[go: up one dir, main page]

JP3021570B2 - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP3021570B2
JP3021570B2 JP2198064A JP19806490A JP3021570B2 JP 3021570 B2 JP3021570 B2 JP 3021570B2 JP 2198064 A JP2198064 A JP 2198064A JP 19806490 A JP19806490 A JP 19806490A JP 3021570 B2 JP3021570 B2 JP 3021570B2
Authority
JP
Japan
Prior art keywords
leaf spring
acceleration sensor
permanent magnets
magnetic flux
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2198064A
Other languages
Japanese (ja)
Other versions
JPH0371060A (en
Inventor
ハリー・カイザー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH0371060A publication Critical patent/JPH0371060A/en
Application granted granted Critical
Publication of JP3021570B2 publication Critical patent/JP3021570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、片側が緊締された板ばねを備え、該板ばね
の自由端部に、ホール素子側に向けられたセンサ磁石が
固定されている加速度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention comprises a leaf spring having one side tightened, and a sensor magnet directed toward a Hall element is fixed to a free end of the leaf spring. Acceleration sensor.

〔従来の技術〕[Conventional technology]

このような形式の加速度センサにおいては永久磁石の
極性は板ばねの表面に対して直角に向けられているか若
しくはホール素子に対して平行に向けられている。これ
によって比較的大きい有効な磁束幅が得られるが、特に
板ばねの変位が小さい場合、比較的小さいホール電圧し
か生じない。また永久磁石は、高価な接着剤によって板
ばねに固定しなければならない。
In an acceleration sensor of this type, the polarity of the permanent magnet is oriented at right angles to the surface of the leaf spring or parallel to the Hall element. This results in a relatively large effective flux width, but only a relatively small Hall voltage, especially when the displacement of the leaf spring is small. Further, the permanent magnet must be fixed to the leaf spring by an expensive adhesive.

〔発明の課題〕[Problem of the Invention]

そこで本発明の課題は、このような欠点を取り除くこ
とである。
An object of the present invention is to eliminate such disadvantages.

〔課題を解決するための手段〕[Means for solving the problem]

この課題を解決した本発明によれば、センサ磁石が少
なくとも2つの永久磁石より成っており、これらの永久
磁石の磁極性がほぼ互いに平行に、ホール素子の方向に
向けて延びていて、しかも、これらの永久磁石の磁極性
が互いに反対方向に向けられており、前記板ばねの自由
端部が2つの永久磁石の間に配置されている。
According to the present invention that solves this problem, the sensor magnet includes at least two permanent magnets, and the magnetic polarities of these permanent magnets extend substantially parallel to each other in the direction of the Hall element, and The magnetic polarities of these permanent magnets are oriented in opposite directions and the free end of the leaf spring is located between the two permanent magnets.

〔効果〕〔effect〕

本発明の加速度センサによれば、磁束線が集中して延
びる狭い有効な磁場が生じるという利点が得られる。漂
遊磁界は比較的小さい。この磁場は、小さい行程、つま
り板ばねの小さい変位で既に比較的大きいホール電圧信
号が生ぜしめられる。これによって板ばねは高い剛性を
有することができるので、板ばねが破壊する危険性は減
少される。加速度センサを製造時に僅かな高さから意図
せずに落下させた時でも良好な耐落下性が得られる。ま
た、ばねが持続負荷された時も破壊の危険性は回避され
る。板ばねは2つの磁石の間に配置されていて、互いに
引張り合っているので、磁石と板ばねとの接着箇所は負
荷軽減される。従って、より簡単で安価な接着剤を使用
することができる。
ADVANTAGE OF THE INVENTION According to the acceleration sensor of this invention, the advantage that a narrow effective magnetic field in which a magnetic flux line is concentrated and extends is obtained. The stray magnetic field is relatively small. This magnetic field already produces a relatively large Hall voltage signal with a small stroke, i.e. with a small displacement of the leaf spring. This allows the leaf spring to have a high rigidity, so that the risk of breakage of the leaf spring is reduced. Good drop resistance can be obtained even when the acceleration sensor is unintentionally dropped from a slight height during manufacturing. The risk of breakage is also avoided when the spring is continuously loaded. Since the leaf spring is arranged between the two magnets and is mutually pulled, the point of adhesion between the magnet and the leaf spring is reduced. Therefore, a simpler and cheaper adhesive can be used.

〔実施例〕〔Example〕

次に図面に示した実施例について本発明の構成を具体
的に説明する。第1図には、加速度センサ11のケーシン
グ10が示されており、このケーシング10内に厚層−又は
薄層技術で製造された、加速度センサ11のための評価エ
レクトロニクス13を備えたベースプレート12が配置され
ている。このベースプレート12から直角上方にウエブ14
が延びており、このウエブ14に特に点溶接によって板ば
ね15が固定されている。この板ばね15は縦方向ではベー
スプレート12に対して平行に配置されていて、またこの
ベースプレート12に対してほぼ平行に延びる下縁部を有
していて、斜め下方に延びる上縁部を有しているおり、
板ばね15の自由端部には延長部16が設けられている。板
ばねの形状は勿論その他のものも考えられる。図示の実
施例による板ばね15の形状においては板ばね15はその縦
軸線を中心にした回転が阻止される。
Next, the configuration of the present invention will be specifically described with reference to the embodiment shown in the drawings. FIG. 1 shows a housing 10 of an acceleration sensor 11 in which a base plate 12 with evaluation electronics 13 for the acceleration sensor 11, which is manufactured in thick-layer or thin-layer technology, is provided. Are located. A web 14 is located at a right angle from the base plate
A leaf spring 15 is fixed to the web 14, particularly by spot welding. The leaf spring 15 is disposed in the longitudinal direction parallel to the base plate 12, has a lower edge extending substantially parallel to the base plate 12, and has an upper edge extending diagonally downward. And
An extension 16 is provided at a free end of the leaf spring 15. Of course, other shapes are conceivable for the shape of the leaf spring. In the configuration of the leaf spring 15 according to the illustrated embodiment, the leaf spring 15 is prevented from rotating about its longitudinal axis.

延長部16の両方の幅の広い側にはそれぞれ1つの永久
磁石18,19が接着剤によって固定されている。2つの永
久磁石18,19の磁石の極性は互いに逆向きに、板ばね15
の面に対して平行に向けられている。永久磁石18,19に
向き合って、ベースプレート12上にはホールセンサ(ホ
ール素子)20が固定されている。
One permanent magnet 18, 19 is fixed on each of the wide sides of the extension 16 by an adhesive. The polarities of the two permanent magnets 18 and 19 are opposite to each other,
Are oriented parallel to the plane of. A hall sensor (Hall element) 20 is fixed on the base plate 12 so as to face the permanent magnets 18 and 19.

板ばね15の自由端部にはさらに、渦電流円板22が配置
されており、この渦電流円板22はほぼ方形に構成されて
いて、板ばね15に対して直交する方向で水平に延びてい
る。渦電流円板22は、有利には柔軟な磁性材料より成る
かご形の磁束案内部材23内に侵入している。磁束案内部
材23内には互いに間隔を保って2つの直方体形状のブレ
ーキ磁石24が配置されておおり、このブレーキ磁石24は
渦電流円板22に向かって延びているが、この渦電流円板
2には接触していない。磁束案内部材23の幅は渦電流円
板22の幅よりもやや大きいので、渦電流円板22は磁束案
内部材23内で困難なく往復運動することができる。しか
しながら、永久磁石18,19を、これが同時にブレーキ磁
石としての作用を有するように配置することも可能であ
る。
An eddy current disk 22 is further disposed at the free end of the leaf spring 15, and the eddy current disk 22 is formed in a substantially rectangular shape and extends horizontally in a direction orthogonal to the leaf spring 15. ing. The eddy current disk 22 penetrates into a cage-shaped flux guide 23, which is preferably made of a soft magnetic material. In the magnetic flux guide member 23, two rectangular parallelepiped brake magnets 24 are arranged at an interval from each other. The brake magnets 24 extend toward the eddy current disk 22. No contact with 2. Since the width of the magnetic flux guide member 23 is slightly larger than the width of the eddy current disk 22, the eddy current disk 22 can reciprocate within the magnetic flux guide member 23 without difficulty. However, it is also possible to arrange the permanent magnets 18, 19 such that they simultaneously act as brake magnets.

第2図には、2つの永久磁石18,19の極間に延びる磁
束線27が示されている。この磁束線27は北極から南極に
延びているので、延長部16を介して、2つの永久磁石の
間に磁束が形成され、また各永久磁石18,19の各極から
相互に延びる磁束が形成される。しかしながらこの場
合、有効な磁束幅は、2つの永久磁石18,19の極間に延
びる磁束によって規定され、これに対してその他の磁束
は、漂遊磁界よりもやや強い場合に特徴付けられ得る。
FIG. 2 shows a magnetic flux line 27 extending between the poles of the two permanent magnets 18,19. Since this magnetic flux line 27 extends from the north pole to the south pole, a magnetic flux is formed between the two permanent magnets via the extension 16 and a magnetic flux extending mutually from each pole of each of the permanent magnets 18 and 19 is formed. Is done. In this case, however, the effective magnetic flux width is defined by the magnetic flux extending between the poles of the two permanent magnets 18, 19, whereas other magnetic fluxes can be characterized as being slightly stronger than the stray magnetic field.

渦電流円板22は、磁束案内部材23及びブレーキ磁石24
と協働して渦電流ブレーキを形成する。ブレーキ磁石24
は互いに逆向きに磁化されているので、この互いに逆向
きの磁化に従って磁束は、渦電流円板22とブレーキ磁石
24との間の空気ギャップ内で非常に不均質であって、渦
電流円板22の往復振動時に渦電流の発生が要求される。
加速度センサ11は例えば車両の走行方向に対して直角に
配置されている。
The eddy current disk 22 includes a magnetic flux guide member 23 and a brake magnet 24.
Cooperates with to form an eddy current brake. Brake magnet 24
Are magnetized in opposite directions, so that the magnetic flux follows the magnetizations in opposite directions, and the eddy current disk 22 and the brake magnet
It is very inhomogeneous in the air gap between the eddy current and the eddy current disk 22 and requires the generation of eddy currents during the reciprocating oscillation.
The acceleration sensor 11 is disposed, for example, at right angles to the traveling direction of the vehicle.

加速度センサ11は例えば車両の走行方向に対して直角
に配置されている。板ばね15、永久磁石18,19、及び板
ばね15の端部に設けられた渦電流円板22の形状の質量体
は、板ばね15に対して直角に作用する加速度に比例して
変位する。この変位はさらに板ばね15のばね定数及び質
量体によって規定される。測定信号はホールセンサ20内
での磁束27の運動によって生ぜしめられる。磁束が変化
することによってホールセンサ20内に電圧が誘導され
る。従来公知の加速度センサとは異なり、磁束27の有効
幅はホールセンサ20の幅よりも小さい。これに対して従
来の解決策においては磁束の有効幅はホールセンサの幅
よりも大きかった。従って本発明によれば板ばね15の小
さい変位で既に、ホールセンサ20の範囲内における磁束
27の変化が生ぜしめられる。従って板ばねの一様なばね
定数で小さい行程が測定可能である。渦電流ブレーキに
よる板ばね15の運動の減衰は、磁石回路の空気ギャップ
内での渦電流円板22の運動によって行われる。振動時に
誘導された渦電流によって振動エネルギは消失される。
板ばね−磁石回路のシステムを相応に構成することによ
ってそれぞれ所望の減衰が得られる。
The acceleration sensor 11 is disposed, for example, at right angles to the traveling direction of the vehicle. The mass in the form of the leaf spring 15, the permanent magnets 18, 19 and the eddy current disk 22 provided at the end of the leaf spring 15 is displaced in proportion to the acceleration acting at right angles to the leaf spring 15. . This displacement is further defined by the spring constant of the leaf spring 15 and the mass. The measurement signal is generated by the movement of the magnetic flux 27 in the Hall sensor 20. The change in the magnetic flux induces a voltage in the Hall sensor 20. Unlike a conventionally known acceleration sensor, the effective width of the magnetic flux 27 is smaller than the width of the Hall sensor 20. On the other hand, in the conventional solution, the effective width of the magnetic flux was larger than the width of the Hall sensor. Therefore, according to the present invention, the magnetic flux within the range of the Hall sensor 20 is already obtained with a small displacement of the leaf spring 15.
27 changes are made. Therefore, a small stroke can be measured with a uniform spring constant of the leaf spring. Damping of the movement of the leaf spring 15 by the eddy current brake is effected by the movement of the eddy current disk 22 in the air gap of the magnet circuit. Vibration energy is lost by the eddy current induced during the vibration.
The desired damping is obtained in each case by a corresponding design of the leaf spring-magnet circuit system.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例による加速度センサの縦断面
図、第2図は板ばね及び永久磁石の詳細を示した斜視図
である。 10……ケーシング、11……加速度センサ、12……ベース
プレート、13…評価エレクトロニクス、14……ウエブ、
15……板ばね、16……延長部、18,19……永久磁石、20
……ホールセンサ、22……渦電流円板、23……磁束案内
部材、24……ブレーキ磁石、27……磁束線
FIG. 1 is a longitudinal sectional view of an acceleration sensor according to one embodiment of the present invention, and FIG. 2 is a perspective view showing details of a leaf spring and a permanent magnet. 10 ... casing, 11 ... acceleration sensor, 12 ... base plate, 13 ... evaluation electronics, 14 ... web,
15… leaf spring, 16… extension, 18, 19… permanent magnet, 20
…… Hall sensor, 22 …… Eddy current disk, 23 …… Flux guide member, 24 …… Brake magnet, 27 …… Flux line

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01P 15/08 G01P 15/11 G01D 5/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01P 15/08 G01P 15/11 G01D 5/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】片側が緊締された板ばね(15)を備え、該
板ばね(15)の自由端部に、ホール素子(20)側に向け
られたセンサ磁石が固定されている加速度センサ(11)
において、前記センサ磁石が少なくとも2つの永久磁石
(18,19)より成っており、これらの永久磁石の磁極性
がほぼ互いに平行に、ホール素子(20)の方向に向けて
延びていて、しかも、これらの永久磁石(18,19)の磁
極性が互いに反対方向に向けられており、前記板ばね
(15)の自由端部(16)が2つの永久磁石(18,19)の
間に配置されていることを特徴とする、加速度センサ。
An acceleration sensor (1) comprising a leaf spring (15) tightened on one side, and a sensor magnet directed toward the Hall element (20) is fixed to a free end of the leaf spring (15). 11)
, The sensor magnet comprises at least two permanent magnets (18, 19), the magnetic polarities of these permanent magnets extending substantially parallel to each other in the direction of the Hall element (20), and The magnetic polarities of these permanent magnets (18, 19) are opposite to each other, and the free end (16) of the leaf spring (15) is arranged between the two permanent magnets (18, 19). An acceleration sensor, characterized in that:
JP2198064A 1989-07-28 1990-07-27 Acceleration sensor Expired - Fee Related JP3021570B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8909177.9 1989-07-28
DE8909177U DE8909177U1 (en) 1989-07-28 1989-07-28 Accelerometer

Publications (2)

Publication Number Publication Date
JPH0371060A JPH0371060A (en) 1991-03-26
JP3021570B2 true JP3021570B2 (en) 2000-03-15

Family

ID=6841527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198064A Expired - Fee Related JP3021570B2 (en) 1989-07-28 1990-07-27 Acceleration sensor

Country Status (2)

Country Link
JP (1) JP3021570B2 (en)
DE (1) DE8909177U1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4036224A1 (en) * 1990-11-14 1992-05-21 Bosch Gmbh Robert SENSOR
DE9111106U1 (en) * 1991-09-07 1993-01-07 Robert Bosch Gmbh, 7000 Stuttgart Sensor for automatically triggering occupant protection devices in motor vehicles
JP2006249908A (en) * 2004-08-11 2006-09-21 Hamashima Bussan:Kk Cone-shaped hole cap and method of filling in cone-shaped hole
JP2008256648A (en) * 2007-04-09 2008-10-23 Shinka Jitsugyo Kk Inclined angle sensor and detected device equipped with the same

Also Published As

Publication number Publication date
JPH0371060A (en) 1991-03-26
DE8909177U1 (en) 1990-11-29

Similar Documents

Publication Publication Date Title
US5814985A (en) Incremental sensor of speed and/or position for detecting low and null speeds
US4086533A (en) Hall effect apparatus for determining the angular position of a rotating part
JP4136308B2 (en) Magnetic displacement sensor and magnetic flux forming pole piece
US4498341A (en) Method and arrangement for sensing the acceleration of oscillating bodies
US9389416B1 (en) Optical resonance scanner
JPH02278175A (en) Magnetic sensor
US4825697A (en) Acceleration sensor
JPS60207066A (en) Sensor for accelerometer having flat type pendulum structure
EP0115391A2 (en) Hall-effect position sensor apparatus
JP3021570B2 (en) Acceleration sensor
JPS6275313A (en) Device for generating control signal
US4375727A (en) Cant angle sensor assembly
US4108006A (en) Accelerometers
KR102079417B1 (en) Position measurement using angled collectors
JP2002542473A (en) Measuring device for detecting rotation angle by non-contact method
EP0007583B1 (en) Change of angular acceleration sensor
JPH0536225Y2 (en)
JPH0710245Y2 (en) Magnetic sensor
JPH0635128Y2 (en) Position detector
KR20040085162A (en) Path sensor with an magnetoelectric transformer element
JPH0718971Y2 (en) Magnetic circuit
JP2019515276A (en) Distance measuring device
EP0022328A1 (en) A cant angle sensor
JPS60154108A (en) Inclination sensor
JPH0228563A (en) Vibration sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees