[go: up one dir, main page]

JPH0648762A - Production of preformed material for optical fiber - Google Patents

Production of preformed material for optical fiber

Info

Publication number
JPH0648762A
JPH0648762A JP20565692A JP20565692A JPH0648762A JP H0648762 A JPH0648762 A JP H0648762A JP 20565692 A JP20565692 A JP 20565692A JP 20565692 A JP20565692 A JP 20565692A JP H0648762 A JPH0648762 A JP H0648762A
Authority
JP
Japan
Prior art keywords
rod
optical fiber
shaped body
molded body
glass rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20565692A
Other languages
Japanese (ja)
Inventor
Kenji Enomoto
憲嗣 榎本
Hiroshi Hihara
弘 日原
Takeshi Yagi
健 八木
Tsugio Sato
継男 佐藤
Kazuaki Yoshida
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20565692A priority Critical patent/JPH0648762A/en
Priority to CA002088238A priority patent/CA2088238C/en
Priority to MYPI93000123A priority patent/MY107768A/en
Priority to US08/010,670 priority patent/US5352259A/en
Priority to CN93102370A priority patent/CN1078309A/en
Priority to DE69312104T priority patent/DE69312104T2/en
Priority to BR9300385A priority patent/BR9300385A/en
Priority to EP93101433A priority patent/EP0553868B1/en
Publication of JPH0648762A publication Critical patent/JPH0648762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To provide a production method enabling high-quality and large-sized preformed material for optical fibers to be obtained in high efficiency. CONSTITUTION:A form 12 is made using silica powder on the outer periphery of a glass rod made of silica material to make a porous preformed material, which is then sintered to produce the objective preformed material for optical fibers. In this case, the glass rod has, at least at one end, such portion(s) 11 as to be larger in diameter than the rod, the form 12 being made on the outer peripheral region of the rod 10 including the portion(s) 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ用母材の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform.

【0002】[0002]

【従来の技術】従来より、光ファイバ用母材の製造方法
としては、特開昭61−256937号公報において開
示されている加圧成形法、特願平2−244815号に
おいて提案されている真空押出法、特開昭64−563
31号公報において開示されている泥漿鋳込み法により
多孔質母材を作製し、この多孔質母材に焼結処理を施す
方法が採用されている。
2. Description of the Related Art Conventionally, as a method of manufacturing a base material for an optical fiber, a pressure molding method disclosed in Japanese Patent Laid-Open No. 61-256937 and a vacuum proposed in Japanese Patent Application No. 2-244815. Extrusion method, JP-A-64-563
A method is used in which a porous base material is produced by the slurry casting method disclosed in Japanese Patent No. 31 and the porous base material is sintered.

【0003】多孔質母材を作製する場合、図3(A)に
示すように、コア用ガラス棒30の両端部に支持棒31
を取り付け、コア用ガラス棒30の外周に石英系粉末3
2を成形したり、図3(B)に示すように、コア用ガラ
ス棒30の両端部に、コア用ガラス棒30の径よりも大
きい径を有する支持棒33または突起物34を取り付
け、支持棒33および突起物34を除くコア用ガラス棒
30の外周に石英系粉末32を成形している。
When manufacturing a porous base material, as shown in FIG. 3 (A), the support rods 31 are provided on both ends of the glass rod for core 30.
Attached, and the silica-based powder 3 on the outer circumference of the glass rod 30 for core.
2 is formed, or as shown in FIG. 3 (B), a support rod 33 or a protrusion 34 having a diameter larger than the diameter of the glass rod for core 30 is attached to both ends of the glass rod for core 30 to support it. A silica-based powder 32 is molded on the outer periphery of the glass rod 30 for core excluding the rod 33 and the protrusion 34.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3
(A)および(B)に示すような方法で多孔質母材を作
製すると、コア用ガラス棒とその外周に形成された成形
体との界面における密着性が乏しいので、後工程の脱脂
工程、精製工程、脱水工程、焼結工程において成形体が
コア用ガラス棒に沿ってずれたりする。特に、焼結工程
においては、コア用ガラス棒状体と成形体が完全に一体
のガラスとなる前に、コア用ガラス棒状体が伸びること
により成形体が脱落してしまうことがある。また、コア
用ガラス棒状体と成形体との界面に気泡が発生したり、
不整合が起こる恐れがある。
However, as shown in FIG.
When the porous base material is manufactured by the method as shown in (A) and (B), the adhesion between the glass rod for core and the molded body formed on the outer periphery of the porous base material is poor. In the refining process, the dehydration process, and the sintering process, the molded body shifts along the glass rod for core. In particular, in the sintering step, before the core glass rod-shaped body and the molded body are completely integrated into glass, the core glass rod-shaped body may elongate and the molded body may fall off. Also, bubbles are generated at the interface between the glass rod-shaped body for core and the molded body,
Inconsistencies may occur.

【0005】このような光ファイバ用母材を線引きする
ことにより得られた光ファイバは、光学的特性が著しく
悪いものとなる。特に、重量が5kg以上であり、ファイ
バ長が100km/本を超える大型の光ファイバ用母材で
は、その傾向が顕著である。このような問題は、加圧成
形法、真空押出法、泥漿鋳込み法の成形法に関係なく発
生する。
An optical fiber obtained by drawing such an optical fiber preform has remarkably poor optical characteristics. This tendency is particularly remarkable in a large-sized optical fiber preform having a weight of 5 kg or more and a fiber length of more than 100 km / piece. Such a problem occurs regardless of the molding method such as the pressure molding method, the vacuum extrusion method, and the slurry casting method.

【0006】本発明はかかる点に鑑みてなされたもので
あり、高品質で大型の光ファイバ用母材を効率良く得る
ことができる光ファイバ用母材の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing an optical fiber preform capable of efficiently obtaining a large-sized optical fiber preform of high quality. .

【0007】[0007]

【課題を解決するための手段】本発明は、石英系材料か
らなる棒状体の外周に石英系粉末を用いて成形体を形成
して多孔質母材を作製し、前記多孔質母材に焼結処理を
施して光ファイバ用母材を製造する方法において、前記
棒状体はその少なくとも一端に前記棒状体の径よりも大
きい径を有する部分を有しており、前記成形体が前記大
径部分を含む前記棒状体の外周領域に形成されることを
特徴とする光ファイバ用母材の製造方法を提供する。
According to the present invention, a porous base material is produced by forming a molded body using a silica-based powder on the outer periphery of a rod-shaped body made of a silica-based material, and firing the porous base material. In the method of producing a preform for optical fibers by subjecting to a binding treatment, the rod-shaped body has a portion having a diameter larger than the diameter of the rod-shaped body at least at one end thereof, and the molded body has the large-diameter portion. A method for manufacturing an optical fiber preform, characterized in that the optical fiber preform is formed in an outer peripheral region of the rod-shaped body including.

【0008】石英系材料からなる棒状体としては、従来
光ファイバ製造用として用いられる任意の屈折率を有す
るガラス棒状体を用いることができる。この棒状体は、
コア材のみで形成されていてもよく、コア材と一部のク
ラッド材から形成されていてもよいが、棒状体がコア材
と一部のクラッド材から形成されたものであることが好
ましい。
As the rod-shaped body made of a quartz material, a glass rod-shaped body having an arbitrary refractive index conventionally used for manufacturing an optical fiber can be used. This rod is
Although it may be formed only of the core material or may be formed of the core material and a part of the clad material, the rod-shaped body is preferably formed of the core material and a part of the clad material.

【0009】棒状体の径よりも大きい径を有する棒状体
の部分(以下、大径部と省略する)の形状には特に制限
はない。
There is no particular limitation on the shape of the portion of the rod-shaped body having a diameter larger than the diameter of the rod-shaped body (hereinafter abbreviated as the large diameter portion).

【0010】石英系粉末としては、アルコキシ化合物の
加水分解法または水ガラス法によるシリカ粉末、屈折率
の調整のためにドーピングが施されたシリカ粉末等を用
いることができる。好ましい石英系粉末は、火炎加水分
解法により得られた四塩化珪素、直接酸化法等の乾式法
により得られた金属珪素等の粉末またはこの粉末を造粒
した粒子である。
As the silica-based powder, it is possible to use silica powder obtained by hydrolysis of an alkoxy compound or a water glass method, silica powder doped for adjusting the refractive index, and the like. Preferred quartz-based powders are powders of silicon tetrachloride obtained by a flame hydrolysis method, metallic silicon obtained by a dry method such as a direct oxidation method, or particles obtained by granulating this powder.

【0011】大径部を含む棒状体の外周領域に成形体を
形成する場合、図1(A)に示すように、棒状体10の
両方の大径部11を含む領域に成形体12を形成しても
よく、図1(B)および(C)に示すように、一方の大
径部11を含む領域に成形体12を形成してもよい。こ
の場合、成形体12を形成しない他方の大径部は、図1
(B)に示すように突起体13であってもよい。また、
図1(C)に示すように、棒状体10と大径部11によ
り構成される段差部14まで成形体12を形成してもよ
い。また、図1(D)に示すように、一方の大径部全体
を埋設するようにして成形体12を形成してもよい。な
お、大径部は、棒状体に直接形成してもよいし、棒状体
の片端部もしくは両端部に大径部を有する支持棒等を取
り付けて形成してもよい。
When forming a molded body in the outer peripheral region of a rod-shaped body including a large diameter portion, a molded body 12 is formed in a region including both large diameter portions 11 of the rod-shaped body 10 as shown in FIG. 1 (A). Alternatively, as shown in FIGS. 1B and 1C, the molded body 12 may be formed in a region including one large diameter portion 11. In this case, the other large-diameter portion that does not form the molded body 12 is
It may be a protrusion 13 as shown in FIG. Also,
As shown in FIG. 1C, the molded body 12 may be formed up to the stepped portion 14 constituted by the rod-shaped body 10 and the large diameter portion 11. Further, as shown in FIG. 1 (D), the molded body 12 may be formed by embedding the entire one large diameter portion. The large diameter portion may be formed directly on the rod-shaped body, or may be formed by attaching a support rod having a large diameter portion to one end or both ends of the rod-shaped body.

【0012】棒状体の外周に成形体を形成する方法とし
ては、特開昭61−256937号公報において開示さ
れている加圧成形法、特願平2−244815号におい
て提案されているような押出成形法、特開昭64−56
331号公報において開示されているような泥漿鋳込み
法等が挙げられる。
As a method for forming a molded body on the outer periphery of a rod-shaped body, a pressure molding method disclosed in Japanese Patent Application Laid-Open No. 61-256937 and an extrusion method proposed in Japanese Patent Application No. 2-244815. Molding method, JP-A-64-56
Examples thereof include a slurry casting method disclosed in Japanese Patent No. 331.

【0013】成形体を形成する際に使用される成形型と
しては、棒状体支持具を有する上下蓋、成形ゴム型、お
よび金属製の外筒管からなる湿式タイプのCIP成形型
のようなCIP成形装置内に設置する成形型、あるいは
棒状体支持具を有する上下蓋と成形ゴム型からなる乾式
タイプの成形型等を用いることができる。
As a molding die used for forming a molded body, a CIP such as a wet type CIP molding die including an upper and lower lids having a rod-shaped support, a molded rubber die, and a metal outer tube. It is possible to use a molding die installed in a molding apparatus, or a dry type molding die composed of an upper and lower lids having a rod-shaped support and a molding rubber die.

【0014】[0014]

【作用】本発明の光ファイバ用母材の製造方法によれ
ば、少なくとも一端に大径部を有する石英系材料からな
る棒状体を用い、その大径部を含む棒状体の外周領域に
成形体を形成しているので、棒状体と成形体との結合力
がさらに向上する。その結果、その成形体から成形助材
を取り除くための脱脂工程、その成形体から不純物を取
り除く精製・脱水工程、その後の焼結工程で成形体が光
ファイバコア用のガラス棒状体に沿ってずれたりするこ
とを防止できる。
According to the method for producing a base material for an optical fiber of the present invention, a rod-shaped body made of a quartz material having a large diameter portion at least at one end is used, and a molded body is formed in the outer peripheral region of the rod-shaped body including the large diameter portion. Since this is formed, the binding force between the rod-shaped body and the molded body is further improved. As a result, in the degreasing process for removing the molding aid from the molded product, the purification / dehydration process for removing impurities from the molded product, and the subsequent sintering process, the molded product shifts along the glass rod for the optical fiber core. Can be prevented.

【0015】さらに、焼結時の棒状体の伸びが抑えられ
るため、棒状体と成形体との界面付近における気泡の発
生や不整合がなくなる。このため、得られた光ファイバ
用母材から線引きされた光ファイバは、優れたの伝送特
性を発揮する。
Further, since the elongation of the rod-shaped body at the time of sintering is suppressed, generation of bubbles and inconsistency in the vicinity of the interface between the rod-shaped body and the molded body are eliminated. Therefore, the optical fiber drawn from the obtained optical fiber preform exhibits excellent transmission characteristics.

【0016】[0016]

【実施例】【Example】

実施例1 図2に示すように、VAD法で作製したコア:クラッド
比1:3、屈折率差0.35%であり、外径14mm、長
さ500mmのコア用ガラス棒20の両端に直径25mmの
支持用ガラス棒21を取り付けて全長800mmのガラス
棒を作製した。
Example 1 As shown in FIG. 2, a core-clad ratio of 1: 3 produced by the VAD method, a refractive index difference of 0.35%, an outer diameter of 14 mm, and a diameter of 500 mm at both ends of a core glass rod 20. A glass rod 21 having a length of 800 mm was prepared by attaching a supporting glass rod 21 of 25 mm.

【0017】このガラス棒を下ゴム蓋22の中心に設置
し、内径110mm、長さ800mm(ただし、充填部分は
長さ580mm)の円筒形状のゴム型23を取り付けた。
下ゴム蓋22およびゴム型23により構成される充填部
分に平均粒径80μmのシリカ造粒粉24を投入し、振
動させながら充填した。次いで、上ゴム蓋25を取り付
けた後に防水処置を施し、これを静水圧加圧装置(CI
P装置)26内に設置し、加圧成形を行ってコア用ガラ
ス棒20の外周に成形体を形成して多孔質母材を作製し
た。このとき、成形条件は、圧力1.0(t/cm2 )、
成形時間約1分間とした。減圧する場合に、200kg/
cm2 以下の低圧部分は成形体とゴム型とが離れるときに
しばしば亀裂を生じるので、約3分間を費やして徐々に
減圧を行った。得られた多孔質母材は、外径約90mm、
重量約5kgであった。
This glass rod was placed in the center of the lower rubber lid 22, and a cylindrical rubber mold 23 having an inner diameter of 110 mm and a length of 800 mm (however, the filling portion had a length of 580 mm) was attached.
A silica granulated powder 24 having an average particle diameter of 80 μm was put into a filling portion constituted by the lower rubber lid 22 and the rubber mold 23, and was filled while vibrating. Next, after attaching the upper rubber lid 25, waterproofing is performed, and this is subjected to a hydrostatic pressure device (CI).
(P apparatus) 26, and pressure molding was performed to form a molded body on the outer periphery of the glass rod for core 20 to manufacture a porous base material. At this time, the molding conditions are a pressure of 1.0 (t / cm 2 ),
The molding time was about 1 minute. When decompressing, 200kg /
Since a low-pressure part of cm 2 or less often cracks when the molded body and the rubber mold are separated from each other, the pressure was gradually reduced by spending about 3 minutes. The obtained porous base material has an outer diameter of about 90 mm,
The weight was about 5 kg.

【0018】この多孔質母材を大気中、600℃で脱脂
した後、塩素を約10%含有するヘリウムガス雰囲気
中、1250℃で精製(脱水を含む)を行い、さらにヘ
リウム雰囲気中、1600℃で焼結して光ファイバ用母
材を作製した。このとき、脱脂、脱水および焼結工程に
おいて成形体の脱落等は確認されなかった。
After degreasing this porous base material at 600 ° C. in the atmosphere, it is purified (including dehydration) at 1250 ° C. in a helium gas atmosphere containing about 10% chlorine, and further in a helium atmosphere at 1600 ° C. Was sintered to prepare an optical fiber preform. At this time, in the degreasing, dehydration and sintering steps, no dropout of the molded body was confirmed.

【0019】得られた光ファイバ用母材は、外径が約7
0mmであり、コア用ガラス棒とクラッド材との界面付近
に気泡等は存在していなかった。これを通常の方法で線
引きして光ファイバを作製してその伝送特性を調べたと
ころ、気相法により作製したシングルモードファイバと
同等であった。
The obtained optical fiber preform has an outer diameter of about 7
It was 0 mm, and there were no bubbles or the like near the interface between the core glass rod and the clad material. When this was drawn by a usual method to manufacture an optical fiber and its transmission characteristics were examined, it was equivalent to a single mode fiber prepared by a vapor phase method.

【0020】実施例2 実施例1と同一の光学条件を持つコア用ガラス棒の両端
に直径35mmの支持用ガラス棒を取り付けて全長145
0mmのガラス棒を作製した。このガラス棒を用いて実施
例1と同様にして長さ1200mmの大型の多孔質母材を
作製した。このとき、成形条件は、圧力1.5(t/cm
2 )、成形時間1分間とした。得られた多孔質母材は、
重量約11kgであった。
Example 2 A glass rod for support having a diameter of 35 mm was attached to both ends of a glass rod for core having the same optical conditions as in Example 1, and a total length of 145.
A 0 mm glass rod was made. Using this glass rod, a large-sized porous base material having a length of 1200 mm was produced in the same manner as in Example 1. At this time, the molding conditions are pressure 1.5 (t / cm
2 ) The molding time was 1 minute. The obtained porous matrix is
The weight was about 11 kg.

【0021】この多孔質母材を実施例1と同様にして脱
脂、脱水および焼結して光ファイバ用母材を作製した。
この場合も、脱脂、精製(脱水を含む)および焼結工程
において成形体の脱落等は確認されなかった。
This porous preform was degreased, dehydrated and sintered in the same manner as in Example 1 to prepare an optical fiber preform.
Also in this case, no dropout of the molded body was confirmed in the degreasing, refining (including dehydration) and sintering steps.

【0022】得られた光ファイバ用母材は、外径が70
mmであり、コア用ガラス棒とクラッド材との界面付近に
気泡等は存在していなかった。これを通常の方法で線引
きして光ファイバを作製してその伝送特性を調べたとこ
ろ、気相法により作製したシングルモードファイバと同
等であった。
The obtained optical fiber preform has an outer diameter of 70.
mm, and there were no bubbles or the like near the interface between the glass rod for core and the clad material. When this was drawn by a usual method to manufacture an optical fiber and its transmission characteristics were examined, it was equivalent to a single mode fiber prepared by a vapor phase method.

【0023】比較例 実施例1,2で使用したコア用ガラス棒の代わりに、一
定の径を有するガラス棒を用いて実施例1と同様にして
多孔質母材(外径約70mm、長さ580mm、および外径
約70mm、長さ1000mm)を作製し、実施例1と同様
の条件で脱脂、精製(脱水を含む)、焼結を施して光フ
ァイバ用母材を作製した。
Comparative Example A glass rod having a constant diameter was used in place of the glass rod for core used in Examples 1 and 2, and a porous base material (outer diameter of about 70 mm, length) was used in the same manner as in Example 1. 580 mm, an outer diameter of about 70 mm, and a length of 1000 mm) were prepared, and degreasing, refining (including dehydration), and sintering were performed under the same conditions as in Example 1 to prepare an optical fiber preform.

【0024】しかしながら、この場合、コア用ガラス棒
とその外周に形成されたシリカ粉末からなる成形体との
界面における密着性が不充分でるので、成形体から成形
助材を取り除くための脱脂工程、成形体からの不純物を
取り除く精製・脱水工程、その後の焼結工程で成形体が
コア用ガラス棒に沿ってずれてしまった。その割合は約
60%以上であった。
However, in this case, since the adhesion at the interface between the glass rod for core and the molded body made of silica powder formed on the outer periphery thereof is insufficient, a degreasing step for removing the molding aid from the molded body, In the refining / dehydration step of removing impurities from the molded body and the subsequent sintering step, the molded body was displaced along the glass rod for core. The ratio was about 60% or more.

【0025】さらに、焼結時に、コアとなるガラス棒が
伸びてしまい、その結果、ガラス棒と成形体との界面付
近に気泡や不整合(密着性の不充分な部分)が生じた。
また、この光ファイバ用母材を通常の方法で線引きし、
その伝送特性を調べたが、気相法で作製したシングルモ
ードファイバより劣っていた。
Further, during sintering, the glass rod serving as the core was elongated, and as a result, bubbles and inconsistency (a portion with insufficient adhesion) were generated near the interface between the glass rod and the molded body.
In addition, this optical fiber preform is drawn in the usual way,
The transmission characteristics were investigated, but it was inferior to the single mode fiber prepared by the vapor phase method.

【0026】[0026]

【発明の効果】以上説明した如く本発明の光ファイバ用
母材の製造方法は、コア用棒状体とその外周に形成する
成形体との間の密着性、すなわち結合力を向上させてい
るので、高品質で大型の光ファイバ用母材を効率良く得
ることができるものである。
As described above, according to the method for producing a base material for an optical fiber of the present invention, the adhesion between the rod-shaped body for core and the molded body formed on the outer periphery thereof, that is, the bonding force is improved. A high-quality, large-sized optical fiber preform can be efficiently obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(D)は、本発明の方法における多孔
質母材を示す説明図。
1 (A) to 1 (D) are explanatory views showing a porous base material in the method of the present invention.

【図2】本発明の方法において使用される装置を示す概
略図。
FIG. 2 is a schematic diagram showing an apparatus used in the method of the present invention.

【図3】(A)および(B)は、従来の方法における多
孔質母材を示す説明図。
3A and 3B are explanatory views showing a porous base material in a conventional method.

【符号の説明】 10…棒状体、11…大径部、12…成形体、13…突
起体、14…段差部、20…コア用ガラス棒、21…支
持用ガラス棒、22…下ゴム蓋、23…ゴム型、24…
シリカ造粒粉、25…上ゴム蓋、26…静水圧加圧装置
(CIP装置)。
[Explanation of Codes] 10 ... Rod-shaped body, 11 ... Large diameter portion, 12 ... Molded body, 13 ... Projection body, 14 ... Step portion, 20 ... Core glass rod, 21 ... Support glass rod, 22 ... Lower rubber lid , 23 ... rubber mold, 24 ...
Silica granulated powder, 25 ... Upper rubber lid, 26 ... Hydrostatic pressure device (CIP device).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 継男 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 吉田 和昭 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneo Sato 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Kazuaki Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 石英系材料からなる棒状体の外周に石英
系粉末を用いて成形体を形成して多孔質母材を作製し、
前記多孔質母材に焼結処理を施して光ファイバ用母材を
製造する方法において、前記棒状体はその少なくとも一
端に前記棒状体の径よりも大きい径を有する部分を有し
ており、前記成形体が前記大径部分を含む前記棒状体の
外周領域に形成されることを特徴とする光ファイバ用母
材の製造方法。
1. A porous base material is produced by forming a molded body using a silica-based powder on the outer periphery of a rod-shaped body made of a silica-based material,
In the method for producing an optical fiber preform by subjecting the porous preform to a sintering treatment, the rod-shaped body has a portion having a diameter larger than the diameter of the rod-shaped body at least at one end thereof, and A method for manufacturing an optical fiber preform, wherein a molded body is formed in an outer peripheral region of the rod-shaped body including the large-diameter portion.
JP20565692A 1992-01-30 1992-07-31 Production of preformed material for optical fiber Pending JPH0648762A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP20565692A JPH0648762A (en) 1992-07-31 1992-07-31 Production of preformed material for optical fiber
CA002088238A CA2088238C (en) 1992-01-30 1993-01-27 Method of manufacturing optical fiber preform
MYPI93000123A MY107768A (en) 1992-01-30 1993-01-28 Method of manufacturing optical fiber preform
US08/010,670 US5352259A (en) 1992-01-30 1993-01-28 Method of manufacturing optical fiber preform
CN93102370A CN1078309A (en) 1992-01-30 1993-01-29 The manufacture method of fibre-optical preform
DE69312104T DE69312104T2 (en) 1992-01-30 1993-01-29 Process for making an optical fiber preform
BR9300385A BR9300385A (en) 1992-01-30 1993-01-29 METHOD OF MANUFACTURING A PRE-FORM OF FIBER OPTICS
EP93101433A EP0553868B1 (en) 1992-01-30 1993-01-29 Method of manufacturing optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20565692A JPH0648762A (en) 1992-07-31 1992-07-31 Production of preformed material for optical fiber

Publications (1)

Publication Number Publication Date
JPH0648762A true JPH0648762A (en) 1994-02-22

Family

ID=16510511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20565692A Pending JPH0648762A (en) 1992-01-30 1992-07-31 Production of preformed material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0648762A (en)

Similar Documents

Publication Publication Date Title
US5244485A (en) Method of manufacturing a silica glass preform
US5185020A (en) Method for manufacturing a silica-base material for optical fiber
US8869566B2 (en) Soot radial pressing for optical fiber overcladding
JP2925797B2 (en) Purification method of porous preform for optical fiber
JPH05229839A (en) Production of formed product from quartz based glass
JPH0648762A (en) Production of preformed material for optical fiber
JPH0971431A (en) Production of silica glass-based multicore optical fiber
JP3177308B2 (en) Manufacturing method of optical fiber preform
CN1026576C (en) Method of manufacturing silica glass preform
JPH0648758A (en) Production of preformed material for optical fiber
JPH0680436A (en) Production of porous optical fiber preform
JPH0648757A (en) Production of preformed material for optical fiber
JP2818707B2 (en) Method for producing quartz glass base material
JPH0426523A (en) Production of optical fiber
JPH06144862A (en) Production of perform for optical fiber
JPS603014B2 (en) Manufacturing method of quartz glass tube with high axial symmetry
JPH06191870A (en) Production of base material for optical fiber
JPH05170470A (en) Production of quartz glass perform
JPH05208839A (en) Production of silica-based porous glass form
JPH07187697A (en) Production of porous preform for optical fiber
JPH04331736A (en) Production of optical fiber
JPH06329428A (en) Production of quartz-based glass preform
JPH0881232A (en) Production of preform for eccentric core optical fiber
JPH05294659A (en) Production of quartz-based porous glass body
JPH06183767A (en) Production of base material for optical fiber