JPH0718971Y2 - Magnetic circuit - Google Patents
Magnetic circuitInfo
- Publication number
- JPH0718971Y2 JPH0718971Y2 JP1986489U JP1986489U JPH0718971Y2 JP H0718971 Y2 JPH0718971 Y2 JP H0718971Y2 JP 1986489 U JP1986489 U JP 1986489U JP 1986489 U JP1986489 U JP 1986489U JP H0718971 Y2 JPH0718971 Y2 JP H0718971Y2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- path
- sensor
- movable
- magnetic path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Description
【考案の詳細な説明】 〔概要〕 磁気センサの移動方向に強度の異なる磁束を分布させる
磁気回路において、全体を閉磁路に近い構造にいて永久
磁石を単一化し、また磁気センサを可動磁路に収容する
構造にして実用性を高める。DETAILED DESCRIPTION OF THE INVENTION [Outline] In a magnetic circuit in which magnetic fluxes having different intensities are distributed in a moving direction of a magnetic sensor, the whole structure is close to a closed magnetic circuit, and a single permanent magnet is used. Improve the practicality by making it a structure to be housed in.
本考案は、磁気センサの移動方向に強度の異なる磁束を
分布させる磁気回路に関する。The present invention relates to a magnetic circuit for distributing magnetic fluxes having different strengths in a moving direction of a magnetic sensor.
ホール素子や磁気抵抗素子等の磁気センサは磁束の強度
だけでなく極性も検出できるので、従来は第3図のよう
な磁気回路を構成して被測定体の微小な移動量や回転角
の測定に利用している。Since magnetic sensors such as Hall elements and magnetoresistive elements can detect not only the intensity of magnetic flux but also the polarity, conventionally, a magnetic circuit as shown in FIG. 3 was constructed to measure minute movement amount and rotation angle of the object to be measured. Are used for.
第3図の例は一組の永久磁石1,2を逆極性に配置し、上
下に一組の磁性体3,4を固着して磁気回路を構成してい
る。この磁気回路では、右側の磁石1のN極から出た磁
束の大半は下側の磁性板4を通して左側の磁石2のS極
へ達するが、このとき一部の磁束が漏洩して上側の磁性
体3を通り、右側の磁石1のS極へ戻ろうとする。この
漏洩磁束5は左側の永久磁石2によっても同様の原理で
発生するが、磁石1,2が逆極性のためその強度は磁石1,2
の中間部で0、そこから離れるにつれて逆極性で増加す
る分布特性を示す。従って、磁性体3,4の間を移動可動
な磁気センサ6が現在どの位置にあるかは、センサ6で
検出した磁束の強度と極性から判別することができる。In the example shown in FIG. 3, a pair of permanent magnets 1 and 2 are arranged in opposite polarities, and a pair of magnetic bodies 3 and 4 are fixed on the top and bottom to form a magnetic circuit. In this magnetic circuit, most of the magnetic flux emitted from the N pole of the right magnet 1 reaches the S pole of the left magnet 2 through the lower magnetic plate 4, but at this time, some magnetic flux leaks and the upper magnet It tries to return to the south pole of the right magnet 1 through the body 3. This leakage magnetic flux 5 is also generated by the left permanent magnet 2 according to the same principle, but the strength of the magnets 1 and 2 is the same because the magnets 1 and 2 have opposite polarities.
The distribution characteristic is 0 in the middle part of, and increases with the opposite polarity with increasing distance. Therefore, the current position of the magnetic sensor 6 movable between the magnetic bodies 3 and 4 can be determined from the intensity and polarity of the magnetic flux detected by the sensor 6.
しかしながら、第3図の構造には次の欠点がある。 However, the structure of FIG. 3 has the following drawbacks.
(1)永久磁石が2個必要となるのでコスト高になる。(1) Since two permanent magnets are required, the cost becomes high.
(2)2個の永久磁石の強度が等しくないと、中間部分
で漏洩磁束が0になる対称な分布特性が得られない。(2) If the strengths of the two permanent magnets are not equal, a symmetrical distribution characteristic in which the leakage magnetic flux becomes 0 at the intermediate portion cannot be obtained.
(3)磁束の大半が磁性体を通るため、磁気センサで検
出する漏洩分が少なく(1%程度しかない)、検出信号
の振幅が小さい。(3) Since most of the magnetic flux passes through the magnetic substance, the amount of leakage detected by the magnetic sensor is small (only about 1%), and the amplitude of the detection signal is small.
(4)磁気センサを移動可能に保持する構造を磁気回路
とは別に設けるため、構造が複雑になる。(4) Since the structure for movably holding the magnetic sensor is provided separately from the magnetic circuit, the structure becomes complicated.
本考案はこのような点を改善しようとするものである。The present invention aims to improve such a point.
本考案は、単一の永久磁石の一方の極に結合した第1の
磁性体と該永久磁石の他方の極に結合した第2および第
3の磁性体とを所定の間隙を隔てて対向させることによ
り固定磁路を構成し、また第4および第5の磁性体
(B1,B2)の間に磁気センサ(C)を介在させかつこれ
らを一体に固定し、これら第4および第5の磁性体は前
記第2および第3の磁性体を結ぶ方向に並んで配置しか
つ該方向で前記間隙を移動可能にして可動磁路(B)を
構成してなることを特徴とするものである。According to the present invention, a first magnetic body coupled to one pole of a single permanent magnet and second and third magnetic bodies coupled to the other pole of the permanent magnet are opposed to each other with a predetermined gap. This forms a fixed magnetic path, and the magnetic sensor (C) is interposed between the fourth and fifth magnetic bodies (B 1 , B 2 ) and these are fixed together, and these fourth and fifth magnetic bodies (B 1 and B 2 ) are fixed. Of the magnetic body are arranged side by side in a direction connecting the second and third magnetic bodies, and the movable magnetic path (B) is configured by making the gap movable in the direction. is there.
固定磁路Aでは第1の磁性体A1と第2の磁性体A2の間だ
けでなく、第1の磁性体A1と第3の磁性体A3の間にも漏
洩磁束が発生する。A1−A2間の磁束をφ2、A1−A3間の
磁束をφ3とすると、磁石Mから発生する磁束をφ1(一
定値)としたとき、概ね φ1=φ2+φ3 が成り立つ。In the fixed magnetic path A, leakage magnetic flux is generated not only between the first magnetic body A 1 and the second magnetic body A 2 but also between the first magnetic body A 1 and the third magnetic body A 3. . When the magnetic flux between A 1 and A 2 is φ 2 and the magnetic flux between A 1 and A 3 is φ 3 , when the magnetic flux generated from the magnet M is φ 1 (constant value), approximately φ 1 = φ 2 + φ 3 holds.
この固定磁路Aの間隙に可動磁路Bを介在させると、可
動磁路Bが中央にあれば、A1−A2間の磁気抵抗がA1−A3
間と等しいため φ2=φ3 である。When the movable magnetic path B is interposed in the gap of the fixed magnetic path A, the magnetic resistance between A 1 and A 2 is A 1 -A 3 if the movable magnetic path B is at the center.
Since it is equal to the interval, φ 2 = φ 3 .
これに対し、可動磁路Bが第2の磁性体A2側に移動する
と、A1−A2間の磁気抵抗が低下し、A1−A3間の磁気抵抗
が増加するため φ2>φ3 となり、且つφ2は可動磁路B内のセンサCをA3側からA
2側へ通過する。On the other hand, when the movable magnetic path B moves to the second magnetic body A 2 side, the magnetic resistance between A 1 and A 2 decreases and the magnetic resistance between A 1 and A 3 increases, so φ 2 >. φ 3 becomes, and φ 2 moves sensor C in movable magnetic path B from A 3 side to A
Pass to side 2 .
一方、可動磁路Bが第3の磁性体A3側に移動すると、A1
−A3間の磁気抵抗が低下し、A1−A2側の磁気抵抗が増加
するため φ2<φ3 となり、且つφ3はセンサCをA2側からA3側へ通過す
る。On the other hand, when the movable magnetic path B moves to the third magnetic body A 3 side, A 1
Since the magnetic resistance between −A 3 decreases and the magnetic resistance on the A 1 −A 2 side increases, φ 2 <φ 3 , and φ 3 passes the sensor C from the A 2 side to the A 3 side.
磁束φ2,φ3の値は可動磁路Bの位置によって決まるた
め、これと同じ動きをする磁気センサCは従来と同様に
極性を有した出力を生ずる。Since the values of the magnetic fluxes φ 2 and φ 3 are determined by the position of the movable magnetic path B, the magnetic sensor C having the same movement as this produces an output having polarity as in the conventional case.
第1図は本考案の一実施例を示す斜視図である。本例の
固定磁路Aは永久磁石Mを中央に配置し、その上部にコ
字状の第1の磁性体A1を固着し、下部には基端を共通し
たコ字状の第2および第3の磁性体A2,A3を固着したも
のである。磁性体A1,A2間とA1,A3間は等しい間隙を有
し、その間を磁石Mから出た磁束φ1が分岐して通過す
る。φ2,φ3はその分岐した磁束で、第3図の漏洩磁束
5に相当する。FIG. 1 is a perspective view showing an embodiment of the present invention. In the fixed magnetic path A of this example, a permanent magnet M is arranged at the center, a U-shaped first magnetic body A 1 is fixed to the upper portion thereof, and a U-shaped second magnetic member having a common base end is attached to the lower portion. The third magnetic body A 2 and A 3 are fixed. There is an equal gap between the magnetic bodies A 1 and A 2 and between A 1 and A 3 , and the magnetic flux φ 1 emitted from the magnet M branches and passes between them. φ 2 and φ 3 are the branched magnetic fluxes and correspond to the leakage magnetic flux 5 in FIG.
一方、可動磁路Bは形状の等しい角柱状の磁性体B1,B2
の間に間隙を設け、そこに磁気センサCを介在させたも
のである。この可動磁路Bを固定磁路Aの磁性体A1と磁
性体A2,A3の間に介在させ、実線矢印方向にスライド可
能に支持する。On the other hand, the movable magnetic path B is a prism-shaped magnetic body B 1 , B 2 having the same shape.
A gap is provided between the magnetic sensor C and the magnetic sensor C. The movable magnetic path B is interposed between the magnetic body A 1 and the magnetic bodies A 2 and A 3 of the fixed magnetic path A and slidably supported in the direction of the solid arrow.
可動磁路Bが第2図(a)に示すように中央に位置する
と、磁束φ2はA1−B1−A2の磁路を通り、また磁束φ3は
A1−B2−A3の磁路を通る。これらの磁路はほぼ同じ磁気
抵抗値を持つので、概ね φ2=φ3 となる。この結果センサCを通るφ2,φ3の成分は互い
に打消し合うため、センサ出力は0に近い。When the movable magnetic path B is located at the center as shown in FIG. 2 (a), the magnetic flux φ 2 passes through the magnetic path of A 1 -B 1 -A 2 and the magnetic flux φ 3 is
Passing through the magnetic path of the A 1 -B 2 -A 3. Since these magnetic paths have almost the same magnetic resistance value, approximately φ 2 = φ 3 . As a result, the φ 2 and φ 3 components passing through the sensor C cancel each other, so that the sensor output is close to zero.
これに対し、同図(b)のように可動磁路Bが左寄りに
なると、φ2はA1−B2−B1−A2の磁路を通るのに対し、
φ3はA1−B2−A3の磁路を通る。この場合はφ2が通る磁
路の方が磁気抵抗が低いので φ2>φ3 となり、センサCはB2からB1に向かう極性のφ2の値に
応じた出力を生ずる。On the other hand, when the movable magnetic path B is moved to the left as shown in FIG. 4B, φ 2 passes through the magnetic path of A 1 -B 2 -B 1 -A 2 , whereas
phi 3 passes through the magnetic path of the A 1 -B 2 -A 3. In this case, since the magnetic path through which φ 2 passes has a lower magnetic resistance, φ 2 > φ 3 , and the sensor C produces an output according to the value of φ 2 of the polarity from B 2 to B 1 .
一方、同図(c)のように可動磁路Bが右寄りになる
と、φ2はA1−B1−A2の磁路を通るのに対し、φ3はA1−
B1−B2−A2の磁路を通る。この場合はφ3が通る磁路の
方が磁気抵抗が低いので φ2<φ3 となり、センサCはB1からB2に向かう極性のφ3の値に
応じた出力を生ずる。On the other hand, when the movable magnetic path B is shifted to the right as shown in FIG. 7C, φ 2 passes through the magnetic path of A 1 -B 1 -A 2 , while φ 3 is A 1-.
Passing through the magnetic path of the B 1 -B 2 -A 2. In this case, since the magnetic path through which φ 3 passes has a lower magnetic resistance, φ 2 <φ 3 , and the sensor C produces an output according to the value of φ 3 of the polarity from B 1 to B 2 .
可動磁路Bの移動に伴なう磁気抵抗の変化特性は、磁性
体A2,A3の間隔laと磁性体B1,B2の長さlbで決定され
る。例えばlb>laであると、(b)におけるB2−A3間ま
たは(c)におけるB1−A2間の磁気抵抗がB1−B2の磁気
抵抗より小になり、センサCを通過する磁束が少なくな
る。このような場合にはla>lbに設定する必要がある。
尚、磁性体B1,B2は完全に分離されている必要はなく、
1つの磁性体の中央にセンサCを収容する凹部を形成し
たものでもよい。また、可動磁路Bはスライドに支障が
なければ、固定磁路Aに接触していても構わない。The change characteristic of the magnetic resistance due to the movement of the movable magnetic path B is determined by the distance la between the magnetic bodies A 2 and A 3 and the length lb of the magnetic bodies B 1 and B 2 . For example, when lb> la, the magnetic resistance between B 2 -A 3 in (b) or between B 1 -A 2 in (c) becomes smaller than the magnetic resistance of B 1 -B 2 and passes through the sensor C. There is less magnetic flux. In such cases, it is necessary to set la> lb.
The magnetic materials B 1 and B 2 do not have to be completely separated,
A recess for accommodating the sensor C may be formed in the center of one magnetic body. Further, the movable magnetic path B may be in contact with the fixed magnetic path A as long as it does not hinder sliding.
以上述べた本考案の磁気回路には次の利点がある。 The magnetic circuit of the present invention described above has the following advantages.
(1)永久磁石が1個で済むので、安価に実施できる。(1) Since only one permanent magnet is required, it can be implemented at low cost.
(2)永久磁石が1個であるので、従来のような強度の
バランスを考慮する必要がない。(2) Since there is only one permanent magnet, it is not necessary to consider the balance of strength as in the conventional case.
(3)磁路が閉磁路に近いので、磁気センサを通る磁束
量が多く、小さな永久磁石でも大きな出力を得ることが
できる。(3) Since the magnetic path is close to the closed magnetic path, a large amount of magnetic flux passes through the magnetic sensor, and a large output can be obtained even with a small permanent magnet.
(4)磁気センサの保持を可動磁路において行うことが
できるので、保持機構が簡単であり、また小型化し易
い。例えば、可動磁路をバネで保持すれば、1辺1cm程
度の小型な加速度計を実現できる。(4) Since the magnetic sensor can be held in the movable magnetic path, the holding mechanism is simple and the size can be easily reduced. For example, if the movable magnetic path is held by a spring, a small accelerometer with a side of about 1 cm can be realized.
(5)被測定量を可動磁路に伝え易い。(5) The measured quantity is easily transmitted to the movable magnetic path.
第1図は本考案の一実施例を示す斜視図、 第2図は本考案の動作説明図、 第3図は従来の磁気回路の一例を示す構成図である。 図中、Aは固定磁路、A1〜A3は磁性体、Mは永久磁石、
Bは可動磁路、B1,B2は磁性体、Cは磁気センサ、φ1
〜φ3は磁束である。FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is an operation explanatory view of the present invention, and FIG. 3 is a configuration diagram showing an example of a conventional magnetic circuit. In the figure, A is a fixed magnetic path, A 1 to A 3 are magnetic bodies, M is a permanent magnet,
B is a movable magnetic path, B 1 and B 2 are magnetic bodies, C is a magnetic sensor, and φ 1
~ Φ 3 is the magnetic flux.
Claims (1)
た第1の磁性体(A1)と該永久磁石(M)の他方の極に
結合した第2および第3の磁性体(A2,A3)とを所定の
間隙を隔てて対向させることにより固定磁路(A)を構
成し、 また第4および第5の磁性体(B1,B2)の間に磁気セン
サ(C)を介在させかつこれらを一体に固定し、これら
第4および第5の磁性体は前記第2および第3の磁性体
を結ぶ方向に並んで配置しかつ該方向で前記間隙を移動
可能にして可動磁路(B)を構成してなることを特徴と
する磁気回路。1. A first magnetic body (A 1 ) coupled to one pole of a single permanent magnet (M) and second and third magnetic bodies coupled to the other pole of the permanent magnet (M). A fixed magnetic path (A) is formed by facing the body (A 2 , A 3 ) with a predetermined gap, and a magnetic field is provided between the fourth and fifth magnetic bodies (B 1 , B 2 ). The sensor (C) is interposed and these are fixed together, and the fourth and fifth magnetic bodies are arranged side by side in the direction connecting the second and third magnetic bodies and move in the gap in that direction. A magnetic circuit characterized by enabling a movable magnetic path (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986489U JPH0718971Y2 (en) | 1989-02-22 | 1989-02-22 | Magnetic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986489U JPH0718971Y2 (en) | 1989-02-22 | 1989-02-22 | Magnetic circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02110815U JPH02110815U (en) | 1990-09-05 |
JPH0718971Y2 true JPH0718971Y2 (en) | 1995-05-01 |
Family
ID=31235753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986489U Expired - Lifetime JPH0718971Y2 (en) | 1989-02-22 | 1989-02-22 | Magnetic circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718971Y2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4590785B2 (en) * | 2001-06-19 | 2010-12-01 | パナソニック株式会社 | Non-contact position sensor |
WO2004076980A1 (en) * | 2003-02-21 | 2004-09-10 | Fisher Controls International Llc | Magnetic position sensor with integrated hall effect switch |
JP4609516B2 (en) * | 2007-10-03 | 2011-01-12 | 株式会社デンソー | Displacement detector |
-
1989
- 1989-02-22 JP JP1986489U patent/JPH0718971Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02110815U (en) | 1990-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1548408A2 (en) | Position sensor combining hall effect sensor and switch | |
US5313182A (en) | Magnet structure for a displacement sensor | |
JPH0379648B2 (en) | ||
GB2100443A (en) | Magnetic linear or rotary position transducer | |
US5554964A (en) | Microswitch with a magnetic field sensor | |
JPH0718971Y2 (en) | Magnetic circuit | |
CN101395681B (en) | Magnetic having linear magnetic flux density | |
KR102079417B1 (en) | Position measurement using angled collectors | |
ATE69874T1 (en) | POSITION MEASUREMENT DEVICE. | |
JP2637410B2 (en) | Reed switch device | |
JPH0236089Y2 (en) | ||
US9347550B2 (en) | Shift lever device using magnetism detection switch | |
JPS5856408B2 (en) | magnetic sensor | |
JPS62288518A (en) | Non-contact displacement detector | |
JP3021570B2 (en) | Acceleration sensor | |
JPH069306Y2 (en) | Position detector | |
JPH0529242B2 (en) | ||
RU97113301A (en) | DEVICE FOR LOCAL MEASUREMENT OF FERROMAGNETIC PHASE OF AUSTENITIC STEELS | |
JPH051769Y2 (en) | ||
JPH02140410U (en) | ||
JPH0211022B2 (en) | ||
JPH033946Y2 (en) | ||
JP2014006096A (en) | Magnetic sensor device | |
JPH02285212A (en) | Displacement sensor and ic for the same | |
JP2626055B2 (en) | Acceleration sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |