[go: up one dir, main page]

JPH07187697A - Production of porous preform for optical fiber - Google Patents

Production of porous preform for optical fiber

Info

Publication number
JPH07187697A
JPH07187697A JP20775694A JP20775694A JPH07187697A JP H07187697 A JPH07187697 A JP H07187697A JP 20775694 A JP20775694 A JP 20775694A JP 20775694 A JP20775694 A JP 20775694A JP H07187697 A JPH07187697 A JP H07187697A
Authority
JP
Japan
Prior art keywords
silica powder
optical fiber
particles
porous preform
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20775694A
Other languages
Japanese (ja)
Inventor
Takeshi Yagi
健 八木
Masato Oku
誠人 奥
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20775694A priority Critical patent/JPH07187697A/en
Priority to GB9422416A priority patent/GB2283740B/en
Priority to DE4440840A priority patent/DE4440840C2/en
Publication of JPH07187697A publication Critical patent/JPH07187697A/en
Priority to US08/698,287 priority patent/US5711903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a method for producing a porous preform capable of producing an optical fiber without being incorporate with metallic compd. and having sufficient strength. CONSTITUTION:A silica powder is agitated in an alkaline liq. phase to remove impurity particles in this silica powder, and the preform is produced by a powder molding method by using this silica powder as a main starting material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信・光学の分野にお
いて用いられる光ファイバを作製するための光ファイバ
用多孔質母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical fiber porous preform for producing an optical fiber used in the fields of communication and optics.

【0002】[0002]

【従来の技術】従来から、シリカ粉末を主原料とし、粉
末成形法を用いて光ファイバ用多孔質母材を製造する方
法が行われている。具体的には、特開平4−12404
2号公報等において開示されている押出成形法、特開平
4−124043号公報等において開示されている加圧
成形法、特開昭64−56331号公報等において開示
されている鋳込成形法、特開昭60−210539号公
報等において開示されているMSP(Mechanically Sha
ped Preforms)法、特開昭63−195136号公報等
に開示されている遠心分離法、並びに特開昭58−26
048号公報等において開示されている方法、いわゆる
ダブルプロセス法等が挙げられる。
2. Description of the Related Art Conventionally, a method of producing a porous preform for optical fibers by using a powder molding method using silica powder as a main raw material has been performed. Specifically, JP-A-4-12404
No. 2, etc., the extrusion molding method, the pressure molding method, disclosed in JP-A-4-124043, etc., the cast molding method, disclosed in JP-A-64-56331, etc. MSP (Mechanically Sha) disclosed in Japanese Patent Laid-Open No. 60-210539
ped Preforms) method, the centrifugal separation method disclosed in JP-A-63-195136, and JP-A-58-26.
The method disclosed in Japanese Patent Publication No. 048, so-called double process method and the like can be mentioned.

【0003】[0003]

【発明が解決しようとする課題】上記した種々の粉末成
形法においては、シリカ粉末原料の製造工程、シリカ粉
末の搬送工程でZrO2 やCr2 3 等の金属化合物が
シリカ粉末に混入し易い。この金属化合物をシリカ粉末
から除去しないと、中間製品である光ファイバ用多孔質
母材を介して最終製品である光ファイバ中にこの金属化
合物が残存することになる。この金属化合物は、光ファ
イバ中では破断開始点となるので、このような光ファイ
バの強度は著しく低い。
In the various powder molding methods described above, metal compounds such as ZrO 2 and Cr 2 O 3 are easily mixed in the silica powder in the silica powder raw material manufacturing step and the silica powder conveying step. . If this metal compound is not removed from the silica powder, this metal compound will remain in the final product, the optical fiber, via the intermediate product, the porous preform for optical fibers. Since the metal compound serves as a fracture starting point in the optical fiber, the strength of such an optical fiber is extremely low.

【0004】本発明はかかる点に鑑みてなされたもので
あり、金属化合物が混入せず、しかも充分な強度を有す
る光ファイバを得ることができる光ファイバ用多孔質母
材の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for producing a porous preform for an optical fiber, which is capable of obtaining an optical fiber in which a metal compound is not mixed and which has sufficient strength. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明者らは、不純物で
あるZrO2 やCr2 3 等の金属化合物の帯電状態に
着目し、特定の液相中において金属化合物の電荷が同じ
になることを利用して金属化合物を除去することを見出
し本発明をするに至った。
DISCLOSURE OF THE INVENTION The present inventors have paid attention to the charged state of metal compounds such as ZrO 2 and Cr 2 O 3 which are impurities, and have the same charge of the metal compound in a specific liquid phase. The inventors have found that the metal compound is removed by utilizing the above facts and have completed the present invention.

【0006】すなわち、本発明は、シリカ粉末をアルカ
リ性の液相中で撹拌して前記シリカ粉末中の不純物粒子
を除去し、このシリカ粉末を主原料として粉末成形法に
より光ファイバ用多孔質母材を得ることを特徴とする光
ファイバ用多孔質母材の製造方法を提供する。
That is, according to the present invention, silica powder is stirred in an alkaline liquid phase to remove the impurity particles in the silica powder, and the silica powder is used as a main raw material by a powder molding method to form a porous preform for optical fibers. A method for producing a porous preform for optical fibers is provided.

【0007】ここで、シリカ粉末としては、SiO2
またはGe,B,Ti等の屈折率制御用元素もしくはE
r,Nd等の機能性付与用元素を添加物として含むSi
2等を用いることができる。また、ここでいう不純物
粒子とは、主にZrO2 粒子およびCr2 3 粒子をい
う。
Here, as the silica powder, SiO 2 ,
Alternatively, a refractive index controlling element such as Ge, B, Ti or E
Si containing an element for imparting functionality such as r or Nd as an additive
O 2 or the like can be used. In addition, the term “impurity particles” as used herein mainly means ZrO 2 particles and Cr 2 O 3 particles.

【0008】本発明において、アルカリ性の液相とは、
pH7を超えるpHを有する液相をいう。特に好ましく
はpHが9以上の場合である。この液相は、アンモニア
水等のアルカリ性水溶液を用いることによりpHを調整
して形成する。
In the present invention, the alkaline liquid phase means
A liquid phase having a pH above pH 7. Particularly preferably, the pH is 9 or more. This liquid phase is formed by adjusting the pH by using an alkaline aqueous solution such as ammonia water.

【0009】粉末成形法としては、押出成形法、加圧成
形法、鋳込成形法、MSP法、遠心分離法、並びにダブ
ルプロセス法等を挙げることができる。
Examples of the powder molding method include an extrusion molding method, a pressure molding method, a casting molding method, an MSP method, a centrifugal separation method, and a double process method.

【0010】[0010]

【作用】本発明は、シリカ粉末をアルカリ性の液相中で
撹拌してシリカ粉末中の不純物粒子を除去することを特
徴としている。
The present invention is characterized in that the silica powder is stirred in an alkaline liquid phase to remove the impurity particles in the silica powder.

【0011】通常、不純物粒子であるZrO2 粒子およ
びCr2 3 粒子は、主原料であるシリカ粉末、すなわ
ちSiO2 粒子に付着している。図2から分かるよう
に、pHが7を超えるアルカリ性の領域では、Si
2 、ZrO2 およびCr2 3 はすべてゼータ電位が
マイナス、すなわち電荷がマイナスとなる。したがっ
て、このアルカリ性の液相中でZrO2 粒子およびCr
2 3 粒子が付着したSiO2粒子を撹拌すると、すべ
ての粒子の電荷がマイナスであるので粒子同士が反発し
てZrO2 粒子およびCr2 3 粒子がSiO2 粒子か
ら離脱する。これにより、SiO2 粒子からZrO2
子およびCr2 3 粒子等の不純物粒子を除去すること
ができる。
Usually, ZrO 2 particles and Cr 2 O 3 particles which are impurity particles adhere to silica powder which is the main raw material, that is, SiO 2 particles. As can be seen from FIG. 2, in the alkaline region where the pH exceeds 7, the Si
O 2 , ZrO 2 and Cr 2 O 3 all have a negative zeta potential, that is, a negative charge. Therefore, in this alkaline liquid phase ZrO 2 particles and Cr
When the SiO 2 particles having the 2 O 3 particles attached thereto are stirred, the charges of all the particles are negative, so that the particles repel each other and the ZrO 2 particles and the Cr 2 O 3 particles are separated from the SiO 2 particles. This makes it possible to remove impurity particles such as ZrO 2 particles and Cr 2 O 3 particles from the SiO 2 particles.

【0012】なお、図2において、pHが2以下の領域
ですべての粒子がプラスになるが、pH2の液相は強い
酸性であるので取扱いが危険となるので好ましくない。
In FIG. 2, all the particles become positive in the pH range of 2 or less, but the liquid phase of pH 2 is strongly acidic, which is not preferable because handling becomes dangerous.

【0013】[0013]

【実施例】以下、本発明の実施例を具体的に説明する。EXAMPLES Examples of the present invention will be specifically described below.

【0014】(実施例)次に、本発明における不純物粒
子の除去工程について説明する。
(Example) Next, the step of removing impurity particles in the present invention will be described.

【0015】まず、図1(A)に示すように、アンモニ
ア水を用いてpH9〜10に調整したアルカリ水溶液1
2と、気相合成法により製造された平均粒径8μmのシ
リカ粉末11とを等量混合し、それを容器13内に投入
した。
First, as shown in FIG. 1 (A), an alkaline aqueous solution 1 adjusted to pH 9 to 10 with aqueous ammonia 1
2 and silica powder 11 having an average particle size of 8 μm produced by the vapor phase synthesis method were mixed in equal amounts, and the mixture was put into a container 13.

【0016】次いで、図1(B)に示すように、容器1
3に蓋14を取り付けて、これを横にしてロールミル1
5で回転させることにより、容器13内の内容物を充分
に撹拌した。その後、図1(C)に示すように、容器1
3を立てて8時間静置した。これにより、容器13内の
内容物は、沈降したシリカ粉末16と上澄み液17とに
分離した。このとき、不純物粒子は沈降速度の差のため
に上澄み液17中に分散された。
Then, as shown in FIG. 1B, the container 1
The lid 14 is attached to the roll 3 and the roll mill 1 is laid sideways.
The contents in the container 13 were sufficiently stirred by rotating at 5. Then, as shown in FIG. 1C, the container 1
3 was stood and left still for 8 hours. As a result, the content in the container 13 was separated into the precipitated silica powder 16 and the supernatant liquid 17. At this time, the impurity particles were dispersed in the supernatant 17 due to the difference in sedimentation speed.

【0017】次いで、図1(D)に示すように、不純物
粒子が分散されている上澄み液17のみを除去した。こ
の図1(A)〜(D)までの操作を繰り返した。さら
に、アルカリ水溶液の代りに純水を用いて図1(A)〜
(D)までの操作を2回繰り返した。このようにアルカ
リ洗浄を2回、純水洗浄を2回行って不純物粒子を除去
したシリカ粉末を得た。
Then, as shown in FIG. 1D, only the supernatant 17 in which the impurity particles are dispersed was removed. The operations shown in FIGS. 1A to 1D were repeated. Further, using pure water instead of the alkaline aqueous solution, as shown in FIG.
The operation up to (D) was repeated twice. Thus, alkali washing was performed twice and pure water washing was performed twice to obtain silica powder from which impurity particles were removed.

【0018】このシリカ粉末100重量部に対して、6
7重量部の純水、1.6重量部のポリビニルアルコー
ル、および1.2重量部のグリセリンを混合し、撹拌し
てスラリーを作製した。このスラリーをスプレードライ
ヤー装置を用いて造粒して粒径約100μmの造粒粉末
を得た。
6 parts by weight per 100 parts by weight of this silica powder
7 parts by weight of pure water, 1.6 parts by weight of polyvinyl alcohol, and 1.2 parts by weight of glycerin were mixed and stirred to prepare a slurry. The slurry was granulated using a spray dryer to obtain granulated powder having a particle size of about 100 μm.

【0019】次いで、VAD法で作製した、クラッド/
コア比が約3であり、比屈折率差が約0.3%であり、
外径が約8.5mmφであり、長さが約300mmである石
英系ガラスロッドの一方の端部に、外径が約23mmφで
あり、長さが30mmである石英ガラスからなるダミー用
ロッドを、他方の端部に、外径が約25mmφであり、長
さが120mmである石英ガラスからなる支持用ロッドを
それぞれガラス溶接により取り付けてコアロッドを作製
した。このコアロッドを、内径が約70mmφであるゴム
型内に設置し、その空間に上記造粒粉末を充填して、1
000kgf/cm2の圧力で静水圧プレス成形を行い、外径
が約56mmφであり、長さが約300mmである光ファイ
バ用多孔質母材を作製した。
Next, the clad /
The core ratio is about 3, the relative refractive index difference is about 0.3%,
A dummy rod made of quartz glass having an outer diameter of about 23 mmφ and a length of 30 mm is attached to one end of a silica glass rod having an outer diameter of about 8.5 mmφ and a length of about 300 mm. A supporting rod made of quartz glass having an outer diameter of about 25 mmφ and a length of 120 mm was attached to the other end by glass welding to produce a core rod. This core rod is placed in a rubber mold having an inner diameter of about 70 mmφ, and the space is filled with the above-mentioned granulated powder.
Hydrostatic press molding was performed at a pressure of 000 kgf / cm 2 to produce a porous preform for optical fibers having an outer diameter of about 56 mmφ and a length of about 300 mm.

【0020】次いで、この光ファイバ用多孔質母材に空
気中500℃、5時間の脱脂処理を施し、続けて常法に
よりHe,Cl2 雰囲気中で1200℃の脱水処理およ
びHe雰囲気中で1600℃の透明ガラス化処理を施し
て光ファイバ用母材を作製した。この光ファイバ用母材
を周知の加熱延伸法により線引きして、外径が125μ
mのシングルモード光ファイバを得た。
Next, the porous preform for optical fibers is subjected to a degreasing treatment in air at 500 ° C. for 5 hours, followed by dehydration treatment at 1200 ° C. in a He, Cl 2 atmosphere and 1600 in a He atmosphere by a conventional method. A transparent vitrification treatment was performed at a temperature of ℃ to produce a preform for optical fibers. This optical fiber base material was drawn by a well-known heat drawing method so that the outer diameter was 125 μm.
m single mode optical fiber was obtained.

【0021】このシングルモード光ファイバ全長に対し
て、0.7%伸びの条件でスクリーニング試験を行った
ところ、光ファイバの破断は皆無であった。これは、主
原料であるシリカ粉末中に不純物粒子が付着していなか
ったからであると考えられる。
When a screening test was performed on the entire length of this single mode optical fiber under the condition of elongation of 0.7%, there was no breakage of the optical fiber. It is considered that this is because the impurity particles were not attached to the silica powder as the main raw material.

【0022】なお、本実施例では、粉末成形法として加
圧成形法を用いた場合について説明しているが、シリカ
粉末をアルカリ性の液相中で撹拌して不純物粒子を除去
すれば、他の粉末成形法を用いても同様の効果が得られ
る。
In the present embodiment, the case where the pressure molding method is used as the powder molding method has been described. However, if the silica powder is stirred in an alkaline liquid phase to remove the impurity particles, another The same effect can be obtained by using the powder molding method.

【0023】(比較例)シリカ粉末をアルカリ性の液相
中で撹拌して不純物粒子を除去しなかったこと以外は実
施例と同様にして光ファイバ用多孔質母材を作製し、こ
れに常法により脱脂、脱水、および透明ガラス化処理を
施して光ファイバ用母材を作製し、これを線引きしてシ
ングルモード光ファイバを得た。
(Comparative Example) A porous preform for optical fibers was prepared in the same manner as in Example except that the silica powder was not stirred to remove the impurity particles in the alkaline liquid phase, and a conventional method was used. Then, degreasing, dehydration, and transparent vitrification treatment were performed to produce a preform for optical fiber, which was drawn to obtain a single mode optical fiber.

【0024】このシングルモード光ファイバ全長に対し
て、実施例と同様にしてスクリーニング試験を行ったと
ころ、1km当り0.4回の破断が起こった。これは、
主原料であるシリカ粉末中に不純物粒子が付着したから
であると考えられる。
A screening test was performed on the entire length of this single mode optical fiber in the same manner as in the example, and 0.4 breaks per 1 km occurred. this is,
It is considered that this is because the impurity particles adhered to the silica powder as the main raw material.

【0025】[0025]

【発明の効果】以上説明した如く本発明の光ファイバ用
多孔質母材の製造方法は、シリカ粉末をアルカリ性の液
相中で撹拌して前記シリカ粉末中の不純物粒子を除去
し、このシリカ粉末を主原料として粉末成形法により光
ファイバ用多孔質母材を得るので、金属化合物が混入せ
ず、しかも充分な強度を有する光ファイバを得ることが
できる。これにより、光ファイバの歩留りが向上する。
As described above, in the method for producing a porous preform for optical fibers of the present invention, the silica powder is stirred in an alkaline liquid phase to remove the impurity particles in the silica powder, and the silica powder is used. Since a porous preform for optical fibers is obtained by a powder molding method using as a main raw material, an optical fiber having no metal compound and having sufficient strength can be obtained. This improves the yield of the optical fiber.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(D)はシリカ粉末中の不純物を除去
する工程を示す図。
1A to 1D are views showing a process of removing impurities in silica powder.

【図2】金属酸化物の水中での帯電状態を示す模式図。FIG. 2 is a schematic diagram showing a charged state of a metal oxide in water.

【符号の説明】[Explanation of symbols]

11…シリカ粉末、12…アルカリ水溶液、13…容
器、14…蓋、15…ロールミル、16…沈降したシリ
カ粉末、17…上澄み液。
11 ... Silica powder, 12 ... Alkaline aqueous solution, 13 ... Container, 14 ... Lid, 15 ... Roll mill, 16 ... Precipitated silica powder, 17 ... Supernatant liquid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kazuaki Yoshida 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリカ粉末をアルカリ性の液相中で撹拌
して前記シリカ粉末中の不純物粒子を除去し、このシリ
カ粉末を主原料として粉末成形法により光ファイバ用多
孔質母材を得ることを特徴とする光ファイバ用多孔質母
材の製造方法。
1. A silica powder is stirred in an alkaline liquid phase to remove impurity particles from the silica powder, and a porous preform for optical fibers is obtained by a powder molding method using the silica powder as a main raw material. A method for producing a porous base material for an optical fiber, which is characterized.
JP20775694A 1993-11-15 1994-08-31 Production of porous preform for optical fiber Pending JPH07187697A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20775694A JPH07187697A (en) 1993-11-15 1994-08-31 Production of porous preform for optical fiber
GB9422416A GB2283740B (en) 1993-11-15 1994-11-07 Method of manufacturing a porous preform for an optical fiber
DE4440840A DE4440840C2 (en) 1993-11-15 1994-11-15 Process for producing a porous preform for an optical fiber
US08/698,287 US5711903A (en) 1993-11-15 1996-08-14 Method of manufacturing a porous preform for an optical fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28471493 1993-11-15
JP5-284714 1993-11-15
JP20775694A JPH07187697A (en) 1993-11-15 1994-08-31 Production of porous preform for optical fiber

Publications (1)

Publication Number Publication Date
JPH07187697A true JPH07187697A (en) 1995-07-25

Family

ID=26516450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20775694A Pending JPH07187697A (en) 1993-11-15 1994-08-31 Production of porous preform for optical fiber

Country Status (1)

Country Link
JP (1) JPH07187697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500817A (en) * 2016-11-30 2020-01-16 コーニング インコーポレイテッド Method for forming optical quality glass from silica soot moldings using basic additives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500817A (en) * 2016-11-30 2020-01-16 コーニング インコーポレイテッド Method for forming optical quality glass from silica soot moldings using basic additives
US11724954B2 (en) 2016-11-30 2023-08-15 Corning Incorporated Basic additives for silica soot compacts and methods for forming optical quality glass

Similar Documents

Publication Publication Date Title
US5244485A (en) Method of manufacturing a silica glass preform
JP2925797B2 (en) Purification method of porous preform for optical fiber
JPH05229839A (en) Production of formed product from quartz based glass
JPH07187697A (en) Production of porous preform for optical fiber
JPH0971431A (en) Production of silica glass-based multicore optical fiber
JP3177308B2 (en) Manufacturing method of optical fiber preform
CN1026576C (en) Method of manufacturing silica glass preform
US5711903A (en) Method of manufacturing a porous preform for an optical fiber
JP6606002B2 (en) Glass rod manufacturing method and optical fiber manufacturing method
JPH05294658A (en) Production of quartz-based glass
JPH0450262B2 (en)
JPH06127949A (en) Production of quartz glass
JPH05208839A (en) Production of silica-based porous glass form
JPS63139028A (en) Manufacturing method of glass base material for optical fiber
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH0570157A (en) Production of quartz-based glass matrix
JPH0648762A (en) Production of preformed material for optical fiber
JPH082935A (en) Production of porous preform for optical fiber
JPS63151639A (en) Manufacturing method of glass base material for optical fiber
JPH05170470A (en) Production of quartz glass perform
JP2818708B2 (en) Method for producing quartz-based porous glass base material
JPH04321531A (en) Production of optical fiber preform
JP2019182694A (en) Synthetic silica glass powder
JPH0648758A (en) Production of preformed material for optical fiber
JPH06144862A (en) Production of perform for optical fiber