JPH07192752A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH07192752A JPH07192752A JP5350958A JP35095893A JPH07192752A JP H07192752 A JPH07192752 A JP H07192752A JP 5350958 A JP5350958 A JP 5350958A JP 35095893 A JP35095893 A JP 35095893A JP H07192752 A JPH07192752 A JP H07192752A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- negative electrode
- secondary battery
- electrolyte
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 54
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910000733 Li alloy Inorganic materials 0.000 claims abstract description 15
- 239000001989 lithium alloy Substances 0.000 claims abstract description 15
- 239000003792 electrolyte Substances 0.000 claims abstract description 12
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 11
- 239000008151 electrolyte solution Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 4
- 150000002678 macrocyclic compounds Chemical group 0.000 claims description 3
- 210000001787 dendrite Anatomy 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 8
- 239000005486 organic electrolyte Substances 0.000 abstract description 4
- 230000008021 deposition Effects 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 10
- 238000004070 electrodeposition Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910008270 Li-Ag-Te Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910008446 Li—Ag—Te Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000003983 crown ethers Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 150000003984 12-crown-4 derivatives Chemical class 0.000 description 1
- 150000003987 14-crown-4 derivatives Chemical class 0.000 description 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 1
- 150000003985 15-crown-5 derivatives Chemical class 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910015013 LiAsF Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- OBWXQDHWLMJOOD-UHFFFAOYSA-H cobalt(2+);dicarbonate;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Co+2].[Co+2].[Co+2].[O-]C([O-])=O.[O-]C([O-])=O OBWXQDHWLMJOOD-UHFFFAOYSA-H 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- SBWRUMICILYTAT-UHFFFAOYSA-K lithium;cobalt(2+);phosphate Chemical compound [Li+].[Co+2].[O-]P([O-])([O-])=O SBWRUMICILYTAT-UHFFFAOYSA-K 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、デンドライトが成長し
にくく充放電効率の安定性に優れて長寿命性に優れるリ
チウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery in which dendrites are less likely to grow, the charge / discharge efficiency is stable, and the life is long.
【0002】[0002]
【従来の技術】従来、電解液にリチウム系電解質配合の
有機液を用い、負極に金属リチウムを用いたリチウム二
次電池が知られていた。これは有機系の電解液を用いた
ことで高エネルギー密度の電池出力が得られる利点を有
する。しかしながら、充電時にリチウム負極の表面にデ
ンドライトが成長しやすく正・負極間のセパレータ(電
解液層)を貫通して短絡問題を生じさせる問題点があっ
た。2. Description of the Related Art Heretofore, a lithium secondary battery has been known in which an organic solution containing a lithium-based electrolyte is used as an electrolytic solution and metallic lithium is used as a negative electrode. This has an advantage that a battery output with high energy density can be obtained by using an organic electrolyte solution. However, there is a problem that dendrites easily grow on the surface of the lithium negative electrode during charging and penetrate the separator (electrolyte layer) between the positive and negative electrodes to cause a short circuit problem.
【0003】前記に鑑みて本発明者らは、負極にリチウ
ム合金を用いることを試みた。その結果、この方式によ
れば、有機系電解液使用の利点を損なうことなく前記し
たデンドライト問題を克服しうることを見出した。しか
し更に鋭意研究を重ねるなかで、そのデンドライト成長
の抑制効果は従来の通常の電流密度の場合には認められ
ものの、電流密度を増加させて充放電を繰り返すと負極
表面におけるリチウムの電析状態が悪化して充放電効率
が低下することが判明した。In view of the above, the present inventors have tried to use a lithium alloy for the negative electrode. As a result, it has been found that this method can overcome the above-mentioned dendrite problem without impairing the advantage of using an organic electrolyte. However, in further intensive research, the effect of suppressing the dendrite growth was recognized in the case of the conventional normal current density, but when the current density was increased and charging / discharging was repeated, the electrodeposition state of lithium on the negative electrode surface changed. It was found that the charging and discharging efficiency deteriorated and the charging and discharging efficiency decreased.
【0004】[0004]
【発明が解決しようとする課題】従って本発明は、前記
した負極にリチウム合金を用いた場合の充放電効率の低
下問題の克服を目的とし、ひいては有機系電解液の使用
による高エネルギー密度の電池出力の利点を活かしつ
つ、デンドライトが成長しにくくて充放電の繰り返しに
安定した充放電効率を示し寿命の長期性に優れるリチウ
ム二次電池の開発を課題とする。SUMMARY OF THE INVENTION Therefore, the present invention is intended to overcome the problem of deterioration of charge / discharge efficiency when a lithium alloy is used for the negative electrode, and further, a battery having a high energy density by using an organic electrolyte solution. It is an object to develop a lithium secondary battery that takes advantage of the output, has a dendrite that does not grow easily, shows stable charge and discharge efficiency during repeated charge and discharge, and has a long life.
【0005】[0005]
【課題を解決するための手段】本発明は、電解液にリチ
ウム系電解質とリチウム錯イオン形成剤とを配合した有
機液を用い、負極にリチウム合金を用いたことを特徴と
するリチウム二次電池を提供するものである。Means for Solving the Problems The present invention is a lithium secondary battery characterized in that an organic liquid containing a lithium-based electrolyte and a lithium complex ion forming agent is used as an electrolyte and a lithium alloy is used as a negative electrode. Is provided.
【0006】[0006]
【作用】上記の先行技術において本発明者らは、前記高
電流密度下での充放電効率の低下問題は、リチウム合金
負極におけるリチウムの電析状態の悪化が原因で負極表
面の状態悪化が誘発されることによるものであることを
究明し、本発明はリチウム錯イオン形成剤の使用でその
問題を解決した。すなわち、リチウム錯イオン形成剤を
配合した有機電解液では、通常のリチウム単独イオンか
らの電析に比べて高い電流密度にてもリチウム合金負極
上に平滑ないし平坦かつ緻密なリチウム電析面が形成さ
れ、負極の表面状態の悪化が防止されてデンドライトの
成長が防止され、放電容量及び充放電効率の低下が防止
されて高効率が維持され、充放電を繰返し安定に行うこ
とができて長寿命性に優れる電池が得られる。In the above-mentioned prior art, the present inventors have found that the deterioration of the charge / discharge efficiency under the high current density is caused by the deterioration of the electrodeposition state of lithium in the lithium alloy negative electrode, which causes the deterioration of the state of the negative electrode surface. The present invention has solved the problem by using a lithium complex ion forming agent. That is, in the organic electrolytic solution containing the lithium complex ion-forming agent, a smooth or flat and dense lithium electrodeposition surface is formed on the lithium alloy negative electrode even at a higher current density than in the case of electrodeposition from ordinary lithium single ions. The deterioration of the surface condition of the negative electrode is prevented, the growth of dendrites is prevented, the deterioration of discharge capacity and charge / discharge efficiency is prevented, high efficiency is maintained, and repeated charge / discharge can be stably performed for a long life. A battery having excellent properties can be obtained.
【0007】[0007]
【実施例】本発明のリチウム二次電池は、電解液にリチ
ウム系電解質とリチウム錯イオン形成剤とを配合した有
機液を用い、負極にリチウム合金を用いたものである。
その例を図1に示した。これはコイン型のものを例示し
たもので、3がリチウム合金からなる負極、4が電解液
層(セパレータ)である。なお、1,7は電池缶、2,
6は集電用のニッケル板、5は正極、8は絶縁封止材で
ある。EXAMPLES The lithium secondary battery of the present invention uses an organic liquid in which a lithium-based electrolyte and a lithium complex ion forming agent are mixed in the electrolytic solution, and uses a lithium alloy in the negative electrode.
An example thereof is shown in FIG. This is an example of a coin type, 3 is a negative electrode made of a lithium alloy, and 4 is an electrolyte layer (separator). In addition, 1, 7 is a battery can, 2,
6 is a nickel plate for collecting current, 5 is a positive electrode, and 8 is an insulating sealing material.
【0008】電解液におけるリチウム系電解質として
は、適宜なリチウム塩を用いることができ、その例とし
てはLiClO4、LiBF4、LiPF4、LiAsF3、Li
AlCl4、Li(CF2SO2)2などがあげられる。An appropriate lithium salt can be used as the lithium-based electrolyte in the electrolytic solution, and examples thereof include LiClO 4 , LiBF 4 , LiPF 4 , LiAsF 3 and Li.
AlCl 4 , Li (CF 2 SO 2 ) 2 and the like can be mentioned.
【0009】リチウム錯イオン形成剤としては、リチウ
ムの錯イオンが形成される適宜なものを用いうる。高電
流密度にても負極上に平坦なリチウム電析面を形成する
点よりは大環状化合物などが好ましく用いられる。その
大環状化合物の具体例としては、12クラウン4誘導
体、14クラウン4誘導体、15クラウン5誘導体、1
8クラウン6誘導体、大環状ジアザポリエーテル誘導体
などがあげられる。As the lithium complex ion forming agent, an appropriate agent that forms a lithium complex ion can be used. A macrocyclic compound or the like is preferably used from the viewpoint of forming a flat lithium electrodeposition surface on the negative electrode even at a high current density. Specific examples of the macrocyclic compound include 12 crown 4 derivatives, 14 crown 4 derivatives, 15 crown 5 derivatives, 1
Examples include 8-crown-6 derivatives and macrocyclic diazapolyether derivatives.
【0010】電解液における溶媒としての有機液として
は、リチウム塩を溶解する適宜なものを用いてよい。一
般には例えば、プロピレンカーボネート、エチレンカー
ボネート、ジメチルカーボネート、ジエチルカーボネー
ト、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、それらの混合物などが
用いられる。As the organic liquid as a solvent in the electrolytic solution, a suitable one which dissolves a lithium salt may be used. Generally, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, diethyl ether, 1,3-dioxolane, methyl formate. , Methyl acetate,
N, N-dimethylformamide, a mixture thereof or the like is used.
【0011】電解液におけるリチウム系電解質の濃度は
適宜に決定してよいが、一般には0.1〜3モル/リッ
トルとされる。またリチウム錯イオン形成剤の濃度は、
電析面の安定形成等の点より、形成リチウム錯イオンの
安定度定数が102以上であることが好ましく、かかる
点より電解液におけるリチウムイオンのモル数に対して
0.1〜2倍、就中0.5〜1.5倍のモル数が好まし
い。そのモル数が0.1倍未満では添加効果に乏しい場
合があり、2倍を超えると電解液の抵抗が上昇して電池
の内部抵抗が増加しやすくなる。The concentration of the lithium-based electrolyte in the electrolytic solution may be appropriately determined, but is generally 0.1 to 3 mol / liter. The concentration of the lithium complex ion forming agent is
From the viewpoint of stable formation of the electrodeposition surface, the stability constant of the formed lithium complex ion is preferably 10 2 or more, and from this point, 0.1 to 2 times the molar number of lithium ion in the electrolytic solution, In particular, the molar number is preferably 0.5 to 1.5 times. If the number of moles is less than 0.1 times, the addition effect may be poor, and if it exceeds 2 times, the resistance of the electrolytic solution increases and the internal resistance of the battery tends to increase.
【0012】負極を形成するリチウム合金としては、例
えばAl、Bi、Sn又はIn等とLiとの金属間化合
物などからなる適宜なリチウム合金、あるいはAg、A
l、Mg、Zn又はCaの少なくとも1種からなるX成
分を含むLi−X−Te系合金、就中、充放電のサイク
ル寿命、高起電力性、高放電容量性、高エネルギー密度
性などの点より好ましくはLi−Ag−Te系合金から
なるLi:Ag:Teの原子比が80〜150:1〜2
0:2〜30であるものなどがあげられる。特にLiを
80原子%以上含有するものが好ましい。As the lithium alloy forming the negative electrode, for example, a suitable lithium alloy composed of an intermetallic compound of Al, Bi, Sn, In or the like and Li, or Ag, A
Li-X-Te-based alloys containing an X component consisting of at least one of 1, 1, Mg, Zn, and Ca, among others, such as charge / discharge cycle life, high electromotive force, high discharge capacity, and high energy density. From the viewpoint, the Li: Ag: Te atomic ratio of the Li-Ag-Te alloy is preferably 80 to 150: 1-2.
Examples thereof include 0: 2 to 30. Particularly, those containing 80 atomic% or more of Li are preferable.
【0013】本発明のリチウム二次電池は、上記した電
解液と負極を用いる点を除いては特に限定はなく、従来
に準じて形成することができる。従って正極には、例え
ばMnO2、LiCoO2、LiwCo1-x-yMxPyO
2+z(ただし、Mは1種又は2種以上の遷移金属、wは
0<w≦2、xは0≦x<1、yは0<y<1、zは−
1≦z≦4である。)、あるいはLiないしLi・Coの
リン酸塩及び/又はCoないしLi・Coの酸化物を成分
として1モルのLiあたり0.1モル以上のCoと0.2
モル以上のPを含有するものなどを活物質とする正極材
などを用いうる。The lithium secondary battery of the present invention is not particularly limited except that the above-mentioned electrolytic solution and negative electrode are used, and can be formed in a conventional manner. Therefore, for the positive electrode, for example, MnO 2 , LiCoO 2 , Li w Co 1-xy M x P y O
2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <1, and z is −
1 ≦ z ≦ 4. ) Or Li to Li · Co phosphate and / or Co to Li · Co oxide as a component, and 0.1 mol or more of Co and 0.2 per mol of Li.
A positive electrode material or the like having an active material such as one containing P or more of P may be used.
【0014】またリチウム二次電池の形態なども使用目
的等に応じて適宜に決定することができる。図1に例示
したコイン型二次電池などでは通例、シート状の負極や
正極などが用いられるが、リチウム合金、特に前記した
Li−Ag−Te系合金からなるシート状の負極は、例
えば各種の蒸着方式や圧延方式、熱間押出方式などの適
宜な方式で形成するができ、その厚さは任意であるが数
〜数百μm程度の厚さのものとすることもできる。また
シート状の正極は、例えば活物質を必要に応じてアセチ
レンブラックやケッチェンブラック等の導電材料及びポ
リテトラフルオロエチレンやポリエチレン等の結着剤と
共にキャスティング方式や圧縮成形方式、ロール成形方
式などの適宜な方式で成形する方式などにより形成する
ことができる。The form of the lithium secondary battery can be appropriately determined according to the purpose of use. In the coin-type secondary battery illustrated in FIG. 1 and the like, a sheet-shaped negative electrode, a positive electrode, or the like is usually used, but a lithium-metal alloy, in particular, a sheet-shaped negative electrode made of the Li—Ag—Te-based alloy described above is, for example, It can be formed by an appropriate method such as a vapor deposition method, a rolling method, or a hot extrusion method, and the thickness thereof is arbitrary, but it may be about several to several hundreds μm. Further, the sheet-shaped positive electrode may be formed, for example, by a casting method, a compression molding method, a roll molding method, etc. together with a conductive material such as acetylene black or Ketjen black and a binder such as polytetrafluoroethylene or polyethylene, if necessary. It can be formed by a method of molding by an appropriate method.
【0015】また前記のコイン型二次電池などでは電解
液は通例、正・負極間に介在させるセパレータに保有さ
せた形態で用いられるが、かかるセパレータの形成は例
えば多孔性ポリプロピレンフィロムや多孔性ポリマー、
ガラスフィルター等に電解液を含浸させたり、充填する
方式などの従来に準じた適宜な方式で行うことができ
る。In the above coin type secondary battery, etc., the electrolytic solution is usually used in the form of being contained in a separator interposed between the positive electrode and the negative electrode. The formation of such a separator is, for example, a porous polypropylene film or a porous material. polymer,
It can be carried out by an appropriate method according to a conventional method such as a method of impregnating or filling the glass filter with the electrolytic solution.
【0016】本発明のリチウム二次電池に対する充電
は、一定電流を連続して通電する方式やパルス電源を用
いてパルス電流を供給する方式などの適宜な方式にて行
うことができる。Charging of the lithium secondary battery of the present invention can be performed by an appropriate method such as a method of continuously supplying a constant current or a method of supplying a pulse current using a pulse power source.
【0017】実施例1 Li、Ag、Teを原子比率でLi:Ag:Te=9
0:10:2に配合し、アルゴン雰囲気中で500℃に
て溶解させて合金化し、それより採取した切片を用いて
プレス方式にて打ち抜いて直径20mm、厚さ1mmの円板
状の負極を得た。Example 1 Li, Ag and Te in atomic ratio Li: Ag: Te = 9
It was blended at 0: 10: 2, melted at 500 ° C in an argon atmosphere to be alloyed, and punched by a pressing method using a sliced piece to obtain a disk-shaped negative electrode having a diameter of 20 mm and a thickness of 1 mm. Obtained.
【0018】一方、炭酸リチウムと塩基性炭酸コバルト
とリン酸含有率85%のリン酸水溶液をLi:Co:P=
2:1.5:0.5の原子比で混合し、それをアルミナ
製坩堝に入れて電気炉で900℃下、24時間加熱処理
して、リチウムのリン酸塩とリチウム・コバルトのリン
酸塩とコバルト酸化物の混合物(活物質)を形成し、そ
れをボールミルで粉砕して粒径20μm以下の粉末とし
た。次に、その粉末46重量部、アセチレンブラック4
重量部、ポリフッ化ビニリデン2重量部、及びn−メチ
ルピロリドン50重量部を混合し、それを直径20mm、
厚さ0.5mmのニッケル板の上に塗布し、真空乾燥させ
て厚さ150μmの塗布層(正極層)を形成して正極を
得た。On the other hand, lithium carbonate, basic cobalt carbonate and an aqueous phosphoric acid solution having a phosphoric acid content of 85% are used as Li: Co: P =
It was mixed in an atomic ratio of 2: 1.5: 0.5, put in an alumina crucible, and heat-treated in an electric furnace at 900 ° C. for 24 hours to obtain lithium phosphate and lithium cobalt phosphate. A mixture (active material) of salt and cobalt oxide was formed and pulverized by a ball mill to obtain a powder having a particle size of 20 μm or less. Next, 46 parts by weight of the powder, acetylene black 4
Parts by weight, 2 parts by weight of polyvinylidene fluoride, and 50 parts by weight of n-methylpyrrolidone are mixed, and the resulting mixture has a diameter of 20 mm,
It was applied on a nickel plate having a thickness of 0.5 mm and dried in a vacuum to form a coating layer (positive electrode layer) having a thickness of 150 μm to obtain a positive electrode.
【0019】他方、1リットルのプロピレンカーボネー
トに1モルのLiClO4を溶解させた溶液に下式で示さ
せる大環状ジアザポリエーテル配位子を0.8モル/リ
ットル添加して電解液を調製し、それを厚さ25μmの
多孔性ポリプロピレンフィルム(セパレータ)に含浸さ
せ、得られたセパレータの上下に前記の負極と正極を配
置してそれを正極缶と負極缶で密封して図1に示した形
態のリチウム二次電池を得た。なお前記溶解液における
リチウム錯イオンの安定度定数を電位差滴定法で測定し
たところ、10の9.5乗であった。On the other hand, 0.8 mol / liter of a macrocyclic diazapolyether ligand represented by the following formula was added to a solution prepared by dissolving 1 mol of LiClO 4 in 1 liter of propylene carbonate to prepare an electrolytic solution. Then, it is impregnated with a porous polypropylene film (separator) having a thickness of 25 μm, the negative electrode and the positive electrode are arranged on the upper and lower sides of the obtained separator, which is sealed with a positive electrode can and a negative electrode can, and shown in FIG. A lithium secondary battery having a different form was obtained. The stability constant of the lithium complex ion in the solution was measured by potentiometric titration and found to be 10 9.5.
【0020】 式中のl、m、nは、(CH3−O−CH3)単位の結合
数を意味し、それぞれl=2、m=2、n=1である。[0020] In the formula, l, m, and n mean the number of bonds in a (CH 3 —O—CH 3 ) unit, and l = 2, m = 2, and n = 1, respectively.
【0021】前記の二次電池について、2.5mA/cm
2の充電及び放電の電流密度にて2.5〜4.1V間で
充放電サイクルを50回繰返したのちの放電容量維持率
を調べたところ、90%であった。For the above secondary battery, 2.5 mA / cm
When the charge / discharge cycle was repeated 50 times between 2.5 and 4.1 V at the charge and discharge current densities of 2 , the discharge capacity retention ratio was examined and found to be 90%.
【0022】実施例2 リチウム錯イオン形成剤として、15−クラウン5を
1.0モル/リットルの濃度で用いてリチウム錯イオン
の安定度定数が10の4.3乗の電解液を用いたほかは
実施例1に準じてリチウム二次電池を得た。前記のリチ
ウム二次電池について、1mA/cm2の充電及び放電の
電流密度にて実施例1に準じ50回の充放電サイクルを
繰返したのちの放電容量維持率を調べたところ、90%
であった。Example 2 As the lithium complex ion-forming agent, 15-crown 5 was used at a concentration of 1.0 mol / liter, and an electrolyte solution having a lithium complex ion stability constant of 10 4.3 was used. A lithium secondary battery was obtained in the same manner as in Example 1. The above-mentioned lithium secondary battery was tested for discharge capacity retention after repeating 50 charge / discharge cycles according to Example 1 at a current density of 1 mA / cm 2 of charge and discharge, and found to be 90%.
Met.
【0023】比較例1 電解液にクラウンエーテル誘導体を添加しない電解液を
用いたほかは実施例1に準じてリチウム二次電池を得、
その50回の充放電サイクルを繰返したのちの放電容量
維持率を調べたところ、10%であった。Comparative Example 1 A lithium secondary battery was obtained in the same manner as in Example 1 except that an electrolyte solution containing no crown ether derivative was used.
The discharge capacity retention rate after repeating the 50 charge / discharge cycles was 10%.
【0024】比較例2 電解液にクラウンエーテル誘導体を添加しない電解液を
用いたほかは実施例2に準じてリチウム二次電池を得、
その50回の充放電サイクルを繰返したのちの放電容量
維持率を調べたところ、20%であった。Comparative Example 2 A lithium secondary battery was obtained in the same manner as in Example 2 except that an electrolyte solution containing no crown ether derivative was used.
When the discharge capacity retention ratio was examined after repeating the 50 charge / discharge cycles, it was 20%.
【0025】[0025]
【発明の効果】本発明によれば、リチウム合金負極上に
平滑で、かつ緻密な組織を有するリチウム電析面を形成
できてデンドライトの成長による負極表面状態の悪化を
防止でき、初期の放電容量の維持性に優れて充放電のサ
イクル寿命、信頼性、放電容量の大きさに優れ、長時間
使用することができるリチウム二次電池を得ることがで
きる。According to the present invention, a lithium electrodeposition surface having a smooth and dense structure can be formed on a lithium alloy negative electrode, the deterioration of the negative electrode surface state due to the growth of dendrites can be prevented, and the initial discharge capacity can be reduced. It is possible to obtain a lithium secondary battery that has excellent sustainability, excellent charge / discharge cycle life, reliability, and discharge capacity, and can be used for a long time.
【図1】実施例の断面図。FIG. 1 is a sectional view of an example.
1,7:電池缶 2,6:集電用ニッケル板 3:リチウム合金負極 4:電解液層(セパレータ) 5:正極 8:絶縁封止材 1,7: Battery can 2,6: Nickel plate for current collection 3: Lithium alloy negative electrode 4: Electrolyte layer (separator) 5: Positive electrode 8: Insulation sealing material
Claims (3)
イオン形成剤とを配合した有機液を用い、負極にリチウ
ム合金を用いたことを特徴とするリチウム二次電池。1. A lithium secondary battery, wherein an organic liquid containing a lithium-based electrolyte and a lithium complex ion forming agent is used as an electrolytic solution, and a lithium alloy is used as a negative electrode.
であり、電解液における、形成されたリチウム錯イオン
の安定度定数が102以上である請求項1に記載のリチ
ウム二次電池。2. The lithium secondary battery according to claim 1, wherein the lithium complex ion forming agent is a macrocyclic compound, and the stability constant of the formed lithium complex ion in the electrolytic solution is 10 2 or more.
子%以上含有するものである請求項1又は2に記載のリ
チウム二次電池。3. The lithium secondary battery according to claim 1, wherein the lithium alloy of the negative electrode contains lithium in an amount of 80 atomic% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5350958A JPH07192752A (en) | 1993-12-27 | 1993-12-27 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5350958A JPH07192752A (en) | 1993-12-27 | 1993-12-27 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07192752A true JPH07192752A (en) | 1995-07-28 |
Family
ID=18414073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5350958A Pending JPH07192752A (en) | 1993-12-27 | 1993-12-27 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07192752A (en) |
-
1993
- 1993-12-27 JP JP5350958A patent/JPH07192752A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1711971B1 (en) | Electrode additives coated with electro conductive material and lithium secondary comprising the same | |
KR101233325B1 (en) | Electrolyte for rechargeable lithium battery and rechargeable lithium battery inclduing same | |
US6203947B1 (en) | Long cycle-life alkali metal battery | |
JP5143852B2 (en) | Nonaqueous electrolyte secondary battery | |
CN100446334C (en) | Electrochemical cell for a lithium ion battery with improved high-temperature stability | |
US6555268B1 (en) | Negative electrode for secondary cell, negative plate for secondary cell, and secondary cell comprising the same | |
JPH07176322A (en) | Electrolytic solution for li secondary battery | |
JPH08153541A (en) | Lithium secondary battery | |
JP2007234565A (en) | Nonaqueous electrolyte secondary battery | |
JP2010129471A (en) | Cathode active material and nonaqueous electrolyte battery | |
JPH07240201A (en) | Negative electrode and lithium secondary battery | |
JPH07326342A (en) | Negative electrode for lithium secondary battery, and lithium secondary battery using the same | |
JP2002083597A (en) | Lithium secondary battery | |
JP2000228196A (en) | Non-aqueous electrolyte secondary battery | |
JPH07296812A (en) | Negative electrode and li secondary battery | |
JPH08180853A (en) | Separator and lithium secondary battery | |
JP4162457B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP2968447B2 (en) | Anode alloy for lithium secondary battery and lithium secondary battery | |
JP4101927B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07245099A (en) | Negative electrode for nonaqueous electrolyte type lithium secondary battery | |
JPH08130006A (en) | Negative electrode, its manufacture and lithium secondary battery | |
JPH09171829A (en) | Positive electrode active material for lithium secondary battery, and lithium secondary battery | |
WO2000033403A1 (en) | Non-aqueous electrolyte secondary cell and its charging method | |
KR20210070609A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
JP2000133261A (en) | Non-aqueous electrolyte secondary battery and its manufacturing method |