of the induction motor is provided.
Stop the slip compensation that changes the primary frequency by the torque current, change the primary frequency with no load on the induction motor, and calculate the secondary resistance from the response waveform when this change occurs. The secondary resistance can be easily measured without using a detector, and the speed accuracy can be improved.

【0011】請求項2の発明によれば、請求項1の発明
において、トルク電流により一次周波数を変化させ、ト
ルク電流の最大値を検出し、磁束指令値と一次周波数変
化量を乗算した値を前記トルク電流応答波形の最大値で
乗算して二次抵抗を演算するので、トルク電流の微分項
による誤差の影響を削除して正確に二次抵抗を測定でき
る。
According to a second aspect of the present invention, in the first aspect of the invention, the primary frequency is changed by the torque current, the maximum value of the torque current is detected, and the value obtained by multiplying the magnetic flux command value by the primary frequency change amount is obtained. Since the secondary resistance is calculated by multiplying by the maximum value of the torque current response waveform, the influence of the error due to the differential term of the torque current can be eliminated to accurately measure the secondary resistance.

【0012】請求項3の発明によれば、トルク電流によ
り一次周波数を変化させるすべり補償を停止させる手段
と、一次周波数をステップ状に変化させ、トルク電流の
最大値と、一次周波数変化からトルク電流が最大値とな
るまでの時間及び再びトルク電流が零に復帰するまでの
時間を検出する手段と、磁束指令値と一次周波数変化量
を乗算した値を前記トルク電流応答波形の最大値で除算
した値に、再びトルク電流が零に復帰するまでの時間か
らトルク電流が最大値となるまでの時間を減算した減算
値を乗算し、この乗算値をトルク電流が零に復帰するま
での時間で除算する二次抵抗演算手段とを備えたもので
あるから、トルク電流の微分項による誤差の影響を削除
して正確に二次抵抗を測定できものであって、すべり角
周波数を推定できるのでより正確に二次抵抗の測定をす
ることができる。
According to the third aspect of the present invention, means for stopping slip compensation for changing the primary frequency by the torque current, changing the primary frequency in a step-like manner, and determining the torque current from the maximum value of the torque current and the change in the primary frequency. Means for detecting the time until the maximum value and the time until the torque current returns to zero again, and the value obtained by multiplying the magnetic flux command value and the primary frequency change amount were divided by the maximum value of the torque current response waveform. The value is multiplied by a subtraction value obtained by subtracting the time until the torque current reaches the maximum value from the time until the torque current returns to zero again, and this multiplied value is divided by the time until the torque current returns to zero. And the secondary resistance calculation means, which eliminates the influence of the error due to the differential term of the torque current and can accurately measure the secondary resistance, and can estimate the slip angular frequency. It is possible to more accurately measure the secondary resistance.

【0013】[0013]

【実施例】まず本発明の基本である誘導電動機のベクト
ル制御方式の原理について述べる。誘導電動機の電圧方
程式は、二次鎖交磁束の角周波数(一次周波数)ωで回
転する直交座標系(以下d−q座標系とする)において
(2)式で与えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the vector control method for an induction motor, which is the basis of the present invention, will be described. The voltage equation of the induction motor is given by equation (2) in a rectangular coordinate system (hereinafter referred to as a dq coordinate system) rotating at the angular frequency (primary frequency) ω of the secondary flux linkage.

【0014】[0014]

【数2】 (Equation 2)

【0015】 …(2) (2)式において、r1 、r2 は夫々誘導電動機の一次
及び二次抵抗値を、L 1 ,L2 は夫々一次及び二次イン
ダクタンス値を、Mは一次巻線と二次巻線との間の相互
インダクタンス値を、σは1−M2 /L1 2 なる漏れ
係数を、ωs はすべり角周波数を、pはd/dtなる微
分演算子を、V1d,V1qは夫々一次電圧のd軸及びq軸
成分を、i1d, i1qは夫々一次電流のd軸及びq軸成分
即ち励磁電流、トルク電流を、φ2d, φ2qは夫々二次鎖
交磁束のd軸及びq軸成分を表す。
(2) In the equation (2), r1, RTwoIs the primary of the induction motor respectively
And the secondary resistance value is L 1, LTwoAre the primary and secondary
The conductance value, M, is the mutual inductance between the primary and secondary windings.
Inductance value, σ is 1-MTwo/ L1LTwoBecome a leak
The coefficient is ωsIs the slip angular frequency, and p is a fine d / dt
The minute operator, V1d, V1qAre the d-axis and q-axis of the primary voltage, respectively.
Component i1d, i1qAre the d-axis and q-axis components of the primary current, respectively.
That is, the exciting current and the torque current are represented by φ2d, φ2qAre the secondary chains respectively
Represents the d-axis and q-axis components of the intersecting magnetic flux.

【0016】また二次鎖交磁束は以下のように表せる。 φ2d=Mi1d+L2 2d φ2q=Mi1q+L2 2q …(3) 尚i2d, i2qは夫々二次電流のd軸及びq軸成分であ
る。ベクトル制御とは、φ2d=Mi1d(一定)、φ2q
0となるように一次電圧或いは一次電流を制御すること
であり、この条件が成立すればすべり角周波数ωs
(1)式で与えられる。
The secondary flux linkage can be expressed as follows. φ 2d = Mi 1d + L 2 i 2d φ 2q = Mi 1q + L 2 i 2q (3) where i 2d and i 2q are the d-axis and q-axis components of the secondary current, respectively. Vector control means φ 2d = Mi 1d (constant), φ 2q =
This is to control the primary voltage or the primary current so as to be 0. If this condition is satisfied, the slip angular frequency ω s is given by equation (1).

【0017】電圧型インバータにおいては、定常状態
(微分項が零)において上記(2)式にφ2d=Mi
1d(一定)、φ2q=0を代入して(4)式で与えられる
電圧を印加することで実現できる。
In a voltage-type inverter, in a steady state (the differential term is zero), φ 2d = Mi
1d (constant), by substituting φ 2q = 0 and applying the voltage given by equation (4).

【0018】[0018]

【数3】 (Equation 3)

【0019】…(4)しかし、過渡状態においては、微
分項による誤差項が現れ、すべり角周波数ω s は(5)
式のようになる。
(4) However, in the transient state,
An error term due to the fractional term appears, and the slip angular frequency ω sIs (5)
It looks like an expression.

【0020】[0020]

【数4】 (Equation 4)

【0021】 …(5) これは(2)式の状態方程式に変形した(6)式に… (5) This is transformed into equation (6) which is transformed into equation (2).

【0022】[0022]

【数5】 (Equation 5)

【0023】 …(6) l1 ,l2 =一次及び二次漏れインダクタンス r2 ’=r2 (M/L2 22 ’=l2 M/L2 (4)式を代入し、すべり角周波数について解くことで
得られる。
(6) l 1 , l 2 = primary and secondary leakage inductance r 2 ′ = r 2 (M / L 2 ) 2 l 2 ′ = l 2 M / L 2 Substituting equation (4) It is obtained by solving for the slip angular frequency.

【0024】ここで、誘導電動機が無負荷状態の場合す
べり角周波数ωs は約零であり、その回転速度ωr は一
次周波数ωの初期値から最終値へと変化する。従って、
トルク応答電流波形から回転速度、即ち、すべり角周波
数ωs が推定可能で、(1)式を変形して得られる
(7)式を用いて二次抵抗r2 を演算することができ
る。
Here, when the induction motor is in a no-load state, the slip angular frequency ω s is approximately zero, and the rotational speed ω r changes from the initial value of the primary frequency ω to the final value. Therefore,
The rotational speed, that is, the slip angular frequency ω s can be estimated from the torque response current waveform, and the secondary resistance r 2 can be calculated using the equation (7) obtained by modifying the equation (1).

【0025】[0025]

【数6】 (Equation 6)

【0026】…(7)また誘導電動機の回転速度が略直
線的に増加すると仮定し、一次周波数変化量Δω、一次
周波数変化からトルク電流i1qが最大値となるまでの時
間T1 、再びトルク電流i1qが零に復帰するまでの時間
2 を用いて(8)式からトルク電流i1qが最大となる
ときの誘導電動機の回転速度、つまりすべり角周波数ω
s を正確に推定し、(7)式から二次抵抗r2 を演算す
ることができる。
(7) Further, assuming that the rotational speed of the induction motor increases substantially linearly, the primary frequency change amount Δω, the time T 1 from the primary frequency change to the torque current i 1q reaching the maximum value, and the torque again rotational speed of the induction motor when the current i 1q by using the time T 2 of the up and returns to zero (8) the torque current i 1q from the equation is maximized, i.e. the slip angular frequency ω
s can be accurately estimated, and the secondary resistance r 2 can be calculated from equation (7).

【0027】[0027]

【数7】 (Equation 7)

【0028】…(8)上述の原理に基づいた本発明の一
実施例の構成図を図1に示す。本実施例は、ベクトル演
算部1、座標変換器2,6、インバータ3、誘導電動機
4、電流検出器5、遅延回路7、乗算器8、加算器9、
積分器10、二次抵抗演算器11等から構成され、ベク
トル演算部11は励磁電流指令値i1d * 、トルク電流i
1q及び一次周波数ωに基づいて、回転座標系の一次電圧
(d−q座標系における一次電圧のd軸及びq軸成分)
1d * ,V1q * を演算する。座標変換器2はベクトル演
算部1から与えられる電圧指令としての一次電圧のd軸
及びq軸成分V1d * ,V1q * を二次鎖交磁束ベクトルの
位相角指令値θに従って固定座標系の電圧指令値V
* ,Vv* ,Vw* に変換する。インバータ3は座標
変換器2から与えられる電圧指令値Vu* ,Vv* ,V
* によって誘導電動機4への印加電圧を例えばPWM
制御し、誘導電動機4の速度制御を行う。なお、* の記
号は指令値であることを示し、以下の表記もこれに準じ
て行う。
(8) FIG. 1 shows a configuration diagram of an embodiment of the present invention based on the above principle. In this embodiment, a vector operation unit 1, coordinate converters 2, 6, an inverter 3, an induction motor 4, a current detector 5, a delay circuit 7, a multiplier 8, an adder 9,
Integrator 10 is composed of a secondary resistance calculator 11 and the like, the vector calculation unit 11 excitation current command value i 1d *, the torque current i
Based on 1q and the primary frequency ω, the primary voltage of the rotating coordinate system (d-axis and q-axis components of the primary voltage in the dq coordinate system)
Calculate V 1d * and V 1q * . The coordinate converter 2 converts the d-axis and q-axis components V 1d * and V 1q * of the primary voltage as voltage commands given from the vector calculation unit 1 into a fixed coordinate system in accordance with the phase angle command value θ of the secondary flux linkage vector. Voltage command value V
Conversion into u * , Vv * , Vw * . Inverter 3 receives voltage command values Vu * , Vv * , V
The applied voltage to the induction motor 4 is changed to, for example, PWM by w * .
To control the speed of the induction motor 4. Note that the symbol * indicates a command value, and the following notation will be performed accordingly.

【0029】電流検出器5は誘導電動機4の相電流i
u,iv,iwを検出するためのもので、座標変換器6
はこの電流検出器5で検出される相電流iu,iv,i
wを二次鎖交磁束ベクトルの位相角指令値θに従って回
転座標系に変換し、励磁電流i 1dとトルク電流1qとを求
める。遅延回路7は、座標変換器6から出力されるトル
ク電流i1qを遅延させて遅延トルク電流i1q’を出力さ
せるためのもので、減算器7aと、制御器7bとで構成
され、減算器7aはトルク電流i1qから遅延トルク電流
1q’を減算し、その減算値を制御器7bに出力し、制
御器7bはその差が零となるように遅延トルク電流
1q’を出力するもので、例えば比例・積分器により構
成される。
The current detector 5 detects the phase current i of the induction motor 4.
u, iv, iw are detected by the coordinate converter 6
Are the phase currents iu, iv, i detected by the current detector 5.
w in accordance with the phase angle command value θ of the secondary linkage flux vector.
Converted to the coordinate system, the excitation current i 1dAnd torque current1qAsk for
Confuse. The delay circuit 7 controls the torque output from the coordinate converter 6.
Current i1qAnd delay torque current i1q
And a subtractor 7a and a controller 7b.
And the subtractor 7a outputs the torque current i1qFrom the delay torque current
i1q′, And outputs the subtracted value to the controller 7b.
The controller 7b controls the delay torque current so that the difference becomes zero.
i1q′, For example, by a proportional / integrator.
Is done.

【0030】乗算器8は遅延トルク電流i1q’に比例定
数(K)を乗算してすべり角周波数ωs を求めるもので
ある。加算器9はすべり角周波数ωs に回転速度指令値
ωr * を加算して一次周波数ωを出力する。積分器10
は一次周波数ωを積分して二次鎖交磁束ベクトルの位相
角指令値θを出力する。二次抵抗演算器11は本発明の
主要な構成であって、トルク電流i1qが入力され、すべ
り角周波数ωs の出力を入切する制御信号11a、回転
速度指令値を切り替える制御信号11b、回転速度指令
値ωr ' * 及び遅延トルク電流i1q’からすべり角周波
数ωs を演算する比例定数(K)を出力する。
The multiplier 8 has a delay torque current i1q’Proportional to
Multiplying by the number (K) and the slip angular frequency ωsIn the search for
is there. The adder 9 calculates the slip angular frequency ωsThe rotation speed command value
ωr *And outputs a primary frequency ω. Integrator 10
Is the phase of the secondary linkage flux vector by integrating the primary frequency ω
The angle command value θ is output. The secondary resistance calculator 11 of the present invention
Main configuration, the torque current i1qIs entered and all
Angle frequency ωsControl signal 11a for turning on / off the output of
Control signal 11b for switching speed command value, rotation speed command
Value ωr'*And delay torque current i1q′ To the slip angular frequency
Number ωsIs output as a proportional constant (K).

【0031】ここでベクトル演算部1はφ2d=Mi
1d(一定)、φ2q=0となるように励磁電流指令値i1d
* 、トルク電流i1q及び一次周波数ωより一次電圧のd
軸及びq軸成分V1d * ,V1q * を演算するもので、具体
的には上記(4)式で与えられる。この(4)式をブロ
ック線図で示すと図1のベクトル演算部1の構成とな
る。尚(4)式のL1 ・i1dは図1ではφとしてある。
Here, the vector operation unit 1 is φ 2d = Mi
1d (constant), the excitation current command value i 1d such that φ 2q = 0
* , D of primary voltage from torque current i 1q and primary frequency ω
This calculates the axis and q-axis components V 1d * and V 1q * , and is specifically given by the above equation (4). When this equation (4) is shown in a block diagram, the configuration of the vector calculation unit 1 in FIG. 1 is obtained. Note that L 1 · i 1d in the equation (4) is φ in FIG.

【0032】またベクトル演算部1は励磁電流指令値i
1d * と実際の誘導電動機4の励磁電流i1dとを一致させ
るように一次電圧のd軸成分を調節する。具体的には、
励磁電流指令値i1d * と、座標変換器6で求めた励磁電
流i1dとを減算器12で減算して△i1dを求め、その差
△i1dを無くすように電流制御器13で一次電圧のd軸
成分V1d * を調節するようになっている。
The vector operation unit 1 calculates the excitation current command value i
The d-axis component of the primary voltage is adjusted so that 1d * matches the actual exciting current i 1d of the induction motor 4 . In particular,
The exciting current command value i 1d * and the exciting current i 1d obtained by the coordinate converter 6 are subtracted by the subtractor 12 to obtain △ i 1d , and the current controller 13 performs primary control so as to eliminate the difference △ i 1d. The d-axis component V 1d * of the voltage is adjusted.

【0033】次に二次抵抗演算器11の動作を図2に基
づいて説明する。二次抵抗演算器11はすべり角周波数
ωs の出力を切断するように制御信号11aを出力し、
また加算器9に入力される回転速度指令値ωr * が二
次抵抗演算器11から出力する回転速度指令値ωr *
となるように制御信号11bを出力する。制御信号11
aはスイッチ手段SWaをオフするためのものであり、
制御信号11bはスイッチ手段SWbを切り換えるため
のものである。二次抵抗演算器11は一定の回転速度指
令値ωr * を出力し、誘導電動機4が一定状態(定常
状態)に達したのち回転速度指令値ωr * を図2
(a)に示すようにステップ状にΔω増加させる。尚図
2(a)では一次周波数ω、回転速度の近似値、回転速
度の近似値、回転速度の変化を示している。
Next, the operation of the secondary resistance calculator 11 will be described with reference to FIG. Secondary resistance calculator 11 outputs a control signal 11a to cut the output of the slip angular frequency omega s,
The 'speed command value * is outputted from the secondary resistance calculating unit 11 omega r' rotational speed command value input to the adder 9 omega r *
The control signal 11b is output so that Control signal 11
a is for turning off the switch means SWa,
The control signal 11b is for switching the switch means SWb. The secondary resistance calculator 11 outputs a constant rotational speed command value ω r*, and after the induction motor 4 reaches a constant state (steady state), converts the rotational speed command value ω r* into FIG.
As shown in (a), Δω is increased stepwise. FIG. 2A shows the primary frequency ω, the approximate value of the rotational speed, the approximate value of the rotational speed, and the change in the rotational speed.

【0034】トルク電流が最大値i q(max) となるとき
のすべり角周波数が(8)式で求まることから(8)式
のすべり周波数を(7)式に代入して二次抵抗の測定値
2(m) を求める。
[0034] When the torque current is the maximum value i q (max)
Equation (8) is obtained from the slip angular frequency of
Of the secondary resistance by substituting the slip frequency of
Find r2 (m) .

【数8】 二次抵抗の測定値r 2(m) を(1)式へ代入する 。 (Equation 8) The measured value of the secondary resistance r 2 (m) is substituted into the equation (1).

【数9】 比例定数(K)は、すべり角周波数ω s とトルク電流i
1q との比例定数であることから、比例定数(K)は次
の(11)式から求まる。
(Equation 9) The proportionality constant (K) is determined by the slip angular frequency ω s and the torque current i.
Since it is a proportionality constant with 1q , the proportionality constant (K) is
From the equation (11).

【数10】 (Equation 10)

【0035】[0035]

【0036】[0036]

【発明の効果】請求項1の発明は、誘導電動機をインバ
ータにより制御し、誘導電動機のトルク電流成分と励磁
電流成分を独立して制御するベクトル演算装置を用い、
トルク電流により一次周波数を変化させるすべり補償を
停止し、誘導電動機が無負荷状態で一次周波数を変化さ
せ、この変化させたときの応答波形から二次抵抗を演算
するので、電圧検出器や、速度検出器を用いることなく
二次抵抗を簡単に測定でき、速度精度の向上が可能とな
るという効果がある。
According to the first aspect of the present invention, there is provided a vector operation device which controls an induction motor by an inverter and independently controls a torque current component and an excitation current component of the induction motor.
Stop the slip compensation that changes the primary frequency by the torque current, change the primary frequency with no load on the induction motor, and calculate the secondary resistance from the response waveform when this change occurs. There is an effect that the secondary resistance can be easily measured without using a detector, and the speed accuracy can be improved.

【0037】請求項2の発明によれば、請求項1の発明
において、誘導電動機が無負荷状態で一次周波数を変化
させるときのトルク電流の最大値を検出し、磁束指令値
と一次周波数変化量を乗算した値を前記トルク電流の応
答波形の最大値で除算して二次抵抗を演算するので、電
圧検出器や、速度検出器を用いることなく二次抵抗をを
簡単に測定でき、速度の精度の向上が可能となるという
効果がある。
According to the second aspect of the present invention, in the first aspect of the present invention, the primary frequency changes while the induction motor is in a no-load state.
The secondary resistance is calculated by dividing the value obtained by multiplying the magnetic flux command value and the primary frequency change amount by the maximum value of the response waveform of the torque current. In addition, the secondary resistance can be easily measured without using a speed detector, and the accuracy of the speed can be improved.

【0038】請求項3の発明によれば、トルク電流によ
り一次周波数を変化させるすべり補償を停止させる手段
と、一次周波数をステップ状に変化させ、トルク電流の
最大値と、一次周波数変化からトルク電流が最大値とな
るまでの時間及び再びトルク電流が零に復帰するまでの
時間を検出する手段と、磁束指令値と一次周波数変化量
を乗算した値を前記トルク電流応答波形の最大値で除算
した値に、再びトルク電流が零に復帰するまでの時間か
らトルク電流が最大値となるまでの時間を減算した減算
値を乗算し、この乗算値をトルク電流が零に復帰するま
での時間で除算する二次抵抗演算手段とを備えたもので
あるから、トルク電流の微分項による誤差の影響を削除
して正確に二次抵抗を測定できものであって、すべり角
周波数を推定できるのでより正確に二次抵抗の測定をす
ることができるという効果がある。
According to the third aspect of the present invention, means for stopping the slip compensation for changing the primary frequency by the torque current, changing the primary frequency in a step-like manner, and calculating the torque current from the maximum value of the torque current and the change in the primary frequency. Means for detecting the time until the maximum value and the time until the torque current returns to zero again, and the value obtained by multiplying the magnetic flux command value and the primary frequency change amount were divided by the maximum value of the torque current response waveform. The value is multiplied by a subtraction value obtained by subtracting the time until the torque current reaches the maximum value from the time until the torque current returns to zero again, and this multiplied value is divided by the time until the torque current returns to zero. And the secondary resistance calculation means, which eliminates the influence of the error due to the differential term of the torque current and can accurately measure the secondary resistance, and can estimate the slip angular frequency. There is an effect that it is possible to more accurately measure the secondary resistance so.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】同上の動作説明図である。FIG. 2 is an operation explanatory view of the above.

【図3】従来例の説明図である。FIG. 3 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 ベクトル演算部 2,6 座標変換器 3 インバータ 4 誘導電動機 5 電流検出器 7 遅延回路 7a 減算器 7b 制御器 8 乗算器 9 加算器 10 積分器 11 二次抵抗演算器 11a,11b 制御信号 K 比例定数 SWa,SWb スイッチ手段 Reference Signs List 1 Vector calculation unit 2, 6 Coordinate converter 3 Inverter 4 Induction motor 5 Current detector 7 Delay circuit 7a Subtractor 7b Controller 8 Multiplier 9 Adder 10 Integrator 11 Secondary resistance calculator 11a, 11b Control signal K proportional Constant SWa, SWb switch means

フロントページの続き (56)参考文献 特開 平7−325132(JP,A) 特開 平7−55899(JP,A) 特開 平7−298688(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02P 5/408 - 5/412 H02P 7/628 - 7/632 G01R 27/02 Continuation of front page (56) References JP-A-7-325132 (JP, A) JP-A-7-55899 (JP, A) JP-A-7-298688 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H02P 5/408-5/412 H02P 7/628-7/632 G01R 27/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘導電動機をインバータにより制御し、誘
導電動機のトルク電流成分と励磁電流成分を独立して制
御するベクトル制御装置を用い、トルク電流により一次
周波数を変化させるすべり補償を停止し、誘導電動機が
無負荷状態で一次周波数を変化させ、この変化させたと
きの応答波形から二次抵抗を演算することを特徴とする
誘導電動機の二次抵抗測定方法。
An induction motor is controlled by an inverter, and a vector control device for independently controlling a torque current component and an excitation current component of the induction motor is used. A method for measuring a secondary resistance of an induction motor, comprising: changing a primary frequency in a state where a motor is not loaded; and calculating a secondary resistance from a response waveform when the primary frequency is changed.
【請求項2】誘導電動機が無負荷状態で一次周波数を変
化させるときのトルク電流の最大値を検出し、磁束指令
値と一次周波数変化量を乗算した値を前記トルク電流の
応答波形の最大値で除算して二次抵抗を演算することを
特徴とする請求項1記載の誘導電動機の二次抵抗測定方
法。
2. A maximum value of a torque current when a primary frequency is changed in a no-load state of an induction motor, and a value obtained by multiplying a magnetic flux command value by a primary frequency change amount is a maximum value of a response waveform of the torque current. 2. The method for measuring a secondary resistance of an induction motor according to claim 1, wherein the secondary resistance is calculated by dividing the secondary resistance.
【請求項3】トルク電流により一次周波数を変化させる
すべり補償を停止させる手段と、一次周波数をステップ
状に変化させ、トルク電流の最大値と、一次周波数変化
からトルク電流が最大値となるまでの時間及び再びトル
ク電流が零に復帰するまでの時間を検出する手段と、磁
束指令値と一次周波数変化量を乗算した値を前記トルク
電流応答波形の最大値で除算した値に、再びトルク電流
が零に復帰するまでの時間からトルク電流が最大値とな
るまでの時間を減算した減算値を乗算し、この乗算値を
トルク電流が零に復帰するまでの時間で除算する二次抵
抗演算手段とを備えた誘導電動機の二次抵抗測定装置。
3. A means for stopping slip compensation for changing the primary frequency by the torque current, and changing the primary frequency in a step-like manner to determine the maximum value of the torque current and the time from the change in the primary frequency until the torque current reaches the maximum value. Means for detecting the time and the time until the torque current returns to zero again, and a value obtained by dividing a value obtained by multiplying the magnetic flux command value by the primary frequency change amount by the maximum value of the torque current response waveform, Secondary resistance calculating means for multiplying a subtraction value obtained by subtracting a time until the torque current reaches a maximum value from a time until the torque current returns to zero, and dividing the multiplied value by a time until the torque current returns to zero; A secondary resistance measuring device for an induction motor, comprising:
JP6119204A 1993-09-27 1994-05-31 Method and apparatus for measuring secondary resistance of induction motor Expired - Fee Related JP3032681B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6119204A JP3032681B2 (en) 1994-05-31 1994-05-31 Method and apparatus for measuring secondary resistance of induction motor
DE69404927T DE69404927T2 (en) 1993-09-27 1994-09-26 Method and arrangement for vector control for controlling the rotor speed of an induction motor
EP94306990A EP0645879B1 (en) 1993-09-27 1994-09-26 Vector and apparatus control method for controlling a rotor speed of an induction motor
US08/310,762 US5598081A (en) 1993-09-27 1994-09-27 Vector control method for controlling a rotor speed of an induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6119204A JP3032681B2 (en) 1994-05-31 1994-05-31 Method and apparatus for measuring secondary resistance of induction motor

Publications (2)

Publication Number Publication Date
JPH07325116A JPH07325116A (en) 1995-12-12
JP3032681B2 true JP3032681B2 (en) 2000-04-17

Family

ID=14755513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6119204A Expired - Fee Related JP3032681B2 (en) 1993-09-27 1994-05-31 Method and apparatus for measuring secondary resistance of induction motor

Country Status (1)

Country Link
JP (1) JP3032681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178069B2 (en) 2007-06-29 2013-04-10 ベックマン コールター, インコーポレイテッド Aggregated image automatic determination method, apparatus, program, and recording medium using MT system

Also Published As

Publication number Publication date
JPH07325116A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP2780263B2 (en) Vector control method and device for induction motor
JP2708408B2 (en) Control device of voltage control type vector control inverter
JPH07110160B2 (en) Induction motor controller
JPH09219999A (en) Variable speed drive device
JPH11187699A (en) Induction motor speed control method
JPH0775399A (en) Variable speed device
JP3032681B2 (en) Method and apparatus for measuring secondary resistance of induction motor
JP3070391B2 (en) Induction motor vector control device
KR950010345B1 (en) Flux control apparatus of ac motors
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JP3121525B2 (en) Vector control method and device for induction motor
JP3145876B2 (en) Vector control method and device for induction motor
JPH1023800A (en) Induction motor speed control method
JP3161904B2 (en) Vector control method and device for induction motor
KR100351299B1 (en) Measuring method for mutual inductance of induction motor
JP3231553B2 (en) Inverter control device control parameter setting method
JP3299416B2 (en) Vector control method of induction motor
JP2847092B2 (en) Automatic adjustment method of vector control device
JP2712632B2 (en) Variable speed control device for induction motor
JP3118940B2 (en) Induction motor vector control device
JPH0344509B2 (en)
JP2738721B2 (en) Induction motor speed control device
JPS6159071B2 (en)
JP3074682B2 (en) Sensorless speed control method
JPH0530792A (en) Equipment for controlling induction motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees