JPH07183202A - Method of manufacturing x-ray mask and manufacturing device of x-ray mask using same - Google Patents
Method of manufacturing x-ray mask and manufacturing device of x-ray mask using sameInfo
- Publication number
- JPH07183202A JPH07183202A JP34516493A JP34516493A JPH07183202A JP H07183202 A JPH07183202 A JP H07183202A JP 34516493 A JP34516493 A JP 34516493A JP 34516493 A JP34516493 A JP 34516493A JP H07183202 A JPH07183202 A JP H07183202A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ray
- contact
- solid block
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 60
- 239000010409 thin film Substances 0.000 claims abstract description 114
- 239000007787 solid Substances 0.000 claims abstract description 96
- 239000010408 film Substances 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000006096 absorbing agent Substances 0.000 claims abstract description 35
- 238000005530 etching Methods 0.000 claims abstract description 26
- 238000006073 displacement reaction Methods 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 18
- 239000004065 semiconductor Substances 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 4
- 238000001312 dry etching Methods 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 238000001514 detection method Methods 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000005469 synchrotron radiation Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000001015 X-ray lithography Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/707—Chucks, e.g. chucking or un-chucking operations or structural details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
- G03F7/70875—Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はX線マスク(X線露光用
マスク)の製造方法及びそれを用いたX線マスクの製造
装置に関し、例えば波長2Å〜150Å程度のX線を用
いてマスク面上の電子回路パターンをウエハ面上に転写
し、IC,LSI等の半導体素子を製造する所謂X線リ
ソグラフィーにおいて高精度な露光転写が可能なもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray mask (X-ray exposure mask) manufacturing method and an X-ray mask manufacturing apparatus using the same. For example, a mask surface is formed by using X-rays having a wavelength of about 2Å to 150Å. Highly accurate exposure transfer is possible in so-called X-ray lithography in which the above electronic circuit pattern is transferred onto the wafer surface to manufacture semiconductor elements such as IC and LSI.
【0002】[0002]
【従来の技術】最近IC,LSI等の半導体素子製造用
の露光装置においては、半導体素子の高集積化に伴っ
て、より高分解能の焼付けが可能なX線を利用したX線
露光装置が種々と提案されている。2. Description of the Related Art Recently, in exposure apparatuses for manufacturing semiconductor elements such as ICs and LSIs, there have been various X-ray exposure apparatuses using X-rays capable of printing with higher resolution as semiconductor elements become highly integrated. Is proposed.
【0003】このX線を利用したX線露光装置で使用さ
れるX線マスク(X線露光用マスク)の製造方法及びそ
の製造装置に関する研究は数多く発表されている。Many studies have been made on the manufacturing method of the X-ray mask (X-ray exposure mask) used in the X-ray exposure apparatus using this X-ray and the manufacturing apparatus thereof.
【0004】一般にX線露光装置で用いられるX線露光
用マスク(以下「X線マスク」ともいう。)は所望のパ
ターンを有するX線吸収体パターンと該X線吸収体パタ
ーンを支持する薄膜としての支持膜(X線透過膜ともい
う。)、該支持膜を保持する保持枠とから構成されてい
る。そしてX線吸収体パターンにはサブミクロン以下の
線幅とその線幅に見合う位置精度が要求されている。An X-ray exposure mask (hereinafter also referred to as an "X-ray mask") generally used in an X-ray exposure apparatus is an X-ray absorber pattern having a desired pattern and a thin film supporting the X-ray absorber pattern. And a holding frame that holds the supporting film. The X-ray absorber pattern is required to have a line width of submicron or less and a positional accuracy commensurate with the line width.
【0005】又X線露光では多くの場合X線マスクと被
転写物を数十ミクロン以下に保つ近接露光法がとられる
為、X線マスクの平面度も高精度であることが要求され
る。Further, in many cases, the X-ray exposure requires a proximity exposure method in which the X-ray mask and the transferred object are kept to several tens of microns or less, so that the flatness of the X-ray mask is required to be highly accurate.
【0006】通常、X線吸収体は厚さ数ミクロンの支持
膜上に形成される為、その位置精度や平面度の確保には
支持膜、吸収体のそれぞれに精密な応力制御が必要とな
ってくる。Since the X-ray absorber is usually formed on a support film having a thickness of several microns, precise stress control is required for each of the support film and the absorber in order to secure its positional accuracy and flatness. Come on.
【0007】[0007]
【発明が解決しようとする課題】従来からX線マスクの
製造に関して行われているように、Siウエハ上にX線
吸収体パターンを形成した後にウエハの裏面よりエッチ
ング(以下バックエッチと略す)を行ってX線に対する
窓を形成する方法では、バックエッチ時にSiウエハと
支持膜(薄膜)の内部応力が開放される為、該応力によ
り支軸膜上の吸収体パターンの位置精度が著しく劣化し
てくる。As has been conventionally done in the manufacture of X-ray masks, after forming an X-ray absorber pattern on a Si wafer, etching from the back surface of the wafer (hereinafter abbreviated as back etching) is performed. In the method of forming a window for X-rays, the internal stress of the Si wafer and the supporting film (thin film) is released during back etching, and the stress significantly deteriorates the positional accuracy of the absorber pattern on the support shaft film. Come on.
【0008】これに対してSiウエハの所定の部分をバ
ックエッチを行ってX線に対する窓を形成した後、支軸
膜上に吸収体パターンを形成する方法が提案されてい
る。On the other hand, a method has been proposed in which a predetermined portion of a Si wafer is back-etched to form a window for X-rays, and then an absorber pattern is formed on the support shaft film.
【0009】しかしバックエッチを行うとマスク域に相
当する所定の部分のSiがなくなってしまう為、X線吸
収体パターンを電子線露光(EB露光と略す)等で形成
する際に発生する熱の放散が低下して、レジスト温度が
上昇して応力変化が生じ、露光条件が不安定となってパ
ターニングの再現性が悪くなってくる。又ドライエッチ
等、熱が加わる加工工程においても支持膜の温度上昇に
より支持膜の応力が変化し、高精度な位置精度や平面度
の確保が難しくなってくる。However, if back etching is performed, Si in a predetermined portion corresponding to the mask region is lost, so that heat generated when the X-ray absorber pattern is formed by electron beam exposure (abbreviated as EB exposure) or the like. The emission decreases, the resist temperature rises, stress changes occur, the exposure conditions become unstable, and the reproducibility of patterning deteriorates. Further, even in a process such as dry etching where heat is applied, the stress of the support film changes due to the temperature rise of the support film, and it becomes difficult to secure highly accurate position accuracy and flatness.
【0010】そこで支持膜を非接触で冷却する方法とし
てプラズマエッチング等の熱が加わる工程における支持
膜の裏面にヘリウムガスを流す方法が特開昭62−21
9924号公報で提案されている。Therefore, as a method of cooling the support film in a non-contact manner, a method of flowing helium gas on the back surface of the support film in the step of applying heat such as plasma etching is disclosed in JP-A-62-21.
It is proposed in Japanese Patent No. 9924.
【0011】しかしながらこの方法は、真空中で数ミク
ロンの厚さしかない支持膜にヘリウムガスの圧力がかか
り支持膜が破壊し、装置内に発散する危険が常に伴う。
又支持膜を接触によって冷却する方法としてEB露光に
よるパターニングに際し、予め支持膜の裏面に金属の蒸
着による放熱材を設ける方法が特開昭61−11231
8号公報で提案されている。However, in this method, there is always a risk that the pressure of the helium gas is applied to the supporting film having a thickness of only a few microns in a vacuum, and the supporting film is broken, and diffuses into the apparatus.
Further, as a method of cooling the support film by contact, a method of previously providing a heat dissipation material by vapor deposition of metal on the back surface of the support film at the time of patterning by EB exposure is disclosed in JP-A-61-1231.
It is proposed in Japanese Patent No. 8.
【0012】この他プラズマエッチング等の熱が加わる
工程において液体金属を薄膜に接触させて熱を放散させ
る方法が特開昭62−92437号公報で提案されてい
る。In addition to this, Japanese Patent Application Laid-Open No. 62-92437 proposes a method of contacting a liquid metal with a thin film to dissipate the heat in a process such as plasma etching where heat is applied.
【0013】しかしながら、前者は放熱材を付加し、そ
れを除去する為に余分な加工工程が増える。又後者には
液体金属による汚染の問題があり、その取り扱いが困難
である等の問題点があった。However, in the former case, a heat dissipating material is added and an extra processing step is required to remove it. In addition, the latter has a problem that it is contaminated by liquid metal and is difficult to handle.
【0014】本発明は、基板の裏面をバックエッチング
した後にX線透過膜(薄膜又は支持膜ともいう。)に例
えばX線吸収体パターンを形成する等、X線透過膜に熱
が加わる工程を介する際に温度調節可能な固体ブロック
をX線透過膜の所定領域に接触させておくことにより、
X線透過膜が熱を吸収し、温度が上昇して膜の応力が変
化して熱歪が発生するのを効果的に防止し、高精度なX
線吸収体パターンの形成を可能としたX線マスクの製造
方法及びその製造装置の提供を目的とする。In the present invention, a step of applying heat to the X-ray transparent film, such as forming an X-ray absorber pattern on the X-ray transparent film (also referred to as a thin film or a supporting film) after back-etching the back surface of the substrate is performed. By contacting the temperature-controllable solid block with a predetermined region of the X-ray transparent film when passing through,
The X-ray transmission film absorbs heat, effectively prevents the temperature of the film from changing and the stress of the film to change to cause thermal strain.
An object of the present invention is to provide an X-ray mask manufacturing method and a manufacturing apparatus therefor capable of forming a line absorber pattern.
【0015】[0015]
【課題を解決するための手段】本発明のX線マスクの製
造方法は、 (1−1)基板の表面に薄膜を設けた後、該基板の裏面
の所定領域の基板部をバックエッチングにより除去して
枠体を形成し、次いで該薄膜に熱が加わる工程を介して
X線用マスクを製造する際、該熱が加える工程の際、該
薄膜のうちバックエッチングにより基板部を除去した領
域の一部に温度調節可能な固体ブロックを接触させてい
ることを特徴としている。According to the method of manufacturing an X-ray mask of the present invention, (1-1) after forming a thin film on the front surface of a substrate, the substrate portion in a predetermined region on the back surface of the substrate is removed by back etching. To form a frame body, and then when manufacturing the X-ray mask through the step of applying heat to the thin film, in the step of applying the heat, a region of the thin film in which the substrate portion is removed by back etching is removed. It is characterized in that a solid block whose temperature can be adjusted is brought into contact with a part.
【0016】特に、(1−1−1)前記薄膜に熱が加わ
る工程は、該薄膜の表面においてX線吸収体パターンを
形成する工程であること。Particularly, (1-1-1) the step of applying heat to the thin film is a step of forming an X-ray absorber pattern on the surface of the thin film.
【0017】(1−1−2)前記薄膜に接触配置させる
前記固体ブロックの接触面が平面であること。(1-1-2) The contact surface of the solid block placed in contact with the thin film is a flat surface.
【0018】(1−1−3)前記薄膜に接触配置させる
前記固体ブロックの接触面が凸状の曲面であること。(1-1-3) The contact surface of the solid block placed in contact with the thin film is a convex curved surface.
【0019】(1−1−4)前記薄膜に前記固体ブロッ
クを接触配置させる際に、該薄膜と該固体ブロックを平
行に対面させた後、相対的に近接させて接触させるこ
と。(1-1-4) When the solid block is placed in contact with the thin film, the thin film and the solid block are opposed to each other in parallel and then brought into relatively close contact with each other.
【0020】(1−1−5)前記薄膜と前記固体ブロッ
クを近接及び接触させる際に、該薄膜の面変位量を計測
し、該面変位量に基づいて該薄膜と該固体ブロックの近
接及び接触状態を制御していること。(1-1-5) When the thin film and the solid block are brought close to and in contact with each other, a surface displacement amount of the thin film is measured, and based on the surface displacement amount, the thin film and the solid block are brought close to each other and The contact state is controlled.
【0021】(1−1−6)前記薄膜と前記固体ブロッ
クを近接及び接触させる際に、該薄膜の面変位量を計測
し、該面変位量に基づいて該薄膜と前記枠体のなす面の
平面度が所定の範囲内の値をとるように、該枠体の面の
位置出しを行っていること。(1-1-6) When the thin film and the solid block are brought close to and in contact with each other, the amount of surface displacement of the thin film is measured, and the surface formed by the thin film and the frame is based on the amount of surface displacement. The surface of the frame is positioned so that the flatness of the frame has a value within a predetermined range.
【0022】(1−1−7)前記薄膜と前記固体ブロッ
クを近接及び接触させる際に、該薄膜の面変位量を計測
し、該面変位量に基づいて該薄膜と前記枠体とのなす面
の平面度が所定の範囲内の値をとるように、該枠体の面
の位置出しを行うと共に、該薄膜と該固体ブロックを吸
着により接触させていること。(1-1-7) When the thin film and the solid block are brought close to and in contact with each other, a surface displacement amount of the thin film is measured, and the thin film and the frame body are formed based on the surface displacement amount. The surface of the frame is positioned so that the flatness of the surface takes a value within a predetermined range, and the thin film and the solid block are brought into contact with each other by suction.
【0023】(1−1−8)前記薄膜はX線透過膜であ
ること。等を特徴としている。(1-1-8) The thin film is an X-ray transparent film. And so on.
【0024】(1−2)基板の表面にX線透過膜を設け
た後、該基板の裏面の所定領域の基板部をバックエッチ
ングにより除去して枠体を形成し、次いで該X線透過膜
にX線吸収体パターンを形成する工程を介してX線用マ
スクを製造する際、該熱X線透過膜に熱が加える工程の
際には、該X線透過膜の裏面のうちのバックエッチング
により基板部を除去した領域の一部に温度調節可能な固
体ブロックを接触させていることを特徴としている。(1-2) After the X-ray transparent film is provided on the front surface of the substrate, the substrate portion in a predetermined region on the back surface of the substrate is removed by back etching to form a frame, and then the X-ray transparent film is formed. When manufacturing a mask for X-rays through a step of forming an X-ray absorber pattern on the back surface, during the step of applying heat to the thermal X-ray transparent film, back etching of the back surface of the X-ray transparent film is performed. Is characterized in that a temperature-adjustable solid block is brought into contact with a part of the region where the substrate portion is removed.
【0025】本発明のX線マスクの製造装置は、 (2−1)薄膜を表面に設けた基板のうち該基板の裏側
の所定領域の基板部をバックエッチングにより除去した
構成の枠体を所定位置に固定する固定手段、該薄膜の裏
面のうち該バックエッチングにより該基板の基板部を除
去した領域の一部に温度調節可能な固体ブロックを接触
させる接触手段、該薄膜に熱が加わる加工を施す加工手
段そして該固体ブロックの温度調節を行う温調手段とを
利用してX線マスクを製造していることを特徴としてい
る。In the X-ray mask manufacturing apparatus of the present invention, (2-1) a substrate having a thin film formed on the surface thereof is provided with a frame body having a predetermined area on the back side of the substrate removed by back etching. Fixing means for fixing in position, contact means for contacting a temperature-adjustable solid block to a part of the area of the back surface of the thin film from which the substrate portion has been removed by back etching, and processing for applying heat to the thin film. The X-ray mask is manufactured by utilizing the processing means for applying the temperature and the temperature adjusting means for adjusting the temperature of the solid block.
【0026】特に、(2−1−1)前記薄膜に熱が加わ
る加工を施す加工手段は、該薄膜の表面にX線吸収体パ
ターンを形成する為の手段であること。In particular, (2-1-1) the processing means for applying heat to the thin film is a means for forming an X-ray absorber pattern on the surface of the thin film.
【0027】(2−1−2)前記薄膜に接触配置される
前記固体ブロックの接触面が平面であること。(2-1-2) The contact surface of the solid block placed in contact with the thin film is flat.
【0028】(2−1−3)前記薄膜に接触配置させる
前記固体ブロックの接触面が凸状の曲面であること。(2-1-3) The contact surface of the solid block placed in contact with the thin film is a convex curved surface.
【0029】(2−1−4)前記薄膜と前記固体ブロッ
クを平行に対面させた後、相対的に近接させて接触させ
る手段を具備していること。(2-1-4) A means for making the thin film and the solid block face each other in parallel and then bringing them into relatively close contact with each other is provided.
【0030】(2−1−5)前記薄膜と前記固体ブロッ
クを近接及び接触させる際の該薄膜の面変位量を計測す
る手段と、該面変位量に基づいて該薄膜と該固体ブロッ
クの近接及び接触状態を制御する手段とを具備している
こと。(2-1-5) Means for measuring the surface displacement amount of the thin film when the thin film and the solid block are brought close to and in contact with each other, and the thin film and the solid block are brought close to each other based on the surface displacement amount. And a means for controlling the contact state.
【0031】(2−1−6)前記薄膜と前記固体ブロッ
クを近接及び接触させる際の該薄膜の面変位量を計測す
る手段と、該面変位量に基づいて該薄膜と前記枠体との
なす面の平面度が所定の範囲内の値をとるように該枠体
の面の位置出しを行う手段とを具備していること。(2-1-6) Means for measuring a surface displacement amount of the thin film when the thin film and the solid block are brought close to and in contact with each other, and the thin film and the frame body based on the surface displacement amount. And a means for positioning the surface of the frame so that the flatness of the formed surface takes a value within a predetermined range.
【0032】(2−1−7)前記薄膜と前記固体ブロッ
クを近接及び接触させる際の該薄膜の面変位量を計測す
る手段と、該面変位量に基づいて該薄膜と前記枠体との
なす面の平面度が所定の範囲内の値をとるように、該枠
体の面の位置出しを行う手段と、該薄膜と該固体ブロッ
クを吸着により接触させる手段を具備していること。等
を特徴としている。(2-1-7) Means for measuring the amount of surface displacement of the thin film when the thin film and the solid block are brought close to and in contact with each other, and the thin film and the frame based on the amount of surface displacement. A means for positioning the surface of the frame body and a means for bringing the thin film and the solid block into contact with each other by suction so that the flatness of the surface to be formed has a value within a predetermined range. And so on.
【0033】本発明のX線マスクは、 (3−1)構成要件(1−1)又は(1−2)で製造さ
れたものであることを特徴としている。The X-ray mask of the present invention is characterized by being manufactured according to (3-1) constituent requirements (1-1) or (1-2).
【0034】本発明のX線露光方法は、 (4−1)被露光部材(レジスト)に構成要件(3−
1)で作成したX線マスクを介してX線露光して所定の
パターンを転写していることを特徴としている。The X-ray exposure method of the present invention comprises (4-1) the requirements (3-) for the exposed member (resist).
It is characterized in that a predetermined pattern is transferred by X-ray exposure through the X-ray mask created in 1).
【0035】本発明のX線露光装置は、X線源及び請求
項18記載のX線マスクを備え、被露光部材に対し、該
X線マスクを介してX線露光を施し、所定パターンを転
写することを特徴としている。An X-ray exposure apparatus of the present invention comprises an X-ray source and the X-ray mask according to claim 18, and subject a member to be exposed to X-ray exposure through the X-ray mask to transfer a predetermined pattern. It is characterized by doing.
【0036】本発明の半導体デバイスは、 (5−1)構成要件(4−1)でパターンを転写した基
板を加工する工程を介して製造していることを特徴とし
ている。The semiconductor device of the present invention is characterized by being manufactured through a step of processing a substrate on which a pattern is transferred according to (5-1) constituent requirements (4-1).
【0037】[0037]
【実施例】一般にX線マスクを製造する工程のうち原画
パターンをX線透過膜(薄膜)面上に形成する際や描画
する際、又はエッチングを行う際にはX線透過膜に熱が
加わり、X線透過膜に熱歪が生じてくる。EXAMPLES Generally, in the process of manufacturing an X-ray mask, heat is applied to the X-ray transparent film when forming an original pattern on the X-ray transparent film (thin film) surface, drawing, or etching. , Thermal distortion occurs in the X-ray transparent film.
【0038】そこで本発明ではX線透過膜に熱が加わる
工程のときにはそれに温度調節可能な固体ブロックを接
触させて温度上昇を防止している。Therefore, in the present invention, in the step of applying heat to the X-ray transparent film, a solid block whose temperature can be adjusted is brought into contact with it to prevent the temperature from rising.
【0039】本発明ではこのとき接触によるX線透過膜
(薄膜)の破損を防ぐ為に接触による薄膜の伸び変形を
所定量以下に抑えるように干渉計により接触による薄膜
の面変位量を計測する計測手段と、薄膜と固体ブロック
を平行に対面させる調整手段と対面させながら相対的に
近づけ接触させる移動手段とを利用している。In the present invention, in order to prevent the X-ray transmission film (thin film) from being damaged by the contact at this time, the surface displacement amount of the thin film due to the contact is measured by an interferometer so that the elongation deformation of the thin film due to the contact is suppressed to a predetermined amount or less. The measuring means and the adjusting means for facing the thin film and the solid block in parallel and the moving means for bringing them into close contact with each other while facing each other are used.
【0040】これにより薄膜の温度が温度調節された固
体ブロックの表面とほとんど同じ温度となるようにして
いる。尚この方法は真空中でも十分対応できるものであ
る。As a result, the temperature of the thin film becomes almost the same as the surface of the temperature-controlled solid block. Note that this method can be sufficiently applied even in a vacuum.
【0041】次に本発明に係るX線マスク(X線露光用
マスク)の製造方法及びその構成上の特徴について説明
する。Next, the manufacturing method of the X-ray mask (X-ray exposure mask) according to the present invention and the structural features thereof will be described.
【0042】本実施例で用いるX線支持膜(X線透過膜
又は薄膜ともいう。)はX線を十分に透過し、且つ自己
保形成が必要となるので1.0〜10μmの範囲内の厚
さのものを用いている。そして材質としては例えばS
i,SiO2 ,SiN,SiCN,BN等の無機質、ポ
リイミド等の耐放射線有機膜、これらの単独又は複合膜
等を用いている。The X-ray supporting film (also referred to as an X-ray transmitting film or a thin film) used in this embodiment is sufficiently transparent to X-rays and needs to be self-supporting. The thing of thickness is used. And as the material, for example, S
An inorganic material such as i, SiO 2 , SiN, SiCN, or BN, a radiation resistant organic film such as polyimide, or a single film or a composite film of these is used.
【0043】次にX線吸収体の材質としてはX線を十分
に吸収し、且つ加工性が良く、又0.2〜1.0μmの
範囲内の厚さが好ましく、例えばAu,W,Ta,Pt
等の重金属、更にはこれらの化合物を用いている。又X
線支持膜を保持する為の保持枠はシリコンウエハ等によ
って構成している(薄膜,X線吸収体そして保持枠は枠
体の一要素を構成している)。Next, as the material of the X-ray absorber, X-rays are sufficiently absorbed, workability is good, and a thickness in the range of 0.2 to 1.0 μm is preferable. For example, Au, W, Ta. , Pt
And other heavy metals, and these compounds are used. Again X
The holding frame for holding the line supporting film is composed of a silicon wafer or the like (the thin film, the X-ray absorber and the holding frame constitute one element of the frame body).
【0044】更に該保持枠にはX線マスク(X線マスク
構造体)の搬送等を補助する補強体を付設しても構わな
い。この補強体はパイレックスガラス,Ti,セラミッ
クス等の材料を用いて構成している。Further, the holding frame may be provided with a reinforcing member for assisting transportation of the X-ray mask (X-ray mask structure). This reinforcing body is made of a material such as Pyrex glass, Ti, or ceramics.
【0045】本発明に係るX線マスクはこの他に、適宜
X線吸収体の保護膜、導電膜、アライメン光の反射防止
膜等を付設している。In addition to the above, the X-ray mask according to the present invention is appropriately provided with a protective film for the X-ray absorber, a conductive film, an antireflection film for alignment light, and the like.
【0046】このようなX線マスクに所望のパターンを
EB露光装置等を用い、レジストにて形成し、単層又は
多層レジスト等を介してX線吸収体をパターニングして
いる。A desired pattern is formed on such an X-ray mask using a resist using an EB exposure device or the like, and the X-ray absorber is patterned through a single-layer or multi-layer resist.
【0047】その際、多層レジストのエッチング及びX
線吸収体自体のエッチングにドライエッチングを用いて
いる。又Au等はメッキ等の堆積法を用いる場合が多い
が、その際もメッキ等の電極の処理にドライエッチング
を用いている。At this time, etching of the multi-layer resist and X
Dry etching is used for etching the line absorber itself. In addition, for Au and the like, a deposition method such as plating is often used, and in that case as well, dry etching is used for processing the electrode such as plating.
【0048】その際、X線マスクの処理面の反対面から
X線支持膜(薄膜)を温度調節可能な固体ブロックに接
触させる方法を用いることによって薄膜の温度コントロ
ールを行っている。At this time, the temperature of the thin film is controlled by using a method in which the X-ray supporting film (thin film) is brought into contact with the temperature-adjustable solid block from the surface opposite to the processed surface of the X-ray mask.
【0049】実際に薄膜に接触させるにあたっては固体
ブロックに温調機能を設けたX線マスク保持装置を用い
ている。又薄膜との接触面は平面より僅かに凸状の曲率
を付け、薄膜に曲げ応力がかかりにくいように工夫して
いる。X線マスク保持装置で薄膜と固体ブロックを接触
させる際には、まず枠体を固定してそれから薄膜と固体
ブロックを平行に対面させ、対面させながら徐々に近づ
け接触させている。When actually contacting the thin film, an X-ray mask holding device provided with a solid block having a temperature control function is used. Further, the contact surface with the thin film has a slightly convex curvature than the flat surface so that the thin film is less likely to be subjected to bending stress. When the thin film and the solid block are brought into contact with each other by the X-ray mask holding device, the frame is first fixed, and then the thin film and the solid block are faced in parallel, and gradually brought into close contact while facing each other.
【0050】その際、薄膜の面変位量は干渉計によって
計測し、薄膜と固体ブロックの接触量を一定範囲内に抑
えている。X線マスク保持装置は固体ブロックの移動に
より薄膜との接触を行っているが、吸着によって接触さ
せても良い。At this time, the amount of surface displacement of the thin film is measured by an interferometer to keep the amount of contact between the thin film and the solid block within a certain range. The X-ray mask holding device makes contact with the thin film by moving the solid block, but may make contact by adsorption.
【0051】真空中でX線マスク保持装置を使用する場
合は、吸着を解除した後にも薄膜と固体ブロックを接触
させておくのに機械的な接触をさせることが良い。又X
線マスク保持装置は保持枠と補強体(補強体)の接合時
にも用いても良い。X線マスク保持装置を搭載したX線
マスク製造用のパターン処理装置を用いることにより、
高精度なX線マスクを得ている。When the X-ray mask holding device is used in vacuum, it is preferable to make mechanical contact so that the thin film and the solid block are kept in contact with each other even after the adsorption is released. Again X
The line mask holding device may be used also when joining the holding frame and the reinforcing body (reinforcing body). By using an X-ray mask manufacturing pattern processing device equipped with an X-ray mask holding device,
We have obtained a highly accurate X-ray mask.
【0052】本発明では以上のようにして製造したX線
マスクを用いて被転写体(被露光部材)にX線露光を行
い、X線吸収体パターンを該被転写体に転写している。
そして該被転写体を加工、処理することにより半導体デ
バイスを製造している。In the present invention, the transferred material (exposed member) is subjected to X-ray exposure using the X-ray mask manufactured as described above, and the X-ray absorber pattern is transferred onto the transferred material.
Then, a semiconductor device is manufactured by processing and processing the transferred body.
【0053】次に本発明のX線マスクの製造方法の各実
施例について各図を用いて説明する。Next, each embodiment of the X-ray mask manufacturing method of the present invention will be described with reference to the drawings.
【0054】図1は本発明の第1実施例にかかるX線マ
スクの製造方法に適用する製造装置の一部分の要部断面
図である。FIG. 1 is a sectional view of the essential part of a part of a manufacturing apparatus applied to the method of manufacturing an X-ray mask according to the first embodiment of the present invention.
【0055】図1は温度調整可能な固体ブロック20を
マスク専用のホルダー11として一体化して可搬できる
ようにしている。このホルダー11の内部にX線マスク
3(X線吸収体パターン7,X線透過膜(薄膜)9,保
持枠10そしてレジスト8等を有している。)を押えバ
ネ金具12及びネジ13によってホルダー11の固体ブ
ロック20と薄膜9とが軽く接触する状態で一体化して
いる。この状態のままでパターン描画や露光、低温や高
温のドライエッチ等大気中・真空中にかかわらず、ほと
んど全ての工程を行っている。In FIG. 1, the temperature-adjustable solid block 20 is integrated as a mask-dedicated holder 11 so that it can be carried. An X-ray mask 3 (having an X-ray absorber pattern 7, an X-ray transparent film (thin film) 9, a holding frame 10 and a resist 8 etc.) is held inside the holder 11 by a spring metal fitting 12 and a screw 13. The solid block 20 of the holder 11 and the thin film 9 are integrated in a state of lightly contacting each other. In this state, almost all the steps are performed regardless of whether the pattern drawing, exposure, dry etching at low temperature or high temperature is performed in the atmosphere or in vacuum.
【0056】本実施例ではドライエッチに適用した状態
を示している。ここでは固定されたマスクチャック17
に固定金具15及びボルト16を用いて光源側でホルダ
ー11を固定している。このホルダー11には温調機能
はないが、熱伝導率の大きいアルミ材で作ってある。そ
して処理装置側にこの温調部17aを設け、このホルダ
ー11を温調したマスクチャック17を介して接触させ
ている。そしてホルダー11に取り付けた固体ブロック
20を介して支持膜9の温度をコントロールしている。In this embodiment, a state applied to dry etching is shown. Here, the fixed mask chuck 17
The holder 11 is fixed on the light source side by using the fixing bracket 15 and the bolt 16. The holder 11 does not have a temperature control function, but is made of an aluminum material having a high thermal conductivity. The temperature adjusting unit 17a is provided on the processing device side, and the holder 11 is brought into contact with the mask chuck 17 having the temperature adjusted. The temperature of the support film 9 is controlled via the solid block 20 attached to the holder 11.
【0057】本実施例においてホルダー11、即ち固体
ブロック20を支持膜9と保持枠10の両方に接触させ
ても良く、これによれば該マスクチャック17を介して
マスク3全体の温度を制御することができる。In this embodiment, the holder 11, that is, the solid block 20 may be brought into contact with both the support film 9 and the holding frame 10. According to this, the temperature of the entire mask 3 is controlled via the mask chuck 17. be able to.
【0058】接触量はマスク3の厚みをまず実測し、ホ
ルダー11の加工精度で許容値以下に抑えている。実際
の組み付けにあたっては薄膜9の膜面変位を干渉計16
(不図示)で計測しながら行っている。膜面の変位が大
きすぎた場合は3カ所の押しネジ19で保持枠10をア
オリながら調節して面精度を所定の範囲に収めている。
14は空気の逃げ穴である。The contact amount is first measured by measuring the thickness of the mask 3 and is controlled to be equal to or less than the allowable value by the processing accuracy of the holder 11. When actually assembling, the film surface displacement of the thin film 9 is measured by the interferometer 16
It is performed while measuring (not shown). When the displacement of the film surface is too large, the holding frame 10 is adjusted while being tilted by three setscrews 19 to keep the surface accuracy within a predetermined range.
Reference numeral 14 is an air escape hole.
【0059】本実施例では固体ブロック20をそれと一
体化したホルダー11と温調したマスクチャック17と
を直接接触させて温調可能としているが、この他例えば
直接接触させなくても熱的に結合できる方法であればど
のような方法でも適用可能である。In this embodiment, the temperature can be adjusted by directly contacting the solid block 20 with the holder 11 integrated with the solid block 20 and the temperature-controlled mask chuck 17, but other than this, for example, they can be thermally coupled without direct contact. Any method that can be applied is applicable.
【0060】本実施例では上述したように薄膜9(X線
透過膜)の裏面に固体ブロック20を接触させ、この状
態でレジストパターン8を耐エッチングマスクとしてX
線吸収体パターン7をドライエッチングし、薄膜9上に
おいてX線吸収体パターン7を形成している。In this embodiment, as described above, the solid block 20 is brought into contact with the back surface of the thin film 9 (X-ray transparent film), and in this state, the resist pattern 8 is used as an etching resistant mask for X-ray etching.
The X-ray absorber pattern 7 is dry-etched to form the X-ray absorber pattern 7 on the thin film 9.
【0061】かかる処理において薄膜9に過大な量の熱
が加わるが、かかる薄膜9の裏面が温調機構を備えた固
体ブロック20と接触している為、又必要に応じて薄膜
9の面変位を測定し、これをフィードバックして固体ブ
ロック20の接触状態を制御している為、薄膜の歪等が
なく、極めて微細で且つ位置精度に優れたX線吸収体パ
ターンの形成を可能にしている。In this process, an excessive amount of heat is applied to the thin film 9. However, since the back surface of the thin film 9 is in contact with the solid block 20 having a temperature control mechanism, the surface displacement of the thin film 9 may be changed as necessary. Is measured and fed back to control the contact state of the solid block 20, so that it is possible to form an X-ray absorber pattern that is extremely fine and has excellent positional accuracy without distortion of the thin film. .
【0062】図2は原画2(X線マスク)を用いてX線
マスク(X線コピーマスク)3を製造する本発明の第2
実施例のX線マスクの製造方法に適用する製造装置の要
部断面図である。FIG. 2 shows a second embodiment of the present invention for producing an X-ray mask (X-ray copy mask) 3 using an original image 2 (X-ray mask).
It is a principal part sectional view of the manufacturing apparatus applied to the manufacturing method of the X-ray mask of the Example.
【0063】図2において図1で示した要素と同一要素
には同符番を付している。In FIG. 2, the same elements as those shown in FIG. 1 are designated by the same reference numerals.
【0064】本実施例ではX線マスク3の保持部は予め
露光装置側に組み込まれている場合を示している。露光
に用いたシンクロトロン放射光(SR)は原画2を通過
してレジスト8を感光させる。X線吸収体7,レジスト
8そしてX線透過膜(SiN)9は吸収されたシンクロ
トロン放射光SRによって発熱する。その熱を内部に冷
却水用流路21に温調水を流す構造を持つ固体ブロック
24に熱伝導させて各々の部分を一定温度範囲に制御し
ている。In the present embodiment, the case where the holding portion of the X-ray mask 3 is built in the exposure apparatus side in advance is shown. The synchrotron radiation (SR) used for exposure passes through the original image 2 and exposes the resist 8. The X-ray absorber 7, the resist 8 and the X-ray transparent film (SiN) 9 generate heat by the absorbed synchrotron radiation SR. The heat is conducted to the solid block 24 having a structure in which the temperature-controlled water flows through the cooling water passage 21 to control each part within a certain temperature range.
【0065】X線マスク3は真空吸着用の溝22を備え
たマスクチャック23に吸着保持されている。4はX線
マスク3の面変位量を計測する微小変位計(計測手段)
であり、ビーム5によって固体ブロック24の接触によ
る面変位量を計測している。この計測信号を不図示のコ
ントローラにフィードバックしている。The X-ray mask 3 is adsorbed and held on a mask chuck 23 having a groove 22 for vacuum adsorption. Reference numeral 4 is a minute displacement meter (measuring means) for measuring the amount of surface displacement of the X-ray mask 3.
That is, the amount of surface displacement due to the contact of the solid block 24 is measured by the beam 5. This measurement signal is fed back to a controller (not shown).
【0066】コントローラは固体ブロック24のステー
ジ26に対する相対的な変位とX線透過膜9と固体ブロ
ック24の接触を片当りさせない為の固体ブロック24
のアオリをピエゾアクチュエータ25によって生じさ
せ、X線マスク3の固体ブロック24による接触変位量
が一定になるように制御している。計測手段4は光学的
計測のほか、渦電流計測、静電容量等を利用したものが
適用可能である。アクチュエータは電歪素子の他、磁歪
素子或はモータと送りネジ機構等でも良い。The controller prevents the relative displacement of the solid block 24 with respect to the stage 26 and the contact between the X-ray transmissive film 9 and the solid block 24 from being unbalanced.
Is caused by the piezo actuator 25, and the contact displacement amount of the solid block 24 of the X-ray mask 3 is controlled to be constant. In addition to the optical measurement, the measuring means 4 may use eddy current measurement, electrostatic capacitance, or the like. The actuator may be an electrostrictive element, a magnetostrictive element, or a motor and a feed screw mechanism.
【0067】X線マスク3のマスクチャック23への吸
着方法は、磁気吸着でも良い。又図には分かりやすいよ
うに1対の変位量測定系を示したが、複数の変位量測定
系を有する方がX線透過膜9と固体ブロック24の接触
が片当りさせない為にも望ましい。The X-ray mask 3 may be attracted to the mask chuck 23 by magnetic attraction. Further, although a pair of displacement amount measuring systems is shown in the figure for easy understanding, it is preferable to have a plurality of displacement amount measuring systems so that the contact between the X-ray transmission film 9 and the solid block 24 does not make one-sided contact.
【0068】又本実施例ではX線透過膜9と固体ブロッ
ク24の接触面が貼り付きにくいように接触面に適当な
荒さを付けている。又接触面の空気が逃げやすいように
する為、複数の空気の逃げ穴6を固体ブロック24に設
けている。Further, in this embodiment, the contact surfaces of the X-ray transparent film 9 and the solid block 24 are appropriately roughened so that the contact surfaces do not easily stick to each other. A plurality of air escape holes 6 are provided in the solid block 24 so that the air on the contact surface can easily escape.
【0069】本実施例において種々な検討によるとX線
透過膜として35mm□、厚さ2μmのSiNを用い、
30mm□の部分に温度ΔT加えたときのX線透過膜9
の最大伸び量Δdが、Δd=ΔTX (9×10-8)
[m]であった。According to various studies in this example, SiN of 35 mm square and 2 μm in thickness was used as the X-ray transparent film,
X-ray transparent film 9 when temperature ΔT is applied to the 30 mm square part
The maximum elongation Δd of Δd = ΔT x (9 × 10 −8 ).
It was [m].
【0070】従って許容される最大伸び量を0.01μ
mとしたとき、許容温度は±0.11[℃]となる。こ
れは固体ブロック24をSiNに接触させることで±
0.05℃の精度で容易に達成している。因みに固体ブ
ロック24は保持枠10と同じ材質のSiで作ってい
る。固体ブロック24としては温調しやすく、且つ重金
属汚染とならない熱伝導率の大きい材質を用いている。Therefore, the maximum allowable elongation is 0.01 μm.
When m, the allowable temperature is ± 0.11 [° C]. This is achieved by contacting the solid block 24 with SiN.
It is easily achieved with an accuracy of 0.05 ° C. Incidentally, the solid block 24 is made of Si, which is the same material as the holding frame 10. As the solid block 24, a material having a high thermal conductivity which is easy to control the temperature and does not cause heavy metal contamination is used.
【0071】一方、固体ブロック24の接触によるSi
Nの伸び変位量を同様に0.01μm以下にするために
固体ブロック24の接触面を半径13.5[m]の球面
に形成してそれをSiNのパターン転写範囲内27を接
触させ、そのときのSiNの面変位量を10μm以下に
制御した。On the other hand, the contact of the solid block 24 with Si
Similarly, in order to similarly reduce the amount of elongation displacement of N to 0.01 μm or less, the contact surface of the solid block 24 is formed into a spherical surface having a radius of 13.5 [m], and the contact surface is brought into contact with the pattern transfer range 27 of SiN. The surface displacement amount of SiN at this time was controlled to 10 μm or less.
【0072】又同じように作製したX線透過膜9をバル
ジ法にて破壊検査したところ、充分な強度を持つ範囲で
あった。この場合、接触面が球面である為に平面の場合
と比べてSiNとの平行だしは容易であるし、空気も逃
げやすい。又接触によるSiNの振動を容易に除いてい
る。When the X-ray transparent film 9 produced in the same manner was subjected to a destructive inspection by the bulge method, it was within a range having sufficient strength. In this case, since the contact surface is a spherical surface, it is easier to be parallel to SiN and air can easily escape as compared with a flat surface. Further, vibration of SiN due to contact is easily eliminated.
【0073】本実施例では固体ブロック24をSiN9
に押し付けて接触させているが接触方法はこれに限らず
他の方法も適用可能である。In this embodiment, the solid block 24 is made of SiN9.
Although they are pressed against and brought into contact with each other, the contact method is not limited to this, and other methods can be applied.
【0074】例えば、固体ブロック24とX線透過膜9
を数μmに対向近接させて静電気によって吸着する方
法、同じく数μmに近接させて微細なバキューム溝を設
けた固体ブロック24に真空吸着する方法等が適用可能
である。両者は押し付けて接触させる方法と比べ重接触
とできるので、より大きな温調効果が期待できる。For example, the solid block 24 and the X-ray transparent film 9
And a method of adsorbing them by static electricity by approaching them to several μm, and a method of vacuum adsorbing to the solid block 24 provided with fine vacuum grooves in the same manner of approaching several μm. Since both can be made in heavy contact as compared with the method of pressing and making contact, a greater temperature control effect can be expected.
【0075】更に前者は真空中での露光にも用いること
ができる。又固体ブロック24の接触面は球面とした
が、必ずしも球面である必要はない。X線透過膜9のパ
ターン転写部(描画部)27に当る位置では平面形状
で、周囲の接触開始部は大きく曲面取りした固体ブロッ
ク24でも良い。この場合にはパターン転写部(描画
部)27が平面であるので光露光で用いた場合の焦点深
度の問題にも対処できる。The former can also be used for exposure in vacuum. Although the contact surface of the solid block 24 is a spherical surface, it does not have to be a spherical surface. The solid block 24 may have a planar shape at a position corresponding to the pattern transfer portion (drawing portion) 27 of the X-ray transparent film 9 and a peripheral curved contact start portion with a large curved surface. In this case, since the pattern transfer portion (drawing portion) 27 is a flat surface, it is possible to deal with the problem of the depth of focus when used in light exposure.
【0076】又本実施例では固体ブロック24自体に温
調機能を設けたが、これに限定されない。外部に温調部
を設け、それに固体ブロック24を熱的に結合させても
良い。又大気中処理の場合で接触熱抵抗のばらつきや表
面荒さによってX線透過膜9に温度ムラが生じた場合は
熱伝導を均一化させる為に接触部の隙間に僅かな液体や
ヘリウムガスを介在させても良い。In the present embodiment, the temperature control function is provided in the solid block 24 itself, but the present invention is not limited to this. A temperature control unit may be provided outside and the solid block 24 may be thermally coupled thereto. Further, in the case of the treatment in the atmosphere, when the X-ray permeable film 9 has temperature unevenness due to variations in contact thermal resistance or surface roughness, a slight amount of liquid or helium gas intervenes in the gap between the contact portions in order to make the heat conduction uniform. You may let me.
【0077】この他本実施例において固体ブロック24
の温度調節は一定温度の液体を流す他、ペルチェ素子等
の公知の冷却技術を用いても良い。更に露光光はX線に
限るものではなく、水銀ランプのi線等の光、KrFエ
キシマレーザ等のレーザ光等を用いても良い。In addition, in the present embodiment, the solid block 24
In order to adjust the temperature of, a known cooling technique such as a Peltier element may be used in addition to flowing a liquid having a constant temperature. Further, the exposure light is not limited to X-rays, and light such as i-line of a mercury lamp, laser light such as KrF excimer laser, or the like may be used.
【0078】原画2と被露光物であるX線マスク3との
間には縮小光学系を配する等の方法をとっても良い。又
EB露光、FIB等の真空中での露光法ではX線マスク
3の温度制御が一層困難になるが、本実施例を適用した
場合には温度制御は容易で、又X線マスク3のチャージ
アップを防ぐこともできる等の特徴がある。A reduction optical system may be arranged between the original image 2 and the X-ray mask 3 which is the object to be exposed. Further, it is more difficult to control the temperature of the X-ray mask 3 by an exposure method in a vacuum such as EB exposure and FIB, but when the present embodiment is applied, the temperature control is easy, and the X-ray mask 3 is charged. It has features such as being able to prevent ups.
【0079】図3は本発明の第3実施例にかかるX線マ
スクの製造方法に適用する製造装置の要部断面図であ
る。図3の実施例はパターン形成後のX線マスク3に補
強体31を接合する際に接合による温度上昇からX線マ
スク3を保護する場合を示している。パターン形成後の
X線マスク3はX線吸収体パターン7、X線透過膜9及
び保持枠10より構成されているが、更に補強体31を
設けた状態で用いる場合が多い。FIG. 3 is a cross-sectional view of essential parts of a manufacturing apparatus applied to the method of manufacturing an X-ray mask according to the third embodiment of the present invention. The embodiment of FIG. 3 shows a case where the X-ray mask 3 is protected from a temperature rise due to the bonding when the reinforcing body 31 is bonded to the X-ray mask 3 after the pattern formation. The X-ray mask 3 after the pattern formation is composed of the X-ray absorber pattern 7, the X-ray transmissive film 9 and the holding frame 10, but it is often used in the state where the reinforcing body 31 is further provided.
【0080】特にX線マスク3と補強体31の接合に陽
極接合法32を用いた場合、接合部を加圧しながら数百
度で加熱し、更に高い電圧をかける必要があり、X線透
過膜9にも高い温度がかかる。この熱からX線透過膜9
を守る為に固体ブロック34をX線透過膜9に接触さ
せ、固体ブロック34に温調を施すことでX線透過膜9
の温度上昇を20℃程度の上昇に抑えている。尚33は
固体ブロック34とX線マスク3のX線吸収体パターン
7及びX線透過膜9の接触量を調節する為のネジであ
る。In particular, when the anodic bonding method 32 is used to bond the X-ray mask 3 and the reinforcing body 31, it is necessary to heat the bonding part at several hundred degrees while applying pressure, and to apply a higher voltage. Also takes a high temperature. X-ray transmission film 9 from this heat
In order to protect the X-ray permeable film 9, the solid block 34 is brought into contact with the X-ray permeable film 9 and the solid block 34 is temperature-controlled.
The temperature rise is suppressed to about 20 ° C. Reference numeral 33 is a screw for adjusting the amount of contact between the solid block 34, the X-ray absorber pattern 7 of the X-ray mask 3 and the X-ray transparent film 9.
【0081】図4は本発明の第4実施例にかかるX線マ
スクの製造方法に適用する製造装置の要部断面図であ
る。FIG. 4 is a sectional view showing the principal part of a manufacturing apparatus applied to the method of manufacturing an X-ray mask according to the fourth embodiment of the present invention.
【0082】図4では固体ブロック50をX線マスク3
専用のホルダー41として可搬できるようにしている。
このホルダー41の内部にX線マスク3を押さえバネ金
具42及びネジ43によってホルダー41とX線透過膜
9が軽く接触する状態で一体化している。この状態のま
まで描画や露光、低温や高温のドライエッチ等、大気中
・真空中にかかわらずの殆ど全ての工程を行っている。In FIG. 4, the solid block 50 is replaced by the X-ray mask 3
It can be carried as a dedicated holder 41.
The X-ray mask 3 is held inside the holder 41, and the holder 41 and the X-ray transparent film 9 are integrated with each other by a spring metal fitting 42 and a screw 43 in a state of lightly contacting each other. In this state, almost all processes such as drawing and exposure, low temperature and high temperature dry etching, etc. are performed regardless of whether it is in air or in vacuum.
【0083】本実施例ではホルダー41にX線マスク3
を装着している状態を示している。このホルダー41自
体には温調機能はないが、熱伝導率の大きいアルミ材で
作ってある。このホルダー41を図1の実施例1と同様
に装置側の温調部(不図示)と直接接触させて温調可能
としている。In this embodiment, the X-ray mask 3 is attached to the holder 41.
It shows the state of wearing. The holder 41 itself does not have a temperature control function, but is made of an aluminum material having a high thermal conductivity. Similar to the first embodiment shown in FIG. 1, the holder 41 is brought into direct contact with a temperature control section (not shown) on the apparatus side to enable temperature control.
【0084】X線透過膜9との接触にあたって、まずX
線透過膜9とホルダー41の接触面は10μmのギャッ
プで相対させている。このギャップはホルダー41の加
工精度で許容値以下に抑えている。Upon contact with the X-ray transparent film 9, first, X
The contact surfaces of the line permeable film 9 and the holder 41 are opposed to each other with a gap of 10 μm. This gap is controlled to be equal to or less than the allowable value due to the processing accuracy of the holder 41.
【0085】次にX線透過膜9の膜面変位を干渉計36
で計測しながらバキューム47によってX線透過膜9を
ホルダー41に吸着接触させている。バキューム解除し
た場合でも接触させる為、3カ所のネジ45及び楔型の
コマ46で保持枠9をアオリながら移動させ、面精度を
所定の範囲に収めている。Next, the film surface displacement of the X-ray transparent film 9 is measured by the interferometer 36.
The X-ray transparent film 9 is suction-contacted to the holder 41 by the vacuum 47 while being measured. Since the contact is made even when the vacuum is released, the holding frame 9 is moved while being tilted by the screws 45 and the wedge-shaped tops 46 at three places to keep the surface accuracy within a predetermined range.
【0086】最後にバキューム47を解除して内部と外
部の気体を導通させ、真空中の処理装置に搭載できるよ
うにしている。44はバキューム用の穴である。48は
ネジのロックである。49はマスク3の位置決め用ネジ
である。Finally, the vacuum 47 is released to allow the internal and external gases to communicate with each other so that the gas can be mounted on the processing apparatus in vacuum. Reference numeral 44 is a vacuum hole. 48 is a screw lock. Reference numeral 49 is a positioning screw for the mask 3.
【0087】図5は本発明の第5実施例にかかるX線マ
スクの製造方法に適用する製造装置の要部断面図であ
る。FIG. 5 is a cross-sectional view of essential parts of a manufacturing apparatus applied to a method for manufacturing an X-ray mask according to the fifth embodiment of the present invention.
【0088】図5では固体ブロック60をX線マスク3
専用のホルダー52として可搬できるようにしている。
このホルダー52の内部にX線マスク3を押さえ板5
3,ネジ54によって固体ブロック60とX線透過膜9
が軽く接触する状態で一体化している。In FIG. 5, the solid block 60 is replaced by the X-ray mask 3
It is designed to be portable as a dedicated holder 52.
The holding plate 5 holds the X-ray mask 3 inside the holder 52.
3, the solid block 60 and the X-ray transparent film 9 by the screw 54
Are integrated in a state of lightly contacting.
【0089】押さえ板53の内寸法56はバックエッチ
の穴の内寸法57より小さく、X線透過膜9に強い曲げ
が、かからないように大きく曲率を付けている。このよ
うにするとSiN等のX線透過膜9は非常に大きな破壊
強度を示す。この状態のままで描画や露光等の大気中・
真空中にかかわらずの殆ど全ての工程を行っている。The inner dimension 56 of the pressing plate 53 is smaller than the inner dimension 57 of the back-etched hole, and a large curvature is provided so that the X-ray transmissive film 9 is not strongly bent. By doing so, the X-ray transparent film 9 made of SiN or the like shows a very large breaking strength. In this state, in the atmosphere such as drawing and exposure
Almost all processes are performed regardless of the vacuum.
【0090】本実施例ではEB露光に適用した例を示し
ている。このホルダー52自体には温調機能はないが、
熱伝導率の大きいアルミ材で作ってある。このホルダー
52を図1の実施例1と同様に装置側の温調部と接触さ
せて温調可能としている。In this embodiment, an example applied to EB exposure is shown. This holder 52 itself has no temperature control function,
Made of aluminum with high thermal conductivity. The holder 52 is brought into contact with the temperature control section on the apparatus side in the same manner as the first embodiment shown in FIG. 1 to enable temperature control.
【0091】図6は例えばX線マスクを製造する目的で
本発明を適用した露光装置の要部概略図である。FIG. 6 is a schematic view of a main part of an exposure apparatus to which the present invention is applied for the purpose of manufacturing an X-ray mask, for example.
【0092】同図においては原画2面のパターンを投影
系70を介してX線マスクとしての被転写体3に縮小投
影する場合を示している。The figure shows a case where the pattern on the two surfaces of the original image is reduced and projected onto the transferred body 3 as an X-ray mask through the projection system 70.
【0093】図6において60は原画2とX線マスク3
との位置合わせを行う為の、例えばHe−Cd等のレー
ザ光、61はレーザ光源、62はCCDカメラであり、
原画2とX線マスク3に設けたマーク(アライメントマ
ーク)を撮像し、イメージングプロセッサ63によって
原画2とX線マスク3の双方のマーク位置を高精度で検
知している。その検知結果に基づいて基板チャック64
をX方向アクチュエータ66、Y方向アクチュエータ6
8を駆動させ、原画2とX線マスク3とを高精度に位置
合わせしている。In FIG. 6, 60 is an original image 2 and an X-ray mask 3.
A laser light such as He-Cd for aligning the position with, a laser light source 61, a CCD camera 62,
The mark (alignment mark) provided on the original image 2 and the X-ray mask 3 is imaged, and the mark positions of both the original image 2 and the X-ray mask 3 are detected with high accuracy by the imaging processor 63. Based on the detection result, the substrate chuck 64
X direction actuator 66, Y direction actuator 6
8 is driven to align the original image 2 and the X-ray mask 3 with high accuracy.
【0094】本実施例ではX線透過膜に接触する接触面
が平面になっている温調された固体ブロック(不図示)
が基板チャック64に装着され、バックエッチ側からX
線透過膜に接触している。70は投影光学系の鏡筒、6
5及び67はX方向及びY方向の位置を検出する為のレ
ーザ等による干渉測長器、69はアライメント光学ユニ
ットである。In this embodiment, a temperature-controlled solid block (not shown) having a flat contact surface for contacting the X-ray permeable membrane
Is attached to the substrate chuck 64, and X is applied from the back etch side.
It is in contact with the wire permeable membrane. 70 is a lens barrel of the projection optical system, 6
Reference numerals 5 and 67 are an interferometric length measuring device using a laser or the like for detecting the positions in the X direction and the Y direction, and 69 is an alignment optical unit.
【0095】この他本発明においては光源としてi線
(365nm)、KrF−エキシマ光(248nm)、
ArF−エキシマ光(193nm)等を用い、これらの
光源からの照明光を持つ逐次移動型の縮小投影露光装置
や等倍のミラープロジェクションタイプの露光装置にも
同様に適用可能である。尚当該X線露光装置は通常のX
線リソグラフィの露光プロセスにも適用できる。In addition, in the present invention, as a light source, i-line (365 nm), KrF-excimer light (248 nm),
The present invention can be similarly applied to a stepwise-movement type reduction projection exposure apparatus or an equal-magnification mirror projection type exposure apparatus which uses ArF-excimer light (193 nm) or the like and has illumination light from these light sources. Note that the X-ray exposure apparatus is a normal X-ray exposure apparatus.
It can also be applied to the exposure process of line lithography.
【0096】次に本発明を適用した半導体デバイスの製
造方法の実施例を説明する。Next, an example of a method of manufacturing a semiconductor device to which the present invention is applied will be described.
【0097】図7は半導体デバイス(ICやLSI等の
半導体チップ、或は液晶パネルやCCD等)の製造のフ
ローを示す。ステップ1(回路設計)では半導体デバイ
スの回路設計を行なう。ステップ2(マスク製作)では
設計した回路パターンを形成したマスクを実施例1と同
様に製作する。FIG. 7 shows a flow of manufacturing a semiconductor device (semiconductor chip such as IC or LSI, or liquid crystal panel, CCD or the like). In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask manufacturing), a mask having the designed circuit pattern is manufactured in the same manner as in the first embodiment.
【0098】一方、ステップ3(ウエハ製造)ではシリ
コン等の材料を用いてウエハを製造する。ステップ4
(ウエハプロセス)は前工程と呼ばれ、上記用意したマ
スクとウエハを用いてX線リソグラフィ技術によってウ
エハ上に実際の回路を形成する。On the other hand, in step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4
The (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by X-ray lithography using the mask and wafer prepared above.
【0099】次のステップ5(組立)は後工程と呼ば
れ、ステップ4によって作製されたウエハを用いて半導
体チップ化する工程であり、アッセンブリ工程(ダイシ
ング、ボンディング)、パッケージング工程(チップ封
入)等の工程を含む。ステップ6(検査)ではステップ
5で作製された半導体デバイスの動作確認テスト、耐久
性テスト等の検査を行なう。こうした工程を経て半導体
デバイスが完成し、これが出荷(ステップ7)される。The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip by using the wafer manufactured in step 4, an assembly process (dicing, bonding), a packaging process (chip encapsulation). Etc. are included. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
【0100】図8は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化
させる。ステップ12(CVD)ではウエハ表面に絶縁
膜を形成する。FIG. 8 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface.
【0101】ステップ13(電極形成)ではウエハ上に
電極を蒸着によって形成する。ステップ14(イオン打
込み)ではウエハにイオンを打ち込む。ステップ15
(レジスト処理)ではウエハに感光剤を塗布する。ステ
ップ16(露光)では上記説明したX線露光装置によっ
てマスクの回路パターンをウエハに焼付露光する。In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15
In (resist processing), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern of the mask is printed and exposed on the wafer by the X-ray exposure apparatus described above.
【0102】ステップ17(現像)では露光したウエハ
を現像する。ステップ18(エッチング)では現像した
レジスト像以外の部分を削り取る。ステップ19(レジ
スト剥離)ではエッチングがすんで不要となったレジス
トを取り除く。これらのステップを繰り返し行なうこと
によってウエハ上に多重に回路パターンが形成される。In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist image are removed. In step 19 (resist peeling), the resist that has become unnecessary due to etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
【0103】図9は本発明の方法により製造したX線マ
スクを半導体素子製造用の露光装置に適用したときの要
部概略図である。FIG. 9 is a schematic view of a main part when an X-ray mask manufactured by the method of the present invention is applied to an exposure apparatus for manufacturing a semiconductor element.
【0104】図9において139はX線ビームで略平行
光となってX線マスクM面上を照射している。Wはウエ
ハで例えばX線用のレジストが表面に塗布されている。
133はマスクフレーム(保持枠)、134はマスクメ
ンブレン(X線透過膜)で、この面上にX線の吸収体に
より回路パターンがパターニングされている。132は
マスク支持体、136はウエハチャック等の固定手段と
してのウエハ固定部材である。137はZ軸ステージ、
実際にはチルトが可能な構成になっている。138はX
軸ステージ、144はY軸ステージである。In FIG. 9, reference numeral 139 denotes an X-ray beam which is substantially parallel light and illuminates the surface of the X-ray mask M. W is a wafer, for example, an X-ray resist is applied on the surface.
133 is a mask frame (holding frame), and 134 is a mask membrane (X-ray transparent film), and a circuit pattern is patterned on this surface by an X-ray absorber. Reference numeral 132 is a mask support, and 136 is a wafer fixing member as a fixing means such as a wafer chuck. 137 is a Z-axis stage,
Actually, the tilt is possible. 138 is X
The axis stage 144 is a Y-axis stage.
【0105】X線マスクMとウエハWのアライメント検
出機能部分(位置検出装置)は筐体130a,130b
に収まっており、ここからマスクMとウエハWのギャッ
プとX,Y面内方向の位置ずれ情報を得ている。The X-ray mask M and the wafer W alignment detection function portion (position detection device) is provided in the housings 130a and 130b.
The information on the gap between the mask M and the wafer W and the positional deviation information in the X and Y in-plane directions are obtained from this.
【0106】図9には2つのアライメント検出機能部分
130a,130bを図示しているが、マスクM上の4
角のIC回路パターンエリアの各辺に対応して更に2カ
所にアライメント検出機能部分が設けられている。筐体
130a,130bの中には光学系、検出系が収まって
いる。146a,146bは各アライメント系からのア
ライメント検出光である。FIG. 9 shows two alignment detection function portions 130a and 130b.
Alignment detection function portions are further provided at two locations corresponding to each side of the corner IC circuit pattern area. An optical system and a detection system are housed in the housings 130a and 130b. Reference numerals 146a and 146b denote alignment detection light from each alignment system.
【0107】これらのアライメント検出機能部分により
得られた信号を処理手段140で処理してXY面内のず
れとギャップ値を求めている。そしてこの結果を判断し
た後、所定の値以内に収まっていないと、各軸ステージ
の駆動系142,141,143を動かして所定のマス
ク/ウエハずれ以内になるように追い込み、然る後にX
線露光ビーム139をマスクMに照射している。アライ
メントが完了するまではX線遮蔽部材(不図示)でシャ
ットしておく。尚図9ではX線源やX線照明系等は省略
してある。The signals obtained by these alignment detecting functional portions are processed by the processing means 140 to obtain the shift in the XY plane and the gap value. After judging this result, if it does not fall within the predetermined value, the drive systems 142, 141, 143 of the respective axis stages are moved to bring it within the predetermined mask / wafer displacement, and after that, X
The mask M is irradiated with the line exposure beam 139. Until the alignment is completed, shut off with an X-ray shielding member (not shown). In FIG. 9, the X-ray source and the X-ray illumination system are omitted.
【0108】[0108]
【発明の効果】本発明によれば以上のように、基板の裏
面をバックエッチングした後にX線透過膜(薄膜又は支
持膜ともいう。)に例えばX線吸収体パターンを形成す
る等、X線透過膜に熱が加わる工程を介する際に温度調
節可能な固体ブロックをX線透過膜の所定領域に接触さ
せておくことにより、X線透過膜が熱を吸収し、温度が
上昇して膜の応力が変化して熱歪が発生するのを効果的
に防止し、高精度なX線吸収体パターンの形成を可能と
したX線マスクの製造方法及びその製造装置を達成する
ことができる。As described above, according to the present invention, after the back surface of the substrate is back-etched, for example, an X-ray absorber pattern is formed on the X-ray transmissive film (also referred to as a thin film or a support film). By keeping the temperature-controllable solid block in contact with a predetermined region of the X-ray transparent film during the process in which heat is applied to the transparent film, the X-ray transparent film absorbs heat and the temperature rises. It is possible to achieve an X-ray mask manufacturing method and a manufacturing apparatus therefor that effectively prevent stress from changing and causing thermal strain, and that enables highly accurate X-ray absorber pattern formation.
【図1】 本発明の第1実施例の要部断面図FIG. 1 is a sectional view of an essential part of a first embodiment of the present invention.
【図2】 本発明の第2実施例の要部断面図FIG. 2 is a sectional view of an essential part of a second embodiment of the present invention.
【図3】 本発明の第3実施例の要部断面図FIG. 3 is a cross-sectional view of an essential part of a third embodiment of the present invention.
【図4】 本発明の第4実施例の要部断面図FIG. 4 is a sectional view of a main part of a fourth embodiment of the present invention.
【図5】 本発明の第5実施例の要部断面図FIG. 5 is a sectional view of the essential parts of a fifth embodiment of the present invention.
【図6】 本発明を適用したX線マスク製造用露光装置
の要部概略図FIG. 6 is a schematic view of a main part of an exposure apparatus for manufacturing an X-ray mask to which the present invention has been applied.
【図7】 本発明に係るX線マスクを用いた半導体デバ
イスの製造方法のフローチャートFIG. 7 is a flowchart of a method for manufacturing a semiconductor device using an X-ray mask according to the present invention.
【図8】 本発明に係るX線マスクを用いた半導体デバ
イスの製造方法のフローチャートFIG. 8 is a flowchart of a method for manufacturing a semiconductor device using an X-ray mask according to the present invention.
【図9】 本発明のX線マスクを用いた露光装置の要部
概略図FIG. 9 is a schematic view of a main part of an exposure apparatus using the X-ray mask of the present invention.
2 原画 3 X線マスク 4 計測手段 5 ビーム 7 X線吸収体パターン 8 レジスト 9 X線透過膜(薄膜) 10 保持枠 11 ホルダー 17 マスクチャック 20,24,34,50 固体ブロック 2 original image 3 X-ray mask 4 measuring means 5 beam 7 X-ray absorber pattern 8 resist 9 X-ray transparent film (thin film) 10 holding frame 11 holder 17 mask chuck 20, 24, 34, 50 solid block
Claims (22)
裏面の所定領域の基板部をバックエッチングにより除去
して枠体を形成し、次いで該薄膜に熱が加わる工程を介
してX線用マスクを製造する際、該熱が加える工程の
際、該薄膜のうちバックエッチングにより基板部を除去
した領域の一部に温度調節可能な固体ブロックを接触さ
せていることを特徴とするX線マスクの製造方法。1. A thin film is provided on a front surface of a substrate, a substrate portion in a predetermined region on the back surface of the substrate is removed by back etching to form a frame, and then X is formed through a step of applying heat to the thin film. In manufacturing the line mask, in the step of applying the heat, a temperature-adjustable solid block is brought into contact with a part of a region of the thin film where the substrate portion is removed by back etching. Method of manufacturing line mask.
表面においてX線吸収体パターンを形成する工程である
ことを特徴とする請求項1のX線マスクの製造方法。2. The method of manufacturing an X-ray mask according to claim 1, wherein the step of applying heat to the thin film is a step of forming an X-ray absorber pattern on the surface of the thin film.
ックの接触面が平面であることを特徴とする請求項1の
X線マスクの製造方法。3. The method of manufacturing an X-ray mask according to claim 1, wherein a contact surface of the solid block which is placed in contact with the thin film is a flat surface.
ックの接触面が凸状の曲面であることを特徴とする請求
項1のX線マスクの製造方法。4. The method of manufacturing an X-ray mask according to claim 1, wherein the contact surface of the solid block that is placed in contact with the thin film is a convex curved surface.
させる際に、該薄膜と該固体ブロックを平行に対面させ
た後、相対的に近接させて接触させることを特徴とする
請求項1のX線マスクの製造方法。5. The X according to claim 1, wherein, when the solid block is placed in contact with the thin film, the thin film and the solid block are faced in parallel and then brought into relatively close contact with each other. Method of manufacturing line mask.
接触させる際に、該薄膜の面変位量を計測し、該面変位
量に基づいて該薄膜と該固体ブロックの近接及び接触状
態を制御していることを特徴とする請求項5のX線マス
クの製造方法。6. The surface displacement amount of the thin film is measured when the thin film and the solid block are brought close to and in contact with each other, and the proximity and contact states of the thin film and the solid block are controlled based on the surface displacement amount. The method of manufacturing an X-ray mask according to claim 5, wherein:
接触させる際に、該薄膜の面変位量を計測し、該面変位
量に基づいて該薄膜と前記枠体のなす面の平面度が所定
の範囲内の値をとるように、該枠体の面の位置出しを行
っていることを特徴とする請求項5のX線マスクの製造
方法。7. When the thin film and the solid block are brought close to and in contact with each other, the amount of surface displacement of the thin film is measured, and the flatness of the surface formed by the thin film and the frame is predetermined based on the amount of surface displacement. The method for manufacturing an X-ray mask according to claim 5, wherein the surface of the frame is positioned so that the value is within the range.
接触させる際に、該薄膜の面変位量を計測し、該面変位
量に基づいて該薄膜と前記枠体とのなす面の平面度が所
定の範囲内の値をとるように、該枠体の面の位置出しを
行うと共に、該薄膜と該固体ブロックを吸着により接触
させていることを特徴とする請求項5のX線マスクの製
造方法。8. When the thin film and the solid block are brought close to and in contact with each other, a surface displacement amount of the thin film is measured, and a flatness of a surface formed by the thin film and the frame body is measured based on the surface displacement amount. The manufacturing of the X-ray mask according to claim 5, wherein the surface of the frame is positioned so that the value falls within a predetermined range, and the thin film and the solid block are brought into contact with each other by adsorption. Method.
とする請求項1から8の何れか一項記載のX線マスクの
製造方法。9. The method of manufacturing an X-ray mask according to claim 1, wherein the thin film is an X-ray transparent film.
の裏側の所定領域の基板部をバックエッチングにより除
去した構成の枠体を所定位置に固定する固定手段、該薄
膜の裏面のうち該バックエッチングにより該基板の基板
部を除去した領域の一部に温度調節可能な固体ブロック
を接触させる接触手段、該薄膜に熱が加わる加工を施す
加工手段そして該固体ブロックの温度調節を行う温調手
段とを利用してX線マスクを製造していることを特徴と
するX線マスクの製造装置。10. A fixing means for fixing at a predetermined position a frame body having a structure in which a substrate portion in a predetermined region on the back side of the substrate having a thin film provided on the front surface is removed by back etching, Contact means for contacting a temperature-controllable solid block with a part of the substrate-removed region of the substrate by back etching, processing means for applying heat to the thin film, and temperature control for temperature control of the solid block. An X-ray mask manufacturing apparatus, which manufactures an X-ray mask using the means.
手段は、該薄膜の表面にX線吸収体パターンを形成する
為の手段であることを特徴とする請求項10のX線マス
クの製造装置。11. The manufacturing method of an X-ray mask according to claim 10, wherein the processing means for applying heat to the thin film is a means for forming an X-ray absorber pattern on the surface of the thin film. apparatus.
ロックの接触面が平面であることを特徴とする請求項1
0のX線マスクの製造装置。12. The contact surface of the solid block disposed in contact with the thin film is a flat surface.
0 X-ray mask manufacturing equipment.
ロックの接触面が凸状の曲面であることを特徴とする請
求項10のX線マスクの製造装置。13. The apparatus for manufacturing an X-ray mask according to claim 10, wherein a contact surface of the solid block placed in contact with the thin film is a convex curved surface.
対面させた後、相対的に近接させて接触させる手段を具
備していることを特徴とする請求項10のX線マスクの
製造装置。14. The apparatus for manufacturing an X-ray mask according to claim 10, further comprising means for facing the thin film and the solid block in parallel and bringing them into close contact with each other.
び接触させる際の該薄膜の面変位量を計測する手段と、
該面変位量に基づいて該薄膜と該固体ブロックの近接及
び接触状態を制御する手段とを具備していることを特徴
とする請求項14のX線マスクの製造装置。15. A means for measuring the amount of surface displacement of the thin film when the thin film and the solid block are brought close to and in contact with each other,
15. The X-ray mask manufacturing apparatus according to claim 14, further comprising means for controlling the proximity and contact state of the thin film and the solid block based on the surface displacement amount.
び接触させる際の該薄膜の面変位量を計測する手段と、
該面変位量に基づいて該薄膜と前記枠体とのなす面の平
面度が所定の範囲内の値をとるように該枠体の面の位置
出しを行う手段とを具備していることを特徴とする請求
項14のX線マスクの製造装置。16. A means for measuring the amount of surface displacement of the thin film when the thin film and the solid block are brought close to and in contact with each other,
And a means for positioning the surface of the frame so that the flatness of the surface formed by the thin film and the frame takes a value within a predetermined range based on the amount of surface displacement. 15. The X-ray mask manufacturing apparatus according to claim 14.
び接触させる際の該薄膜の面変位量を計測する手段と、
該面変位量に基づいて該薄膜と前記枠体とのなす面の平
面度が所定の範囲内の値をとるように、該枠体の面の位
置出しを行う手段と、該薄膜と該固体ブロックを吸着に
より接触させる手段を具備していることを特徴とする請
求項14のX線マスクの製造装置。17. Means for measuring the amount of surface displacement of the thin film when the thin film and the solid block are brought close to and in contact with each other,
Means for positioning the surface of the frame so that the flatness of the surface formed by the thin film and the frame takes a value within a predetermined range based on the amount of surface displacement, the thin film and the solid 15. The X-ray mask manufacturing apparatus according to claim 14, further comprising means for bringing the blocks into contact with each other by suction.
により製造されたことを特徴とするX線マスク。18. An X-ray mask manufactured by the method according to claim 1.
スクを介してX線露光し、所定のパターンを転写する工
程を具備していることを特徴とするX線露光方法。19. An X-ray exposure method comprising a step of exposing a member to be exposed through the X-ray mask according to claim 18 to transfer a predetermined pattern.
クを備え、被露光部材に対し、該X線マスクを介してX
線露光を施し、所定パターンを転写するX線露光装置。20. An X-ray source and the X-ray mask according to claim 18, wherein the member to be exposed is exposed to X-ray through the X-ray mask.
An X-ray exposure device that performs line exposure and transfers a predetermined pattern.
て基板上に形成した被露光部材にX線マスク面上のパタ
ーンを転写し、該基板を加工する工程を具備したプロセ
スによって製造されたことを特徴とする半導体デバイ
ス。21. A substrate is manufactured by a process including a step of transferring a pattern on an X-ray mask surface to an exposed member formed on a substrate according to the X-ray exposure method according to claim 19 and processing the substrate. A semiconductor device characterized by.
該基板の裏面の所定領域の基板部をバックエッチングに
より除去して枠体を形成し、次いで該X線透過膜にX線
吸収体パターンを形成する工程を介してX線用マスクを
製造する際、該熱X線透過膜に熱が加える工程の際に
は、該X線透過膜の裏面のうちのバックエッチングによ
り基板部を除去した領域の一部に温度調節可能な固体ブ
ロックを接触させていることを特徴とするX線マスクの
製造方法。22. After providing an X-ray transparent film on the surface of the substrate,
When manufacturing a mask for X-rays through a step of removing a substrate portion in a predetermined region on the back surface of the substrate by back etching to form a frame, and then forming an X-ray absorber pattern on the X-ray transparent film. During the step of applying heat to the thermal X-ray transparent film, a temperature-controllable solid block is brought into contact with a part of a region of the back surface of the X-ray transparent film where the substrate is removed by back etching. A method for manufacturing an X-ray mask, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34516493A JPH07183202A (en) | 1993-12-21 | 1993-12-21 | Method of manufacturing x-ray mask and manufacturing device of x-ray mask using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34516493A JPH07183202A (en) | 1993-12-21 | 1993-12-21 | Method of manufacturing x-ray mask and manufacturing device of x-ray mask using same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07183202A true JPH07183202A (en) | 1995-07-21 |
Family
ID=18374723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34516493A Pending JPH07183202A (en) | 1993-12-21 | 1993-12-21 | Method of manufacturing x-ray mask and manufacturing device of x-ray mask using same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07183202A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202590A (en) * | 2000-09-25 | 2002-07-19 | Univ Of Houston | Writing method using multi-generation mask |
KR100615536B1 (en) * | 2004-11-19 | 2006-08-25 | 알투스주식회사 | Method and apparatus for manufacturing a thermally applied stretching mask |
JP2019161148A (en) * | 2018-03-16 | 2019-09-19 | 東京エレクトロン株式会社 | Heat treatment apparatus |
-
1993
- 1993-12-21 JP JP34516493A patent/JPH07183202A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002202590A (en) * | 2000-09-25 | 2002-07-19 | Univ Of Houston | Writing method using multi-generation mask |
KR100615536B1 (en) * | 2004-11-19 | 2006-08-25 | 알투스주식회사 | Method and apparatus for manufacturing a thermally applied stretching mask |
JP2019161148A (en) * | 2018-03-16 | 2019-09-19 | 東京エレクトロン株式会社 | Heat treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8098475B2 (en) | Electrostatic clamp, lithographic apparatus and method of manufacturing an electrostatic clamp | |
US7054079B2 (en) | Optical element holder, exposure apparatus, and device fabricating method | |
US6836531B2 (en) | X-ray projection exposure apparatus and a device manufacturing method | |
JP6526575B2 (en) | Lithographic apparatus and method | |
US20090103063A1 (en) | Cooling apparatus for optical member, barrel, exposure apparatus, and device manufacturing method | |
JP4599334B2 (en) | Method for manufacturing article support member | |
JP4307130B2 (en) | Exposure equipment | |
JP4447872B2 (en) | Stage apparatus, exposure apparatus using the stage apparatus, and device manufacturing method using the exposure apparatus | |
TWI284252B (en) | Lithographic projection apparatus, method and the device manufacturing method | |
US9195150B2 (en) | Lithographic apparatus comprising a support for holding an object, and a support for use therein | |
TW201235798A (en) | Lithographic apparatus and device manufacturing method | |
US7294906B2 (en) | Wiring technique | |
TW200527499A (en) | Lithographic apparatus and device manufacturing method | |
TWI474130B (en) | Actuator, lithographic apparatus, and actuator constructing method | |
TWI470362B (en) | Lithographic apparatus and method | |
JPH07183202A (en) | Method of manufacturing x-ray mask and manufacturing device of x-ray mask using same | |
JP4893463B2 (en) | Exposure equipment | |
CN113946104B (en) | System and method for reducing overlay error | |
JP3526162B2 (en) | Substrate holding device and exposure device | |
JP3332762B2 (en) | X-ray mask structure, X-ray exposure apparatus using the X-ray mask structure, and semiconductor device manufactured using the X-ray mask structure | |
JP3278312B2 (en) | Mask, mask support method, mask support mechanism, and exposure apparatus and device manufacturing method using the same | |
JPH07130647A (en) | Mask supporting device and exposure device using same | |
JP2000188249A (en) | Aligner and manufacture of device | |
JPH0750250A (en) | X-ray exposure mask manufacturing device and method |