JPH07199221A - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JPH07199221A JPH07199221A JP35019793A JP35019793A JPH07199221A JP H07199221 A JPH07199221 A JP H07199221A JP 35019793 A JP35019793 A JP 35019793A JP 35019793 A JP35019793 A JP 35019793A JP H07199221 A JPH07199221 A JP H07199221A
- Authority
- JP
- Japan
- Prior art keywords
- tft
- pixel
- electrode
- defective
- tfts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 20
- 238000005520 cutting process Methods 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 230000002950 deficient Effects 0.000 description 41
- 239000010408 film Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 13
- 230000007547 defect Effects 0.000 description 11
- 230000008439 repair process Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 230000001678 irradiating effect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 101100489584 Solanum lycopersicum TFT1 gene Proteins 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 101100489577 Solanum lycopersicum TFT10 gene Proteins 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示装置に係わ
り、特に1画素に対して複数の薄膜トランジスタを設け
た液晶表示装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a plurality of thin film transistors for one pixel.
【0002】[0002]
【従来の技術】近年、従来のCRTに代わる新しい表示
装置の開発が盛んに行われるようになってきた。その中
でも液晶表示装置は、薄型で低電力動作が可能であるた
め、家電,OA機器の市場での期待は大きいものがあ
る。従来、液晶表示装置は単純マトリクス方式が多かっ
たが、表示特性の優れたアクティブマトリクス方式の表
示装置が期待されている。中でも薄膜トランジスタ(T
FT)をスイッチング素子に用いたものは小型テレビの
分野で市場を拡大しており、また10〜20インチサイ
ズやプロジェクションテレビなど大型化,高精細化を目
指した、有望な商品の開発が行われている。2. Description of the Related Art In recent years, new display devices which replace conventional CRTs have been actively developed. Among them, the liquid crystal display device is thin and can operate at low power, and therefore, there are great expectations in the market of home appliances and OA equipment. Conventionally, many liquid crystal display devices are of simple matrix type, but active matrix type display devices having excellent display characteristics are expected. Above all, thin film transistors (T
The use of FT) for switching elements is expanding the market in the field of small TVs, and promising products are being developed with the aim of increasing the size and high definition such as 10-20 inch size and projection TVs. ing.
【0003】図6は、従来のTFTアレイの平面構成図
を示すものである。走査線103はゲート電極と共通と
なっているが、ゲート電極は走査線103から引き出し
た形状でもよい。信号線106はTFT101のドレイ
ン電極107と接続されており、走査線103及び信号
線106の交差部は絶縁膜で絶縁されている。TFT1
01のソース電極108は画素電極105と接続されて
いる。TFT101を構成する半導体膜はドレイン電極
107,ソース電極108と接続されており、ゲート電
極103とは絶縁膜で絶縁されている。104は補助容
量線であり、画素電極105とは絶縁膜で絶縁されてい
る。FIG. 6 is a plan view of a conventional TFT array. The scanning line 103 is also common to the gate electrode, but the gate electrode may be drawn from the scanning line 103. The signal line 106 is connected to the drain electrode 107 of the TFT 101, and the intersection of the scanning line 103 and the signal line 106 is insulated by an insulating film. TFT1
The source electrode 108 of 01 is connected to the pixel electrode 105. The semiconductor film forming the TFT 101 is connected to the drain electrode 107 and the source electrode 108, and is insulated from the gate electrode 103 by an insulating film. Reference numeral 104 denotes an auxiliary capacitance line, which is insulated from the pixel electrode 105 by an insulating film.
【0004】上記構成されたTFTアレイに信号電圧と
走査電圧が与えられた場合、個々のTFTは導通状態に
なり、画素電極105に信号電圧に相当した電圧が印加
される。走査電圧が与えられていない場合は、個々のT
FTは非導通状態になり、画素電極105に印加された
電圧は保持される。When a signal voltage and a scanning voltage are applied to the TFT array configured as described above, the individual TFTs become conductive and a voltage corresponding to the signal voltage is applied to the pixel electrode 105. If no scan voltage is applied, the individual T
The FT becomes non-conductive, and the voltage applied to the pixel electrode 105 is held.
【0005】このような液晶表示装置は、先に述べたよ
うに大型化,高精細化へと進んでおり、画素数の増加或
いは画素密度の増加を招き、結果として画素欠陥の発生
率が高まり、製造歩留まりが著しく低下することが大き
な問題となっている。この問題を解決する方法として、
レーザのような高エネルギービームを用いて画素欠陥を
修正する方法が提案されている。As described above, such a liquid crystal display device has been increased in size and definition, leading to an increase in the number of pixels or a pixel density, resulting in an increase in the occurrence rate of pixel defects. However, it is a big problem that the manufacturing yield is remarkably reduced. As a way to solve this problem,
Methods have been proposed for repairing pixel defects using a high energy beam such as a laser.
【0006】一つは、主にパターン形成時に発生するシ
ョート箇所を切断,修正する方法である。図7にリペア
の一例を示す。信号線のパターン形成不良により発生し
た信号線106と画素電極105のショート箇所701
に、アパーチャを通したビーム702を照射し、ショー
ト箇所701を切断する。もう一つは、絶縁膜を挟んで
上下に電極を対向させた部分にレーザを照射すること
で、上下の電極を電気的に接続する方法である。[0006] One is a method of cutting and correcting a short-circuit portion which mainly occurs during pattern formation. FIG. 7 shows an example of repair. A short circuit portion 701 between the signal line 106 and the pixel electrode 105, which is caused by a defective pattern formation of the signal line.
Then, the beam 702 that has passed through the aperture is irradiated to cut the short-circuited portion 701. The other is a method of electrically connecting the upper and lower electrodes by irradiating a laser on a portion where the upper and lower electrodes are opposed to each other with an insulating film interposed therebetween.
【0007】ところで、TFTに発生した不良を救済す
る手法として、TFTの冗長構造を採用することが考え
られる。TFTの冗長構造を用いて実現したTFTアレ
イの例を図8に示す。これは、1画素当たり2個のTF
Tを有した冗長構造である。通常状態では、TFT10
1とTFT102が電気的に並列に接続されており、両
方のTFTが動作して信号が画素電極105に伝えられ
る。その結果、各々のTFTの能力は、図6に示すよう
なTFT1個で画素を動作する場合の2分の1でよく、
各々TFTのサイズは図6に示す場合の約2分の1とな
る。そのため、開口率の低下は殆どない。By the way, as a method for relieving a defect that has occurred in a TFT, it is possible to adopt a redundant structure of the TFT. An example of a TFT array realized by using the redundant structure of TFT is shown in FIG. This is 2 TFs per pixel
It is a redundant structure having T. In the normal state, the TFT10
1 and the TFT 102 are electrically connected in parallel, and both TFTs operate to transmit a signal to the pixel electrode 105. As a result, the capacity of each TFT may be one-half that in the case of operating a pixel with one TFT as shown in FIG.
The size of each TFT is about one half of that shown in FIG. Therefore, there is almost no decrease in the aperture ratio.
【0008】もし、TFT101が何らかの原因で正常
な動作をしない場合は、TFTのオン不良に対してはT
FTの切断をしなくても効果があるが、TFTのオフ不
良に対しては効果がない。そこで、オフ不良に対しては
レーザ照射箇所110にレーザを照射して切断し、TF
T101を回路から切断する。この結果、TFT102
だけでの動作となり、TFTの能力不足から通常状態の
画素とは若干表示状態が異なるが、表示上は殆ど問題が
なく、不良画素を救済することができる。TFT102
が不良の場合も同様であり、TFT102を何らかの手
段で画素から切断すればよい。If the TFT 101 does not operate normally due to some reason, the TFT may fail to turn on when the TFT fails to turn on.
Although it is effective even if the FT is not cut off, it is not effective for the OFF defect of the TFT. Therefore, for the off defect, the laser irradiation portion 110 is irradiated with a laser to be cut, and
Disconnect T101 from the circuit. As a result, the TFT 102
Although the display state is slightly different from that of the pixel in the normal state due to the insufficient capacity of the TFT, there is almost no problem in display and the defective pixel can be relieved. TFT 102
This is also the case when the pixel is defective, and the TFT 102 may be cut from the pixel by some means.
【0009】ところが、上述の冗長構造は複数のTFT
を並列に接続したものであり、ある画素が不良である場
合、TFT101,102のどちらが不良であるかを見
分けることは実質的には殆ど不可能である。不良TFT
の切断において、不良TFTを正しく切断する確率は2
分の1しかなく、これでは冗長構造の効果が発揮されな
い。However, the above redundant structure has a plurality of TFTs.
When a certain pixel is defective, it is practically impossible to distinguish which one of the TFTs 101 and 102 is defective. Defective TFT
The probability of correctly cutting a defective TFT is 2
Since it is only one-half, the effect of the redundant structure is not exhibited.
【0010】上述のTFTに関する冗長構造の他に、図
9に示すように、通常状態では使用しない予備のTFT
901を予め待機させて置く方法も考えられる。この方
法は、通常の動作で使用するTFT101が不良の場
合、TFT101をレーザ112の照射により電気的に
分離し、予備のTFT901を電気的接続手法を用いて
画素電極に接続する。予備のTFT901が不良でない
限り、不良TFT101を正常動作する予備TFT90
1と切り換えることができ、画素を救済できる。しか
し、この方法では、予備のTFTを各画素に配置するた
め開口率が低下するという大きな問題がある。In addition to the above redundant structure for the TFT, as shown in FIG. 9, a spare TFT which is not used in a normal state is used.
A method of placing the 901 in a standby state in advance may be considered. In this method, when the TFT 101 used in the normal operation is defective, the TFT 101 is electrically separated by irradiation of the laser 112, and the spare TFT 901 is connected to the pixel electrode using an electrical connection method. Unless the spare TFT 901 is defective, the spare TFT 90 that normally operates the defective TFT 101
It can be switched to 1, and the pixel can be saved. However, this method has a big problem that the aperture ratio is lowered because a spare TFT is arranged in each pixel.
【0011】[0011]
【発明が解決しようとする課題】このように従来、TF
Tを並列に接続した冗長構造においては、開口率の低下
を抑えられるという点で優れているが、複数のTFTの
中での不良TFTの検出が極めて難しく、そのためTF
T不良を確実に救済することは困難であった。本発明
は、上記事情を考慮してなされたもので、その目的とす
るところは、TFTを並列に接続した冗長構造におい
て、開口率の低下を抑えつつ、不良TFTの検出を可能
としてTFT不良を確実に救済できる液晶表示装置を提
供することにある。As described above, the TF is conventionally used.
The redundant structure in which Ts are connected in parallel is excellent in that the reduction in the aperture ratio can be suppressed, but it is extremely difficult to detect a defective TFT among a plurality of TFTs.
It was difficult to surely rescue T defects. The present invention has been made in consideration of the above circumstances, and an object thereof is to detect a defective TFT by detecting a defective TFT while suppressing a decrease in aperture ratio in a redundant structure in which TFTs are connected in parallel. An object of the present invention is to provide a liquid crystal display device that can be reliably relieved.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、マトリックス配置された画素電極と、これらの画
素電極と信号線とを接続するTFTとを具備した液晶表
示装置において、TFTは1画素に対して複数個並列に
設けられ、該複数のTFTの全ては画素電極側又は信号
線側を切断可能な構造で、且つ該複数のTFTのうち少
なくとも1つは画素電極側又は信号線側を切断後に再接
続可能な構造であることを特徴とする。In order to solve the above problems, the present invention employs the following configurations. That is, the present invention provides a liquid crystal display device comprising pixel electrodes arranged in a matrix and TFTs connecting these pixel electrodes and signal lines, and a plurality of TFTs are provided in parallel for one pixel. All of the TFTs have a structure capable of disconnecting the pixel electrode side or the signal line side, and at least one of the plurality of TFTs has a structure capable of being reconnected after disconnecting the pixel electrode side or the signal line side. And
【0013】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 1画素当たりにTFTは2個であり、一方のTFT
には切断可能な構造と切断後に再接続可能な構造が付加
されており、他方のTFTには切断可能な構造のみが付
加されている。 (2) 1画素当たりにTFTはn個であり、n−1個のT
FTには切断可能な構造と切断後に再接続可能な構造が
付加されており、1個のTFTには切断可能な構造のみ
が付加されている。 (3) 1画素当たりにTFTはn個であり、1個のTFT
には切断可能な構造と切断後に再接続可能な構造が付加
されており、n−1個のTFTには切断可能な構造のみ
が付加されている。 (4) TFTの切断部分及び再接続部分は画素電極側であ
ること。 (5) TFTの切断可能な構造は、配線パターンが一部細
くなっており、レーザ照射により切断されるものである
こと。 (6) TFTの再接続可能な構造は、絶縁膜を挟んで上下
に配線が重なるように配置され、レーザ照射により上下
配線を接続するものであること。 (7) 複数のTFTのうち任意のTFTを切断可能な構造
を用いて切断し、切断したTFTが正常な場合、該TF
Tを再接続可能な構造を用いて再接続すること。 (8) 複数のTFTの不良の検出,切断及び再接続を、液
晶表示装置の点灯状態で行うこと。The preferred embodiments of the present invention are as follows. (1) There are two TFTs per pixel, one TFT
Has a structure that can be cut and a structure that can be reconnected after cutting, and the other TFT has only a structure that can be cut. (2) There are n TFTs per pixel, and n-1 T
A structure that can be cut and a structure that can be reconnected after cutting are added to the FT, and only a structure that can be cut is added to one TFT. (3) There are n TFTs per pixel, and one TFT
Has a structure that can be cut and a structure that can be reconnected after cutting, and only n-1 TFTs have a structure that can be cut. (4) The disconnecting and reconnecting parts of the TFT should be on the pixel electrode side. (5) The cuttable structure of the TFT is that the wiring pattern is partly thin and can be cut by laser irradiation. (6) The reconnectable structure of the TFT is such that the upper and lower wirings are arranged so as to overlap each other with the insulating film interposed therebetween, and the upper and lower wirings are connected by laser irradiation. (7) If any of the plurality of TFTs is cut using a structure capable of cutting, and the cut TFT is normal, the TF
Reconnecting T using a reconnectable structure. (8) Detection, disconnection, and reconnection of defects of multiple TFTs should be performed while the liquid crystal display device is on.
【0014】[0014]
【作用】本発明によれば、TFTのオフ不良が生じてい
ると思われる場合に、まず再接続可能な構造を有する方
のTFTを最初に切断する。具体的には、TFTの画素
電極側又は信号線側の配線を切断する。切断したTFT
が不良の場合はこれで不良の救済ができるが、別のTF
Tが不良の場合は救済できない。別のTFTが不良の場
合は、切断したTFTを再接続した後、別のTFTを切
断する。これにより、不良TFTのみを切断することが
でき、不良TFTの救済が可能となる。According to the present invention, when it is considered that the TFT is turned off, the TFT having the reconnectable structure is first cut. Specifically, the wiring on the pixel electrode side or the signal line side of the TFT is cut off. Cut TFT
If the TF is defective, the defect can be remedied by this, but another TF
If T is defective, it cannot be relieved. If another TFT is defective, the disconnected TFT is reconnected and then the other TFT is disconnected. As a result, only the defective TFT can be cut and the defective TFT can be relieved.
【0015】つまり、1画素に対して並列に設けられた
複数のTFTの全てに切断可能な構造を設け、一部に再
接続可能な構造を設けることにより、予めオフ不良のT
FTが特定できない場合も、不良救済を確実に行うこと
ができる。そしてこの場合、予備のTFTを予め待機さ
せて置く方法とは異なり、開口率の低下を招くこともな
い。従って、不良TFTの同定が可能な並列接続のTF
T冗長構造を有し、かつ開口率の低下を抑えることがで
き、表示特性が良好かつ高歩留まりが得られる液晶表示
装置を実現することが可能となる。That is, by providing a disconnectable structure for all of a plurality of TFTs provided in parallel for one pixel and providing a reconnectable structure for a part thereof, an off-defective T is previously set.
Even if the FT cannot be specified, the defect relief can be surely performed. In this case, unlike the method of placing the spare TFT in a standby state in advance, the aperture ratio is not lowered. Therefore, TFs connected in parallel can identify defective TFTs.
It is possible to realize a liquid crystal display device having a T-redundant structure, capable of suppressing a decrease in aperture ratio, and having excellent display characteristics and high yield.
【0016】[0016]
【実施例】以下、本発明の詳細を図示の実施例によって
説明する。 (実施例1)図1は、本発明の第1の実施例に係わる液
晶表示装置(特にTFTアレイ部)の1画素部分を示す
平面図である。The details of the present invention will be described below with reference to the illustrated embodiments. (Embodiment 1) FIG. 1 is a plan view showing one pixel portion of a liquid crystal display device (particularly a TFT array portion) according to a first embodiment of the present invention.
【0017】洗浄されたガラス基板上にMo−Ta合金
を250nm成膜し、ゲート電極,ゲート線103,補
助容量線104及びレーザ接続部109の下部電極をパ
ターニングした。次いで、ゲート絶縁膜SiOを350
nm、SiNを50nm、a−Si膜を50nm、エッ
チングストッパSiNを200nm連続成膜した後、エ
ッチングストッパをパターニングした。さらに、ソース
・ドレイン領域のオーミックコンタクト層である燐など
の不純物をドープしたn+ 型のa−Si膜を50nm成
膜した後、a−Si層を島状にパターニングした。さら
に、ITOを100nm成膜し、画素電極105を形成
した。A Mo-Ta alloy having a thickness of 250 nm was formed on the cleaned glass substrate, and the gate electrode, the gate line 103, the auxiliary capacitance line 104, and the lower electrode of the laser connection portion 109 were patterned. Next, the gate insulating film SiO
nm, SiN of 50 nm, a-Si film of 50 nm, and etching stopper SiN of 200 nm were continuously formed, and then the etching stopper was patterned. Further, an n + -type a-Si film, which is an ohmic contact layer in the source / drain region, doped with impurities such as phosphorus was formed to a thickness of 50 nm, and then the a-Si layer was patterned into an island shape. Further, a 100 nm thick ITO film was formed to form the pixel electrode 105.
【0018】次いで、ゲート電極の端子部分の上の第1
の絶縁膜であるSiOをエッチング除去した。その後、
Moを100nm、Alを400nm成膜し、信号線1
06及びドレイン電極107、ソース電極108,11
1を形成した。さらに、ドレイン電極107、ソース電
極108,111の金属をマスクとしてn+ 型のa−S
iをエッチング除去してドレイン電極107とソース電
極108,111を電気的に分離し、アクティブマトリ
クス基板を形成する。最後にパッシベーション膜として
SiNを150nm成膜し、パターニングする。Next, the first electrode on the terminal portion of the gate electrode
The SiO 2 insulating film was removed by etching. afterwards,
Mo film of 100 nm and Al film of 400 nm are formed, and signal line 1
06, drain electrode 107, source electrodes 108, 11
1 was formed. Further, using the metal of the drain electrode 107 and the source electrodes 108 and 111 as a mask, an n + -type aS
By removing i by etching, the drain electrode 107 and the source electrodes 108 and 111 are electrically separated to form an active matrix substrate. Finally, SiN is deposited to a thickness of 150 nm as a passivation film and patterned.
【0019】以上のようにして得られたアクティブマト
リクス基板は、図1に示すように1画素当たり2個のT
FTが設けられている。TFT101,102は電気的
に並列に接続されており、各々のTFTの能力は1画素
に1個のTFTを設けた場合の能力の半分でよい。従っ
て、TFT101,102の大きさも1画素に1個のT
FTを設けた場合の半分でよく、その結果、TFTに冗
長性を持たせたことによる開口率の低下は殆どない。As shown in FIG. 1, the active matrix substrate thus obtained has two Ts per pixel.
FT is provided. The TFTs 101 and 102 are electrically connected in parallel, and the capacity of each TFT may be half the capacity when one TFT is provided in one pixel. Therefore, the size of the TFTs 101 and 102 is one T per pixel.
It is only half that in the case where the FT is provided, and as a result, there is almost no decrease in the aperture ratio due to the redundancy of the TFT.
【0020】画素がTFTに起因する不良であることが
分かった場合、TFT101,102のどちらが不良で
あるかは明確でない。しかし、両方のTFTが不良であ
る確率は非常に低く、考慮する必要はない。そこで、ま
ず切断箇所112に絞りを通してレーザを照射してソー
ス電極111を切断し、TFT101を画素電極105
から電気的に切り離す。切断箇所112からは電極膜が
飛散するため、切断箇所112はできるだけ少ない照射
回数で切断できるよう、断線の発生率が高くならない程
度に細くすることが好ましい。本実施例では、切断箇所
の幅を5μm程度にした結果、良好な切断が可能となっ
た。If the pixel is found to be defective due to the TFT, it is not clear which of the TFTs 101 and 102 is defective. However, the probability that both TFTs are defective is very low and need not be considered. Therefore, first, the source electrode 111 is cut by irradiating the cut portion 112 with a laser through a diaphragm, and the TFT 101 is connected to the pixel electrode 105.
Electrically disconnect from. Since the electrode film is scattered from the cutting points 112, it is preferable to make the cutting points 112 thin so that the rate of occurrence of wire breakage does not increase so that the cutting can be performed with as few irradiation times as possible. In this example, as a result of setting the width of the cut portion to about 5 μm, good cutting was possible.
【0021】もし、TFT101が不良であった場合、
不良TFTが切断されたので、リペアは終了する。TF
Tの能力は半分になるため、画素の輝度は正常画素に比
べて最大2〜3%低くなるが、この範囲では欠陥は人間
の眼に視認されないことが研究の結果判明した。ここ
で、輝度差が大きくなるようであれば、TFTの能力に
合わせて補助容量104や画素電極105の一部を除去
してTFTの負荷を低減させてやればよい。If the TFT 101 is defective,
Since the defective TFT is cut off, the repair is completed. TF
Since the ability of T is halved, the brightness of the pixel is up to 2 to 3% lower than that of a normal pixel, but it has been found that the defect is not visible to the human eye in this range. Here, if the brightness difference becomes large, the load of the TFT may be reduced by removing a part of the auxiliary capacitance 104 or the pixel electrode 105 according to the capability of the TFT.
【0022】もし、TFT101が正常であり、TFT
102が不良であった場合、間違ったTFTを切断して
しまったので、TFT101を画素電極105に再接続
する必要がある。そこで、まず切断箇所113に絞りを
通してレーザを照射してソース電極108を切断し、動
作不良であるTFT102を画素電極105から電気的
に切り離す。切断箇所113からは電極膜が飛散するた
め、切断箇所113はできるだけ少ない照射回数で切断
できるよう、断線の発生率が高くならない程度に細くす
ることが好ましい。本実施例では、切断箇所の幅を5μ
m程度にした結果、良好な切断が可能となった。If the TFT 101 is normal, the TFT
If 102 is defective, the wrong TFT has been cut, and it is necessary to reconnect the TFT 101 to the pixel electrode 105. Therefore, first, the source electrode 108 is cut by irradiating the cut portion 113 with a laser beam through a diaphragm to electrically disconnect the defective TFT 102 from the pixel electrode 105. Since the electrode film scatters from the cut portion 113, it is preferable that the cut portion 113 be thin so that the rate of occurrence of wire breakage does not increase so that the cut portion 113 can be cut with as few irradiation times as possible. In this embodiment, the width of the cut portion is 5 μm.
As a result of setting the length to about m, good cutting became possible.
【0023】次いで、レーザ接続部109にレーザ11
0を照射して電気的に接続することでTFT101を画
素電極105に再接続する。この結果、スイッチング動
作はTFT101で行われる。TFT101とTFT1
02の両方が不良となる確率は極めて低いため、この方
法によりTFTに関する不良画素はほぼ100%修復で
きる。Next, the laser 11 is connected to the laser connecting portion 109.
The TFT 101 is reconnected to the pixel electrode 105 by irradiating 0 and electrically connecting. As a result, the switching operation is performed by the TFT 101. TFT101 and TFT1
Since the probability that both of the two are defective is extremely low, this method can repair almost 100% of defective pixels related to the TFT.
【0024】ここで、上記の再接続のための構造は、図
2に示すように形成されている。即ち、基板205上の
一部に下部電極202が形成され、これを覆うように絶
縁膜203が形成され、絶縁膜203の上に上部電極2
04が形成されている。つまり、上部電極204と下部
電極202とが、絶縁膜203を挟んで重なった構造と
なっている。そして、これらの上にパッシベーション膜
206が形成されている。Here, the above-mentioned structure for reconnection is formed as shown in FIG. That is, the lower electrode 202 is formed on a part of the substrate 205, the insulating film 203 is formed so as to cover the lower electrode 202, and the upper electrode 2 is formed on the insulating film 203.
04 are formed. That is, the upper electrode 204 and the lower electrode 202 have a structure in which they overlap with each other with the insulating film 203 interposed therebetween. Then, a passivation film 206 is formed on these.
【0025】図2に示すような構造において、基板20
5の裏面からレーザ201を照射すると、まず下部電極
202がレーザのエネルギーを吸収し急激に加熱され、
液化或いは気化し体積が膨張する。その結果、絶縁膜2
03或いは上部電極204が突き破られる。そのとき、
下部電極202の液相はレーザ照射によって発生した穴
の周囲に付着し、上部電極204と電気的コンタクトを
とる働きをする。その結果、上部電極204と下部電極
202は電気的に接続される。In the structure as shown in FIG. 2, the substrate 20
When the laser 201 is irradiated from the back surface of 5, the lower electrode 202 first absorbs the energy of the laser and is rapidly heated,
Liquefaction or vaporization causes the volume to expand. As a result, the insulating film 2
03 or the upper electrode 204 is pierced. then,
The liquid phase of the lower electrode 202 adheres to the periphery of the hole generated by laser irradiation and serves to make electrical contact with the upper electrode 204. As a result, the upper electrode 204 and the lower electrode 202 are electrically connected.
【0026】なお、以上述べたリペアは、アレイ基板の
裏面からレーザを照射して行うが、基板の表面からの照
射によってもリペアは可能である。つまり、液晶を対向
基板との間に挟持して点灯した状態で画素を検出した
後、画素の点灯状態を確認しながら、アレイ基板表面か
らのレーザ照射によるリペアが可能である。The repair described above is performed by irradiating the laser from the back surface of the array substrate, but the repair can also be performed by irradiating the laser from the front surface of the substrate. That is, after detecting the pixel in a state where the liquid crystal is sandwiched between the counter substrate and the lighted state, the repair can be performed by laser irradiation from the surface of the array substrate while confirming the lighting state of the pixel.
【0027】また、ソース電極108,111は2個の
TFTに対してほぼ対称である。このため、TFT10
1,102のどちらかを電気的に切り離した場合でも、
ゲート線103とソース電極111,108の間の寄生
容量はほぼ同じである。この寄生容量はトランジスタが
オフするときの画素電位のレベルシフトに影響する量で
あり、表示特性にも影響を与える。図1のようにソース
電極を対称にすることにより、TFT101,102の
どちらを切り離してもゲートーソース電極間の寄生容量
に変化は無く、切断するTFTによる表示特性の差異は
殆ど無くすことができる。The source electrodes 108 and 111 are substantially symmetrical with respect to the two TFTs. Therefore, the TFT 10
Even if either one of 1, 1 is electrically disconnected,
The parasitic capacitance between the gate line 103 and the source electrodes 111 and 108 is almost the same. This parasitic capacitance is an amount that affects the level shift of the pixel potential when the transistor is off, and also affects the display characteristics. By making the source electrodes symmetrical as shown in FIG. 1, there is no change in the parasitic capacitance between the gate and the source electrode regardless of which of the TFTs 101 and 102 is cut off, and it is possible to almost eliminate the difference in display characteristics between the cut TFTs.
【0028】(実施例2)図3は、本発明の第2の実施
例に係わる液晶表示装置の1画素構成を示す平面図であ
る。なお、図1と同一部分には同一符号を付して、その
詳しい説明は省略する。基本的な構造は図1と同じであ
るが、図1とは再接続部と切断部の位置関係を変えてい
る。(Embodiment 2) FIG. 3 is a plan view showing a one-pixel configuration of a liquid crystal display device according to a second embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. Although the basic structure is the same as that of FIG. 1, the positional relationship between the reconnection portion and the disconnection portion is different from that of FIG.
【0029】製造工程は第1の実施例と同様であるの
で、ここでは省略する。本実施例のアクティブマトリク
ス基板も、図3に示すように1画素当たり2個のTFT
が設けられており、各々のTFTの能力は1画素に1個
のTFTを設けた場合の能力の半分でよく、TFTに冗
長性を持たせたことによる開口率の低下は殆どない。Since the manufacturing process is the same as that of the first embodiment, it is omitted here. The active matrix substrate of this embodiment also has two TFTs per pixel as shown in FIG.
Is provided, and the capacity of each TFT may be half of the capacity when one TFT is provided in one pixel, and there is almost no decrease in the aperture ratio due to the redundancy of the TFT.
【0030】画素がTFTに起因する不良であることが
分かった場合、TFT101,102のどちらが不良で
あるかは明確でない。しかし、両方のTFTが不良であ
る確率は非常に低く、考慮する必要はない。そこで、第
1の実施例と同様にして、まず切断箇所112に絞りを
通してレーザを照射してソース電極111を切断し、T
FT101を画素電極105から電気的に切り離す。も
し、TFT101が不良であった場合、不良TFTが切
断されたので、リペアは終了する。If the pixel is found to be defective due to the TFT, it is not clear which of the TFTs 101 and 102 is defective. However, the probability that both TFTs are defective is very low and need not be considered. Therefore, similarly to the first embodiment, first, a laser is applied to the cut portion 112 through a diaphragm to cut the source electrode 111, and T
The FT 101 is electrically separated from the pixel electrode 105. If the TFT 101 is defective, the defective TFT has been cut, and the repair is completed.
【0031】もし、TFT101が正常であり、TFT
102が不良であった場合、間違ったTFTを切断して
しまったので、TFT101を画素電極105に再接続
する必要がある。そこで、まず切断箇所113に絞りを
通してレーザを照射してソース電極108を切断し、動
作不良であるTFT102を画素電極105から電気的
に切り離す。次いで、レーザ接続部109にレーザ11
0を照射して電気的に接続することでTFT101を画
素電極105に再接続する。この結果、スイッチング動
作はTFT101で行われることになり、リペアは終了
する。If the TFT 101 is normal and the TFT
If 102 is defective, the wrong TFT has been cut, and it is necessary to reconnect the TFT 101 to the pixel electrode 105. Therefore, first, the source electrode 108 is cut by irradiating the cut portion 113 with a laser beam through a diaphragm to electrically disconnect the defective TFT 102 from the pixel electrode 105. Then, the laser 11 is connected to the laser connecting portion 109.
The TFT 101 is reconnected to the pixel electrode 105 by irradiating 0 and electrically connecting. As a result, the switching operation is performed by the TFT 101, and the repair is completed.
【0032】また、本実施例では接続部の電極109の
ソース電極側端部にコンタクトホール301が形成され
ており、予めソース電極111と接続用電極109は接
続された構造となっている。このため、TFT101を
再接続するときのレーザ照射回数は1回でよく、リペア
の成功確率は向上する。接続部の両端のレーザ照射部の
うち、一方にコンタクトホールを形成した構造は、図1
に示した実施例にも適用できる。さらに、接続部電極1
09がゲート線103とパターン形成不良によりショー
トしていた場合も、ゲート線103の信号はソース電極
111を介して電極に伝わるため、この不良モードに対
しては切断箇所112をレーザで切断すればリペアでき
る。ゲート線−接続部電極間ショートとTFT102不
良が同一画素で起こる確率は極めて低いので問題はな
い。Further, in this embodiment, the contact hole 301 is formed in the end portion of the electrode 109 of the connection portion on the source electrode side, and the source electrode 111 and the connection electrode 109 are connected in advance. Therefore, the number of times of laser irradiation when reconnecting the TFT 101 is only one, and the repair success probability is improved. The structure in which a contact hole is formed in one of the laser irradiation parts at both ends of the connection part is shown in FIG.
It can also be applied to the embodiment shown in FIG. Furthermore, the connecting portion electrode 1
Even when 09 is short-circuited with the gate line 103 due to a defective pattern formation, the signal of the gate line 103 is transmitted to the electrode through the source electrode 111. Therefore, in this defective mode, the cutting point 112 can be cut with a laser. Can be repaired. There is no problem because the probability that the short circuit between the gate line and the connection electrode and the defect of the TFT 102 occur in the same pixel is extremely low.
【0033】(実施例3)図4は、本発明の第3の実施
例に係わる液晶表示装置の1画素構成を示す平面図であ
る。なお、図1と同一部分には同一符号を付して、その
詳しい説明は省略する。基本的な構造は図2と同じであ
るが、図2とは接続部109両端のコンタクトホール4
01とレーザ照射部110の位置を反対にしている。(Embodiment 3) FIG. 4 is a plan view showing a one-pixel configuration of a liquid crystal display device according to a third embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted. The basic structure is the same as that of FIG. 2, but is different from that of FIG.
The position of 01 and the laser irradiation part 110 are made opposite.
【0034】通常の工程では接続部電極109と画素電
極105の形成の間にコンタクトホール401を形成す
ることはできない。ところが図5に示すように、画素電
極105に穴の開いたパターンを形成しておき、それよ
り小さめに絶縁膜203にコンタクトホール401を形
成し、最後にコンタクトホール401を覆うように信号
線形成と同一プロセスで電極402を形成する。この構
造を用いることで、画素電極105と接続部電極109
の間の電気的接続を安定して得ることができるようにな
った。In the usual process, the contact hole 401 cannot be formed between the connection electrode 109 and the pixel electrode 105. However, as shown in FIG. 5, a pattern with holes is formed in the pixel electrode 105, a contact hole 401 is formed in the insulating film 203 to be smaller than that, and finally a signal line is formed so as to cover the contact hole 401. The electrode 402 is formed by the same process as the above. By using this structure, the pixel electrode 105 and the connection electrode 109
It has become possible to obtain a stable electrical connection between the two.
【0035】また、図3及び図4に示した構造は、接続
部電極109がゲート線に平行に位置している。また、
画素電極105の両端をゲート電極側に張り出した形に
している。この結果、TFT101のソース電極111
を、ゲート電極103の近くに配置することができ、接
続部109などによる開口率の低下は殆どない。In the structure shown in FIGS. 3 and 4, the connection electrode 109 is located parallel to the gate line. Also,
Both ends of the pixel electrode 105 are projected to the gate electrode side. As a result, the source electrode 111 of the TFT 101
Can be disposed near the gate electrode 103, and there is almost no reduction in aperture ratio due to the connection portion 109 or the like.
【0036】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、1画素当たりにTFT
を2個設けたが、これに限らず1画素当たりにTFTを
3個以上設けるようにしてもよい。1画素当たりのTF
Tをn個とした場合、n−1個のTFTには切断可能な
構造と切断後に再接続可能な構造を付加し、1個のTF
Tには切断可能な構造のみを付加すればよい。この場
合、TFTの1つが不良としても、(n−1)/nとい
う比較的大きな駆動能力を得ることができる。また、1
個のTFTには切断可能な構造と切断後に再接続可能な
構造を付加し、n−1個のTFTには切断可能な構造の
みを付加してもよい。この場合、TFTの1つが不良と
すると1/nという小さな駆動能力になるが、再接続可
能な構造の数を少なくすることができる。The present invention is not limited to the above embodiments. In the embodiment, a TFT is provided for each pixel.
Although two TFTs are provided, the present invention is not limited to this, and three or more TFTs may be provided for each pixel. TF per pixel
When T is n, a structure that can be cut and a structure that can be reconnected after cutting are added to n-1 TFTs, and
Only a severable structure may be added to T. In this case, a relatively large driving capacity of (n-1) / n can be obtained even if one of the TFTs is defective. Also, 1
It is also possible to add a structure that can be cut and a structure that can be reconnected after cutting to each TFT, and add only a structure that can be cut to n-1 TFTs. In this case, if one of the TFTs is defective, the driving capability is as small as 1 / n, but the number of reconnectable structures can be reduced.
【0037】また、実施例ではTFTの画素電極側を切
断又は再接続するようにしたが、TFTの信号線側を切
断又は再接続する構成としてもよい。さらに、切断や再
接続に使用するレーザの代わりにはエネルギービームを
使用することができる。その他、本発明の要旨を逸脱し
ない範囲で、種々変形して実施することができる。Although the pixel electrode side of the TFT is cut or reconnected in the embodiment, the signal line side of the TFT may be cut or reconnected. Further, an energy beam can be used in place of the laser used for disconnection and reconnection. In addition, various modifications can be made without departing from the scope of the present invention.
【0038】[0038]
【発明の効果】以上説明したように本発明によれば、1
画素当たり複数の薄膜トランジスタを電気的に並列に配
置した冗長構造において、並列に設けられた複数のTF
Tの全てに切断可能な構造を設け、一部に再接続可能な
構造を設けることにより、開口率の低下を抑えつつ、不
良TFTの検出を可能としてTFT不良を確実に救済で
きる液晶表示装置を実現することが可能となる。As described above, according to the present invention, 1
In a redundant structure in which a plurality of thin film transistors are electrically arranged in parallel per pixel, a plurality of TFs provided in parallel are provided.
By providing a disconnectable structure for all of T and a reconnectable structure for a part of T, a liquid crystal display device capable of detecting defective TFTs and reliably relieving defective TFTs while suppressing a decrease in aperture ratio. It can be realized.
【図1】第1の実施例に係わる液晶表示装置の1画素部
分の構成を示す平面図。FIG. 1 is a plan view showing the configuration of one pixel portion of a liquid crystal display device according to a first embodiment.
【図2】レーザ接続部の1例を示す断面図。FIG. 2 is a sectional view showing an example of a laser connecting portion.
【図3】第2の実施例に係わる液晶表示装置の1画素部
分の構成を示す平面図。FIG. 3 is a plan view showing the configuration of one pixel portion of the liquid crystal display device according to the second embodiment.
【図4】第3の実施例に係わる液晶表示装置の1画素部
分の構成を示す平面図。FIG. 4 is a plan view showing the configuration of one pixel portion of a liquid crystal display device according to a third embodiment.
【図5】第3の実施例におけるコンタクトホール部の構
成を示す断面図。FIG. 5 is a sectional view showing a structure of a contact hole portion in the third embodiment.
【図6】従来のTFTアレイの1例を示す平面図。FIG. 6 is a plan view showing an example of a conventional TFT array.
【図7】従来のTFTアレイのリペア手法の1例を示す
平面図。FIG. 7 is a plan view showing an example of a conventional TFT array repair method.
【図8】従来のTFTアレイの冗長構造の1例を示す平
面図。FIG. 8 is a plan view showing an example of a conventional redundant structure of a TFT array.
【図9】従来のTFTアレイの冗長構造の1例を示す平
面図。FIG. 9 is a plan view showing an example of a conventional redundant structure of a TFT array.
101…第1のTFT 102…第2のTFT 103…ゲート線 104…補助容量線 105…画素電極 106…信号線 107…ドレイン電極 108…第2のTFTに対するソース電極 109…レーザ接続部 110…レーザ照射箇所 111…第1のTFTに対するソース電極 112,113…レーザ切断箇所 101 ... First TFT 102 ... Second TFT 103 ... Gate line 104 ... Auxiliary capacitance line 105 ... Pixel electrode 106 ... Signal line 107 ... Drain electrode 108 ... Source electrode for second TFT 109 ... Laser connection section 110 ... Laser Irradiation location 111 ... Source electrode 112 for first TFT 112, 113 ... Laser cutting location
Claims (1)
らの画素電極と信号線とを接続する薄膜トランジスタと
を具備した液晶表示装置において、 前記薄膜トランジスタは1画素に対して複数個並列に設
けられ、該複数の薄膜トランジスタの全ては画素電極側
又は信号線側を切断可能な構造で、且つ該複数の薄膜ト
ランジスタのうち少なくとも1つは画素電極側又は信号
線側を切断後に再接続可能な構造であることを特徴とす
る液晶表示装置。1. A liquid crystal display device comprising a matrix of pixel electrodes and thin film transistors for connecting the pixel electrodes and signal lines, wherein a plurality of the thin film transistors are provided in parallel for one pixel. All of the plurality of thin film transistors have a structure capable of cutting the pixel electrode side or the signal line side, and at least one of the plurality of thin film transistors has a structure capable of being reconnected after cutting the pixel electrode side or the signal line side. Characteristic liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35019793A JPH07199221A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35019793A JPH07199221A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07199221A true JPH07199221A (en) | 1995-08-04 |
Family
ID=18408879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35019793A Pending JPH07199221A (en) | 1993-12-28 | 1993-12-28 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07199221A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100455555B1 (en) * | 2000-08-11 | 2004-11-12 | 엔이씨 엘씨디 테크놀로지스, 엘티디. | Liquid crystal display device and method of driving the same |
KR100611697B1 (en) * | 2000-11-28 | 2006-08-11 | 산요덴키가부시키가이샤 | Pixel darkening method |
WO2006126460A1 (en) * | 2005-05-23 | 2006-11-30 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, and pixel defect correcting method |
JP2008009375A (en) * | 2006-05-31 | 2008-01-17 | Hitachi Displays Ltd | Display device |
US7375773B2 (en) | 2004-01-28 | 2008-05-20 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US7375778B2 (en) | 2001-10-25 | 2008-05-20 | Lg.Philips Lcd Co., Ltd. | Array panel for liquid crystal display device and method of manufacturing the same |
US7583354B2 (en) | 2005-12-26 | 2009-09-01 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, television receiver, and method for repairing defects of active matrix substrate |
JP2010061025A (en) * | 2008-09-05 | 2010-03-18 | Ips Alpha Technology Ltd | Liquid crystal display device |
US7973871B2 (en) | 2004-05-27 | 2011-07-05 | Sharp Kabushiki Kaisha | Active matrix substrate, method for correcting a pixel deffect therein and manufacturing method thereof |
WO2014208013A1 (en) | 2013-06-27 | 2014-12-31 | 凸版印刷株式会社 | Thin-film transistor array, method for manufacturing same, image display device, and display method |
CN104751760A (en) * | 2013-12-27 | 2015-07-01 | 乐金显示有限公司 | Display device with redundant transistor structure |
KR20150076750A (en) * | 2013-12-27 | 2015-07-07 | 엘지디스플레이 주식회사 | Display device and panel having repair structure |
-
1993
- 1993-12-28 JP JP35019793A patent/JPH07199221A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100455555B1 (en) * | 2000-08-11 | 2004-11-12 | 엔이씨 엘씨디 테크놀로지스, 엘티디. | Liquid crystal display device and method of driving the same |
KR100611697B1 (en) * | 2000-11-28 | 2006-08-11 | 산요덴키가부시키가이샤 | Pixel darkening method |
US7847892B2 (en) | 2001-10-25 | 2010-12-07 | Lg Display Co., Ltd. | Array panel for liquid crystal display device with light shielding and method of manufacturing the same |
US7375778B2 (en) | 2001-10-25 | 2008-05-20 | Lg.Philips Lcd Co., Ltd. | Array panel for liquid crystal display device and method of manufacturing the same |
US7375773B2 (en) | 2004-01-28 | 2008-05-20 | Sharp Kabushiki Kaisha | Active matrix substrate and display device |
US7973871B2 (en) | 2004-05-27 | 2011-07-05 | Sharp Kabushiki Kaisha | Active matrix substrate, method for correcting a pixel deffect therein and manufacturing method thereof |
EP1884910A4 (en) * | 2005-05-23 | 2009-12-09 | Sharp Kk | ACTIVE MATRIX SUBSTRATE, DISPLAY DEVICE, AND METHOD FOR CORRECTING PIXEL DEFECTS |
CN100463018C (en) * | 2005-05-23 | 2009-02-18 | 夏普株式会社 | Active matrix substrate, display device, and pixel defect correction method |
EP1884910A1 (en) * | 2005-05-23 | 2008-02-06 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, and pixel defect correcting method |
KR100808747B1 (en) * | 2005-05-23 | 2008-02-29 | 샤프 가부시키가이샤 | Active matrix substrate, display device, and pixel defect correcting method |
US7733435B2 (en) | 2005-05-23 | 2010-06-08 | Sharp Kabushiki Kaisha | Active matrix substrate, display apparatus, and pixel defect correction method |
WO2006126460A1 (en) * | 2005-05-23 | 2006-11-30 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, and pixel defect correcting method |
US8045076B2 (en) | 2005-12-26 | 2011-10-25 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, television receiver, and method for repairing defects of active matrix substrate |
US7583354B2 (en) | 2005-12-26 | 2009-09-01 | Sharp Kabushiki Kaisha | Active matrix substrate, display device, television receiver, and method for repairing defects of active matrix substrate |
JP2008009375A (en) * | 2006-05-31 | 2008-01-17 | Hitachi Displays Ltd | Display device |
JP2010061025A (en) * | 2008-09-05 | 2010-03-18 | Ips Alpha Technology Ltd | Liquid crystal display device |
WO2014208013A1 (en) | 2013-06-27 | 2014-12-31 | 凸版印刷株式会社 | Thin-film transistor array, method for manufacturing same, image display device, and display method |
US10141349B2 (en) | 2013-06-27 | 2018-11-27 | Toppan Printing Co., Ltd. | Thin-film transistor array, fabrication method therefor, image display device and display method |
CN104751760A (en) * | 2013-12-27 | 2015-07-01 | 乐金显示有限公司 | Display device with redundant transistor structure |
EP2889682A1 (en) * | 2013-12-27 | 2015-07-01 | LG Display Co., Ltd. | Display device with redundant transistor structure |
KR20150076750A (en) * | 2013-12-27 | 2015-07-07 | 엘지디스플레이 주식회사 | Display device and panel having repair structure |
KR20150077518A (en) * | 2013-12-27 | 2015-07-08 | 엘지디스플레이 주식회사 | Display device with redundancy transistor structure |
US9147699B2 (en) | 2013-12-27 | 2015-09-29 | Lg Display Co., Ltd. | Display device with redundant transistor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3263250B2 (en) | Liquid crystal display | |
CN101666948B (en) | TFT-LCD pixel structure, manufacturing method and broken wire repairing method | |
CN101521209B (en) | Active matrix substrate and display device | |
TWI241446B (en) | Display device and method for repairing line disconnection thereof | |
JPH0740101B2 (en) | Thin film transistor | |
JP2002055361A (en) | Liquid crystal display device and its defect correcting method | |
JP2003307748A (en) | Liquid crystal display device and manufacturing method thereof | |
US6654074B1 (en) | Array substrate for liquid crystal display device with shorting bars external to a data pad and method of manufacturing the same | |
JPH07199221A (en) | Liquid crystal display device | |
JPH04331922A (en) | Active matrix display device | |
JPH10123563A (en) | Liquid crystal display device and its fault correction method | |
JPH075851A (en) | Active-matrix liquid-crystal display | |
JPH07104311A (en) | Liquid crystal display device | |
JPH05315460A (en) | Wiring for electronic circuit | |
JP3491079B2 (en) | How to repair a liquid crystal display | |
JP2008003290A (en) | Liquid crystal display device | |
JPH09222615A (en) | Tft array substrate and liquid crystal display device formed by using the substrate | |
EP0430418A2 (en) | Liquid crystal display and method of manufacturing the same | |
JPH02277027A (en) | Liquid crystal display device | |
JP2800958B2 (en) | Active matrix substrate | |
JP2770813B2 (en) | Liquid crystal display | |
US6600523B2 (en) | Structure of storage capacitor on common of TFT-LCD panel and fabrication method thereof | |
KR100719916B1 (en) | Thin film transistor liquid crystal display with means for line open and interlayer short repair | |
JPH09146111A (en) | Array substrate for display device and its production and liquid crystal display device | |
JP2669512B2 (en) | Active matrix substrate |