JPH07174423A - Heat accumulation air-conditioning device - Google Patents
Heat accumulation air-conditioning deviceInfo
- Publication number
- JPH07174423A JPH07174423A JP5320199A JP32019993A JPH07174423A JP H07174423 A JPH07174423 A JP H07174423A JP 5320199 A JP5320199 A JP 5320199A JP 32019993 A JP32019993 A JP 32019993A JP H07174423 A JPH07174423 A JP H07174423A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- refrigerant
- opening
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 title abstract description 10
- 238000009825 accumulation Methods 0.000 title abstract 2
- 239000003507 refrigerant Substances 0.000 claims abstract description 262
- 238000001816 cooling Methods 0.000 claims abstract description 106
- 239000007788 liquid Substances 0.000 claims abstract description 60
- 238000010438 heat treatment Methods 0.000 claims abstract description 41
- 238000005338 heat storage Methods 0.000 claims description 258
- 238000003860 storage Methods 0.000 claims description 52
- 238000001514 detection method Methods 0.000 claims description 46
- 230000007246 mechanism Effects 0.000 claims description 41
- 230000005855 radiation Effects 0.000 claims description 32
- 230000006837 decompression Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 abstract 5
- 239000003570 air Substances 0.000 description 52
- 238000010586 diagram Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 238000009833 condensation Methods 0.000 description 11
- 230000005494 condensation Effects 0.000 description 11
- 230000017525 heat dissipation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Other Air-Conditioning Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば蓄熱媒体を内蔵
した蓄熱槽を備え、昼間の消費電力量の抑制及び電力消
費の平準化に貢献し得る蓄熱式空気調和装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner provided with a heat storage tank containing a heat storage medium and capable of contributing to suppression of daytime power consumption and leveling of power consumption.
【0002】[0002]
【従来の技術】図14は、例えば特開平2−33573
号公報に開示された従来の蓄熱式空気調和装置の回路構
成を示す冷媒配管系統図である。同図に示した回路は、
圧縮機1、凝縮器である非利用側熱交換器2、第1の減
圧機構3、蒸発器である利用側熱交換器4を順次接続し
て成る主冷媒回路6と、蓄冷可能な蓄熱媒体7を内蔵す
る蓄熱槽8と、上記蓄熱槽8の蓄熱媒体7と冷媒との熱
交換を行う蓄冷熱用熱交換器9aを介して上記非利用側
熱交換器2〜第1の減圧機構3間の液側配管5aとガス
側配管5bとの間で冷媒の移動を可能にするバイパス回
路10と、バイパス回路10の液側配管10aに設けら
れた第2の減圧機構11と、上記バイパス回路10のガ
ス側配管10bに並列に接続されて成るバイパス回路1
2と、上記バイパス回路12に設けられ、上記蓄熱槽8
に蓄えられた蓄熱媒体7と冷媒とを熱交換させるために
冷媒を循環させる冷媒ガスポンプ(冷媒ポンプ)13
と、上記バイパス回路12への冷媒の回り込み量を制御
する開閉装置14とから構成されている。2. Description of the Related Art FIG. 14 shows, for example, Japanese Patent Laid-Open No. 2-33573.
FIG. 6 is a refrigerant piping system diagram showing a circuit configuration of a conventional heat storage type air conditioner disclosed in Japanese Patent Publication No. The circuit shown in the figure is
A main refrigerant circuit 6 formed by sequentially connecting a compressor 1, a non-use side heat exchanger 2 which is a condenser, a first pressure reducing mechanism 3, and a use side heat exchanger 4 which is an evaporator, and a heat storage medium capable of storing heat. The non-use side heat exchanger 2 to the first decompression mechanism 3 via the heat storage tank 8 containing 7 and the heat exchanger 9a for cold storage which exchanges heat between the heat storage medium 7 of the heat storage tank 8 and the refrigerant. A bypass circuit 10 that enables the movement of the refrigerant between the liquid-side pipe 5a and the gas-side pipe 5b, a second pressure reducing mechanism 11 provided in the liquid-side pipe 10a of the bypass circuit 10, and the bypass circuit. Bypass circuit 1 which is connected in parallel to the gas side pipe 10b of 10
2 and the heat storage tank 8 provided in the bypass circuit 12
Refrigerant gas pump (refrigerant pump) 13 that circulates the refrigerant in order to exchange heat between the heat storage medium 7 and the refrigerant stored in
And an opening / closing device 14 that controls the amount of refrigerant flowing into the bypass circuit 12.
【0003】次に、この従来装置の動作について説明す
る。尚、符号1〜4を付した各機器は、冷媒配管5を介
して冷媒を循環可能にされており、これらの各機器か
ら、非利用側熱交換器2で室外空気との熱交換により得
た冷熱を利用側熱交換器4で、例えば室内空気に付与す
る主冷媒回路6を構成している。Next, the operation of this conventional device will be described. Each of the devices denoted by reference numerals 1 to 4 is made to be able to circulate a refrigerant through a refrigerant pipe 5, and is obtained from each of these devices by heat exchange with outdoor air in a non-use side heat exchanger 2. The use-side heat exchanger 4 constitutes the main refrigerant circuit 6 that applies, for example, indoor air to the cold heat.
【0004】通常の圧縮機利用冷房運転時(以下、一般
冷房運転と称す)には、上記第2の減圧機構11を全閉
した状態で運転が行われ、冷媒は主冷媒回路6内のみを
循環する。即ち、圧縮機1から吐出された高温高圧のガ
ス状の冷媒は、非利用側熱交換器2で凝縮され、第1の
減圧機構3で断熱膨張して低温の気液二相流になった
後、利用側熱交換器4に流入し、ここで周囲の空気から
熱を奪って周囲を冷房し、自身は蒸発気化して圧縮機1
に戻るように循環する。また、電力負荷の小さい夜間の
時間帯を利用して上記蓄熱槽8に冷熱を蓄える蓄冷運転
時(以下、蓄冷運転と称す)には、第1の減圧機構3を
全閉した状態で運転が行われる。即ち、圧縮機1から吐
出されたガス状の冷媒は、非利用側熱交換器2で凝縮さ
れて液冷媒になり、バイパス回路10に流れ込んで、第
2の減圧機構11で断熱膨張した後、蓄冷熱用熱交換器
9aにて蒸発気化して、蓄熱槽8内の蓄熱媒体7に冷熱
を蓄える。蒸発後の冷媒は開放中の開閉装置14を通り
冷媒配管5を経て圧縮機1に戻る。During a normal cooling operation using a compressor (hereinafter referred to as a general cooling operation), the operation is performed with the second decompression mechanism 11 fully closed, and the refrigerant is only in the main refrigerant circuit 6. Circulate. That is, the high-temperature high-pressure gaseous refrigerant discharged from the compressor 1 is condensed in the non-use side heat exchanger 2 and adiabatically expanded in the first pressure reducing mechanism 3 to become a low-temperature gas-liquid two-phase flow. After that, the heat flows into the heat exchanger 4 on the use side, where heat is taken from the surrounding air to cool the surroundings, and the heat is evaporated and vaporized by the compressor 1 itself.
Circulate back to. Further, during a cold storage operation in which cold heat is stored in the heat storage tank 8 (hereinafter, referred to as a cold storage operation) by utilizing a nighttime time period when the power load is small, the operation is performed with the first pressure reducing mechanism 3 fully closed. Done. That is, the gaseous refrigerant discharged from the compressor 1 is condensed in the non-use side heat exchanger 2 to become a liquid refrigerant, flows into the bypass circuit 10, and adiabatically expands in the second pressure reducing mechanism 11, The heat exchanger 9a for cold storage heat evaporates and vaporizes and stores cold heat in the heat storage medium 7 in the heat storage tank 8. The evaporated refrigerant returns to the compressor 1 through the open / close device 14 and the refrigerant pipe 5.
【0005】そして、夜間のあいだに蓄熱槽8に予め蓄
えた冷熱を、例えば昼間に利用する蓄冷熱利用冷房運転
(以下、放冷運転と称す)では、上記圧縮機1を停止さ
せ開閉装置14を閉じた状態で冷媒ガスポンプ13を運
転させると、冷媒ガスポンプ13により昇圧された低温
低圧のガス冷媒は、バイパス回路10のガス側配管10
bを経て蓄冷熱用熱交換器9aに入って蓄熱媒体7に熱
を与え、自身は凝縮液化する。そして、凝縮液化後の冷
媒は、第2の減圧機構11にて断熱膨張し、低温の気液
二相流体となって利用側熱交換器4に流れ込み、ここで
周囲の空気から熱を奪って周囲を冷房することにより、
自身は蒸発気化してガス側配管5bを通りバイパス回路
12を経て再び冷媒ガスポンプ13に戻る。さらに、こ
の従来装置によると、圧縮機1の運転による一般冷房運
転と放冷運転とを同時に行うこともできる。即ち、圧縮
機1および冷媒ガスポンプ13をいずれも作動させた状
態で運転が行われ、主冷媒回路6の非利用側熱交換器2
で凝縮した冷媒と、バイパス回路10の蓄冷熱用熱交換
器9aで凝縮した冷媒とが、主冷媒回路6の液側配管5
aにて合流し、共に第1の減圧機構3を経て利用側熱交
換器4で蒸発して周囲を冷房するように循環する。During the nighttime, the cold heat stored in the heat storage tank 8 in advance is used, for example, during the daytime to use the cold heat storage cooling operation (hereinafter referred to as "cooling operation") to stop the compressor 1 and open / close the switch 14. When the refrigerant gas pump 13 is operated in the closed state, the low-temperature low-pressure gas refrigerant boosted by the refrigerant gas pump 13 is supplied to the gas side pipe 10 of the bypass circuit 10.
After passing through b, it enters the heat exchanger 9a for cold heat storage and gives heat to the heat storage medium 7, so that it condenses and liquefies itself. Then, the condensed and liquefied refrigerant adiabatically expands in the second decompression mechanism 11, becomes a low-temperature gas-liquid two-phase fluid, and flows into the utilization side heat exchanger 4, where heat is taken from ambient air. By cooling the surroundings,
It itself evaporates and vaporizes, and returns to the refrigerant gas pump 13 again through the gas side pipe 5b and the bypass circuit 12. Further, according to this conventional device, the general cooling operation and the cooling operation by the operation of the compressor 1 can be simultaneously performed. That is, the operation is performed with both the compressor 1 and the refrigerant gas pump 13 operating, and the non-use side heat exchanger 2 of the main refrigerant circuit 6 is operated.
The refrigerant condensed in 1. and the refrigerant condensed in the heat storage heat exchanger 9a of the bypass circuit 10 are connected to the liquid side pipe 5 of the main refrigerant circuit 6.
They are merged at a, and both are circulated so as to cool the surroundings by evaporating at the utilization side heat exchanger 4 through the first pressure reducing mechanism 3.
【0006】以上に示した圧縮機1と冷媒ガスポンプ1
3の同時運転、つまり一般冷房運転と放冷運転の混成運
転は昼間の電力需要に対する負荷低減策として有効に作
用するものであるが、この従来装置のような回路構成で
あれば、放冷運転により夜間に蓄熱槽8に顕熱分として
蓄えられた冷熱エネルギーが消費されて、蓄熱媒体7の
温度が上昇した場合、冷媒凝縮温度の上昇によって必要
空気調和負荷に関係なく冷房能力が低下する。そのた
め、一定の冷房能力の供給が不可能となり、また冷媒循
環流量が減少するため、冷媒が余剰になり高圧上昇や、
冷媒ガスポンプ13への液バックといった、この冷媒回
路を構成する部品に直接損傷を与えるほどの不具合が存
在する。また、上記のように放冷用回路での冷媒凝縮温
度の変化は、この従来装置のように凝縮器2及び蓄冷熱
用熱交換器9aで各々凝縮した冷媒を合流させるため、
圧縮機1の凝縮圧力にも影響を与え、冷媒循環量、及び
能力の低下を引き起こす原因にもなる。そこで、上記の
ような問題の解決策として、空気調和負荷にあわせた冷
媒ガスポンプ13の運転容量制御機構および室内送風機
モータのインバータ制御が考えられるが、装置の製作に
高コスト化が強いられるため、実際の機器への応用に関
して有効な手段であるとは言えない。The compressor 1 and the refrigerant gas pump 1 shown above
The simultaneous operation of No. 3, that is, the mixed operation of the general cooling operation and the cooling operation, effectively acts as a load reduction measure for the daytime power demand, but if the circuit configuration of this conventional device is used, the cooling operation is performed. Thus, when the cold energy stored as sensible heat in the heat storage tank 8 is consumed at night and the temperature of the heat storage medium 7 rises, the cooling capacity decreases due to the rise in the refrigerant condensation temperature regardless of the air conditioning load required. Therefore, it becomes impossible to supply a constant cooling capacity, and since the refrigerant circulation flow rate decreases, the refrigerant becomes excessive and the high pressure rises,
There are problems such as liquid backing to the refrigerant gas pump 13 that directly damages the components that make up the refrigerant circuit. Further, as described above, the change in the refrigerant condensing temperature in the cooling circuit causes the refrigerant condensed in the condenser 2 and the heat exchanger 9a for cold storage to join together as in the conventional device,
It also affects the condensing pressure of the compressor 1 and causes a decrease in the refrigerant circulation amount and capacity. Therefore, as a solution to the above problems, an operating capacity control mechanism of the refrigerant gas pump 13 and an inverter control of an indoor blower motor that are suitable for an air conditioning load can be considered, but the cost of manufacturing the device is forced to be high. It cannot be said that this is an effective means for application to actual equipment.
【0007】[0007]
【発明が解決しようとする課題】従来の蓄熱式空気調和
装置は、以上のように構成されているので、放冷運転の
単独運転、又は放冷運転と一般冷房運転との同時併用運
転をさせる際に、蓄熱媒体7の温度変化により、冷房能
力が低下し、必要能力を供給できないばかりか、冷媒循
環量の低下により回路内の冷媒量が余剰になり冷媒ガス
ポンプ13および、圧縮機1への液バック等、運転継続
に支障をきたすという問題があった。このような問題
は、従来装置の冷媒回路において、その冷媒循環方向を
逆にしたいわゆるヒートポンプ式の構成を採り、その構
成により暖房運転や蓄熱運転を切換可能に行うようにし
た場合にも、同様に起こり得るものと考えられる。特
に、この問題は冬季に蓄熱槽8内に高温の状態で熱エネ
ルギーを蓄えた場合に顕著な問題となる。Since the conventional heat storage type air conditioner is configured as described above, it is possible to perform the stand-alone operation of the cooling operation or the simultaneous combined operation of the cooling operation and the general cooling operation. At this time, due to the temperature change of the heat storage medium 7, not only the cooling capacity is reduced and the required capacity cannot be supplied, but also the refrigerant amount in the circuit becomes excessive due to the decrease in the refrigerant circulation amount, and the refrigerant gas pump 13 and the compressor 1 There was a problem such as a liquid bag that interferes with continuous operation. Such a problem is the same in the case where the refrigerant circuit of the conventional device adopts a so-called heat pump type configuration in which the refrigerant circulation direction is reversed and the heating operation and the heat storage operation can be switched by the configuration. It is possible that In particular, this problem becomes remarkable when the heat energy is stored in the heat storage tank 8 at a high temperature in the winter.
【0008】放冷・放熱用回路による放熱運転の際、蓄
熱媒体7が高温状態である運転立ち上がり時には、所定
または所定能力以上の暖房能力を供給することができ
る。しかしながら、蓄熱槽8内に蓄えられた熱エネルギ
ーを放熱運転サイクルの蒸発エネルギーとして消費し、
蓄熱媒体7の温度が低下するに従い、蒸発温度が低下す
るため暖房能力は著しく低下し、供給能力が不足すると
いう問題が発生する。そのため、蓄熱槽8内の温度が低
下していれば暖房負荷が大きくなった場合にもその時必
要な暖房能力を供給できないことが起こり得るものと考
えられる。更に、運転立ち上げ時に蓄熱量の大部分を消
費するため、その後の運転では所定能力以下の状態が長
時間強いられることになるといった不具合があった。During the heat radiation operation by the cooling / radiating circuit, at the start of the operation when the heat storage medium 7 is in a high temperature state, it is possible to supply a heating capacity which is a predetermined value or higher. However, the heat energy stored in the heat storage tank 8 is consumed as the evaporation energy of the heat radiation operation cycle,
As the temperature of the heat storage medium 7 decreases, the evaporation temperature decreases, so that the heating capacity significantly decreases and the supply capacity becomes insufficient. Therefore, it is conceivable that if the temperature in the heat storage tank 8 is lowered, the required heating capacity cannot be supplied even when the heating load is increased. Further, since most of the heat storage amount is consumed when the operation is started up, there is a problem that a state below the predetermined capacity is forced for a long time in the subsequent operation.
【0009】また、上記のように能力が低下するばかり
ではなく、必要冷媒流量も少なくなってくるため、冷媒
回路内の冷媒が余剰になり冷媒ガスポンプ13での液圧
縮及び冷媒ガスポンプ13からの冷凍機油の持ち出し量
が増え、ポンプ軸受けの焼き付きによる故障によって運
転の継続に支障を来すという問題があった。Further, not only the capacity is lowered as described above, but also the required refrigerant flow rate is reduced, so that the refrigerant in the refrigerant circuit becomes excessive, and liquid compression in the refrigerant gas pump 13 and refrigeration from the refrigerant gas pump 13 are performed. There was a problem that the amount of machine oil taken out increased and the continuation of operation was hindered due to a failure due to seizure of the pump bearing.
【0010】本発明は、上記のような問題点を解消する
ために為されたものであって、夜間の安価な電力を用い
蓄熱槽内へ蓄えた冷熱・熱エネルギーを利用して放冷・
放熱運転させる際、蓄熱媒体の温度に影響されず一定の
能力を安定して供給し得、またそのときの空気調和負荷
に応じた冷暖房能力の供給により負荷が最大のピーク時
に最大能力を供給し得、さらには放冷・放熱運転時に、
循環冷媒量の変化に伴った冷媒余剰による液バック、冷
凍機油枯渇等の不具合なく安定した運転を継続し得る安
価な構成の蓄熱式空気調和装置の提供を目的とするもの
である。The present invention has been made in order to solve the above-mentioned problems, and uses the cold power and the cold energy stored in the heat storage tank at night to save the heat and cool the heat.
When performing heat dissipation operation, it is possible to stably supply a certain capacity without being affected by the temperature of the heat storage medium, and by supplying the cooling and heating capacity according to the air conditioning load at that time, the maximum capacity is supplied at the peak of the load. In addition, during cooling and heat radiation operation,
It is an object of the present invention to provide a heat storage type air conditioner having an inexpensive structure that can continue stable operation without trouble such as liquid backing due to excess refrigerant due to changes in the amount of circulating refrigerant and depletion of refrigerating machine oil.
【0011】[0011]
【課題を解決するための手段】上記した目的を達成する
ために、本発明による蓄熱式空気調和装置は、冷媒ポン
プ、四方切換弁、蓄冷熱用熱交換器、減圧機構、及び利
用側熱交換器を順次接続して成り、四方切換弁の冷媒流
路切り換えにより利用側熱交換器を介して冷房または暖
房を切り換え自在に行う放冷・放熱用回路と、蓄冷熱用
熱交換器を介して蓄冷・蓄熱または放冷・放熱を行う蓄
熱媒体を内蔵した蓄熱槽と、放冷・放熱用回路の液側配
管と冷媒ポンプの吸入配管との間に接続され第1の開閉
装置を有して成る第1のバイパス回路と、蓄熱槽に設け
られ蓄熱媒体温度を検出する蓄冷熱温度検出装置と、予
め蓄冷・蓄熱された蓄熱媒体に対し蓄冷熱用熱交換器及
び利用側熱交換器を介して放冷・放熱運転を行う際に、
蓄冷熱温度検出装置により検出された蓄熱媒体温度に基
づいて第1の開閉装置を開閉制御する第1の制御装置と
を具備してなるものとしてある。In order to achieve the above object, a heat storage type air conditioner according to the present invention comprises a refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a heat exchange on the use side. Via a four-way switching valve to switch the cooling medium flow path through the heat exchanger on the utilization side by switching the refrigerant flow path of the four-way switching valve A heat storage tank having a built-in heat storage medium for storing and releasing heat or releasing and releasing heat, and a first switchgear connected between the liquid side pipe of the cooling and releasing circuit and the suction pipe of the refrigerant pump. The first bypass circuit consisting of, the cold storage heat temperature detection device for detecting the temperature of the heat storage medium provided in the heat storage tank, and the heat exchanger for cold storage heat and the heat exchanger for use on the side of the cold storage heat storage medium for storing the heat storage medium in advance. When performing cooling and heat dissipation operation by
A first control device for controlling the opening / closing of the first opening / closing device based on the heat storage medium temperature detected by the cold storage heat temperature detecting device.
【0012】また、冷媒ポンプ、四方切換弁、蓄冷熱用
熱交換器、減圧機構、及び利用側熱交換器を順次接続し
て成り、四方切換弁の冷媒流路切り換えにより利用側熱
交換器を介して冷房または暖房を切り換え自在に行う放
冷・放熱用回路と、蓄冷熱用熱交換器を介して蓄冷・蓄
熱または放冷・放熱を行う蓄熱媒体を内蔵した蓄熱槽
と、放冷・放熱用回路の液側配管と冷媒ポンプの吸入配
管との間に接続され第1の開閉装置を有して成る第1の
バイパス回路と、冷媒ポンプの運転負荷量を検出する負
荷量検出装置と、予め蓄冷・蓄熱された蓄熱媒体に対し
蓄冷熱用熱交換器及び利用側熱交換器を介して放冷・放
熱運転を行う際に、負荷量検出装置により検出された冷
媒ポンプの運転負荷量に基づいて第1の開閉装置を開閉
制御する第2の制御装置とを具備してなるものである。Further, a refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchanger is switched by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage tank that contains a heat storage medium that stores and stores heat or cools and releases heat via a heat storage heat exchanger A first bypass circuit connected between the liquid side pipe of the working circuit and the suction pipe of the refrigerant pump and having a first opening / closing device; and a load amount detecting device for detecting the operating load amount of the refrigerant pump, When performing cooling / radiating operation via the heat exchanger for cold storage and the heat exchanger on the use side for the heat storage medium that has previously stored cold / heat, the operating load of the refrigerant pump detected by the load detector Second control for controlling opening / closing of the first opening / closing device based on It is those formed by and a location.
【0013】更に、冷媒ポンプ、四方切換弁、蓄冷熱用
熱交換器、減圧機構、及び利用側熱交換器を順次接続し
て成り、四方切換弁の冷媒流路切り換えにより利用側熱
交換器を介して冷房または暖房を切り換え自在に行う放
冷・放熱用回路と、蓄冷熱用熱交換器を介して蓄冷・蓄
熱または放冷・放熱する蓄熱媒体を内蔵した蓄熱槽と、
冷媒ポンプの吐出配管と吸入配管との間に接続され第2
の開閉装置を有して成る第2のバイパス回路と、蓄熱槽
に設けられ蓄熱媒体温度を検出する蓄冷熱温度検出装置
と、予め蓄冷・蓄熱された蓄熱媒体に対し蓄冷熱用熱交
換器及び利用側熱交換器を介して放冷・放熱運転を行う
際に、蓄冷熱温度検出装置により検出された蓄熱媒体温
度に基づいて第2の開閉装置を開閉制御する第3の制御
装置とを具備してなるものである。Further, a refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchanger is switched by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage tank that has a built-in heat storage medium that stores and stores heat or cools and releases heat via a heat storage heat exchanger.
Secondly connected between the discharge pipe and the suction pipe of the refrigerant pump.
Second bypass circuit having an opening / closing device, a cold storage heat temperature detecting device provided in the heat storage tank for detecting the temperature of the heat storage medium, a heat exchanger for cold storage heat for a heat storage medium that has been previously cold stored / stored, and And a third control device for controlling opening / closing of the second switch device based on the heat storage medium temperature detected by the cool heat storage temperature detection device when performing cooling / radiating operation via the use side heat exchanger. It will be done.
【0014】そして、冷媒ポンプ、四方切換弁、蓄冷熱
用熱交換器、減圧機構、及び利用側熱交換器を順次接続
して成り、四方切換弁の冷媒流路切り換えにより利用側
熱交換器を介して冷房または暖房を切り換え自在に行う
放冷・放熱用回路と、蓄冷熱用熱交換器を介して蓄冷・
蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄熱槽
と、冷媒ポンプの吐出配管と吸入配管との間に接続され
第2の開閉装置を有して成る第2のバイパス回路と、冷
媒ポンプの運転負荷量を検出する負荷量検出装置と、予
め蓄冷・蓄熱された蓄熱媒体に対し蓄冷熱用熱交換器及
び利用側熱交換器を介して放冷・放熱運転を行う際に、
負荷量検出装置により検出された冷媒ポンプの運転負荷
量に基づいて第2の開閉装置を開閉制御する第4の制御
装置とを具備してなるものである。The refrigerant pump, the four-way switching valve, the heat exchanger for cold storage heat, the pressure reducing mechanism, and the usage-side heat exchanger are sequentially connected, and the usage-side heat exchanger is switched by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage / heat storage heat exchanger
A heat storage tank containing a heat storage medium for storing heat or releasing and radiating heat; a second bypass circuit having a second opening / closing device connected between the discharge pipe and the suction pipe of the refrigerant pump; When performing a cooling / radiating operation through a load amount detection device that detects an operating load amount, and a heat storage medium for heat storage and a heat storage medium for heat storage for a heat storage medium that has been stored in advance in advance,
A fourth control device for controlling the opening / closing of the second opening / closing device based on the operating load amount of the refrigerant pump detected by the load amount detecting device.
【0015】また、冷媒ポンプ、四方切換弁、蓄冷熱用
熱交換器、減圧機構、及び利用側熱交換器を順次接続し
て成り、四方切換弁の冷媒流路切り換えにより利用側熱
交換器を介して冷房または暖房を切り換え自在に行う放
冷・放熱用回路と、蓄冷熱用熱交換器を介して蓄冷・蓄
熱または放冷・放熱を行う蓄熱媒体を内蔵した蓄熱槽
と、放冷・放熱用回路の液側配管と冷媒ポンプの吸入配
管との間に接続され第1の開閉装置を有して成る第1の
バイパス回路と、冷媒ポンプの吐出配管と吸入配管との
間に接続され第2の開閉装置を有して成る第2のバイパ
ス回路と、蓄熱槽に設けられ蓄熱媒体温度を検出する蓄
冷熱温度検出装置と、冷媒ポンプの吸入配管内の冷媒の
過熱度を検出する冷媒状態検出装置と、予め蓄冷・蓄熱
された蓄熱媒体に対し蓄冷熱用熱交換器及び利用側熱交
換器を介して放冷・放熱運転を行う際に、蓄冷熱温度検
出装置により検出された蓄熱媒体温度に基づいて第1の
開閉装置を開閉制御するとともに、第1の開閉装置の開
放時に冷媒状態検出装置により検出された過熱度に基づ
いて第2の開閉装置を開閉制御する第5の制御装置とを
具備してなるものである。Further, a refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchanger is switched by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage tank that contains a heat storage medium that stores and stores heat or cools and releases heat via a heat storage heat exchanger A first bypass circuit connected between the liquid side pipe of the working circuit and the suction pipe of the refrigerant pump and having a first switchgear; and a first bypass circuit connected between the discharge pipe and the suction pipe of the refrigerant pump. A second bypass circuit having two opening / closing devices, a cold storage heat temperature detecting device provided in the heat storage tank for detecting the temperature of the heat storage medium, and a refrigerant state for detecting the degree of superheat of the refrigerant in the suction pipe of the refrigerant pump. The detector and the heat storage medium that has previously stored heat While performing the cooling / radiating operation via the heat exchanger for cold storage and the heat exchanger on the use side, the opening / closing control of the first opening / closing device is performed based on the heat storage medium temperature detected by the cold storage heat temperature detection device. A fifth control device for controlling the opening / closing of the second opening / closing device based on the degree of superheat detected by the refrigerant state detecting device when the first opening / closing device is opened.
【0016】また、冷媒ポンプ、四方切換弁、蓄冷熱用
熱交換器、開度可変の減圧機構、及び利用側熱交換器を
順次接続して成り、四方切換弁の冷媒流路切り換えによ
り利用側熱交換器を介して冷房または暖房を切り換え自
在に行う放冷・放熱用回路と、蓄冷熱用熱交換器を介し
て蓄冷・蓄熱または放冷・放熱を行う蓄熱媒体を内蔵し
た蓄熱槽と、放冷・放熱用回路の液側配管と冷媒ポンプ
の吸入配管との間に接続され第1の開閉装置を有して成
る第1のバイパス回路と、蓄熱槽に設けられ蓄熱媒体温
度を検出する蓄冷熱温度検出装置と、冷媒ポンプの吸入
配管内の冷媒の過熱度を検出する冷媒状態検出装置と、
予め蓄冷・蓄熱された蓄熱媒体に対し蓄冷熱用熱交換器
及び利用側熱交換器を介して放冷・放熱運転を行う際
に、蓄冷熱温度検出装置により検出された蓄熱媒体温度
に基づいて第1の開閉装置を開閉制御するとともに、第
1の開閉装置の開放時に冷媒状態検出装置により検出さ
れた過熱度に基づいて減圧機構を絞り制御する第6の制
御装置とを具備してなるものである。A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a decompression mechanism with a variable opening degree, and a heat exchanger on the use side are sequentially connected. A heat releasing / radiating circuit that freely switches between cooling and heating via a heat exchanger, and a heat storage tank that has a built-in heat storage medium that performs cool storage / heat storage or heat discharging / radiating via the heat storage heat exchanger, A first bypass circuit, which is connected between the liquid side pipe of the cooling / radiating circuit and the suction pipe of the refrigerant pump, and has a first opening / closing device, and the heat storage medium temperature provided in the heat storage tank are detected. Cooled heat temperature detection device, a refrigerant state detection device for detecting the degree of superheat of the refrigerant in the suction pipe of the refrigerant pump,
Based on the temperature of the heat storage medium detected by the cool heat storage temperature detection device when performing heat discharge / heat radiation operation via the heat storage for heat storage and heat exchanger for use on the side A sixth control device for controlling the opening / closing of the first opening / closing device, and controlling the pressure reducing mechanism based on the degree of superheat detected by the refrigerant state detecting device when the first opening / closing device is opened. Is.
【0017】[0017]
【作用】本発明による蓄熱式空気調和装置では、冷媒ポ
ンプ駆動による放熱(放冷)運転の際に、蓄熱槽内の蓄
熱媒体の温度が蓄冷熱温度検出装置により検出される。
そして、第1の制御装置は、蓄熱媒体の温度が高く(低
く)、即ち著しく大きな暖房(冷房)能力が供給されて
いると判断した場合、放冷・放熱用回路の液側配管と冷
媒ポンプの吸入配管との間に接続された第1のバイパス
回路の第1の開閉装置を開放し、液側配管の液冷媒を吸
入配管へバイパスさせ冷媒の凝縮圧力を予め設定されて
いる凝縮圧力に調整して、所定の能力となるように制御
する。また、放熱(放冷)運転により蓄熱槽の熱(冷
熱)エネルギーが消費され蓄熱媒体の温度が低下(上
昇)してきた場合は、速やかに第1の開閉装置を閉の状
態にし、液冷媒のバイパスを中止して能力の低下を防
ぐ。このように、蓄熱媒体の温度をパラメータとして第
1の開閉装置を制御することにより、能力が平準化され
て、一日の供給能力が平均して長時間にわたり安定供給
される。In the heat storage type air conditioner according to the present invention, the temperature of the heat storage medium in the heat storage tank is detected by the cool heat storage temperature detecting device during the heat radiation (cooling) operation by driving the refrigerant pump.
Then, when the first control device determines that the temperature of the heat storage medium is high (low), that is, a significantly large heating (cooling) capacity is being supplied, the liquid side pipe of the cooling / radiating circuit and the refrigerant pump. Open the first opening / closing device of the first bypass circuit connected between the suction pipe and the suction pipe, and bypass the liquid refrigerant in the liquid side pipe to the suction pipe to set the condensation pressure of the refrigerant to a preset condensation pressure. It is adjusted so as to obtain a predetermined ability. Further, when the heat (cold heat) energy of the heat storage tank is consumed by the heat radiation (cooling) operation and the temperature of the heat storage medium is lowered (increased), the first switchgear is promptly closed to remove the liquid refrigerant. Stop bypassing to prevent loss of capacity. In this way, by controlling the first switchgear using the temperature of the heat storage medium as a parameter, the capacity is leveled, and the daily supply capacity is stably supplied for a long time on average.
【0018】また、冷媒ポンプ駆動による放熱(放冷)
運転の際に、冷媒ポンプの運転負荷量が負荷量検出装置
により検出される。そして、第2の制御装置は、運転負
荷量が高く、即ち所定能力より著しく大きな能力が供給
されていると判断した場合、放冷・放熱用回路の液側配
管と冷媒ポンプの吸入配管との間に接続された第1のバ
イパス回路の第1の開閉装置を開放し、液冷媒を冷媒ポ
ンプの吸入側へバイパスさせ、冷媒ポンプの運転負荷量
が予め設定された負荷となり所定能力を供給するよう能
力抑制の制御を行う。また、放熱(放冷)運転の継続に
より運転負荷量が低下し暖房(冷房)能力が低下してき
た場合は速やかに第1の開閉装置を閉の状態にし、液冷
媒のバイパスを中心して能力の低下を防ぐ。この冷媒ポ
ンプ運転負荷量をパラメータとして能力制御することに
より、運転負荷量が高い場合、例えば室内吸込空気温度
が高く(低く)、必要暖房(冷房)負荷が比較的小さい
場合でも冷媒凝縮圧力を制御して能力を抑えて、熱(冷
熱)エネルギーの消費を抑える。逆に、必要暖房(冷
房)負荷が大きい場合は能力の抑制を行わず、その時点
における最大能力を発揮させる。Further, heat dissipation (cooling) by driving the refrigerant pump
During operation, the operation load amount of the refrigerant pump is detected by the load amount detection device. Then, when the second control device determines that the operating load is high, that is, the capacity that is significantly larger than the predetermined capacity is being supplied, the second controller controls the liquid side piping of the cooling / radiating circuit and the suction piping of the refrigerant pump. The first switchgear of the first bypass circuit connected between them is opened to bypass the liquid refrigerant to the suction side of the refrigerant pump, and the operation load amount of the refrigerant pump becomes a preset load to supply a predetermined capacity. Control the ability to suppress. Further, when the operation load amount decreases due to the continuation of the heat radiation (cooling) operation and the heating (cooling) capacity decreases, the first opening / closing device is promptly closed and the capacity of the liquid refrigerant bypass Prevent the decline. By controlling the capacity of this refrigerant pump operating load as a parameter, the refrigerant condensing pressure is controlled even when the operating load is high, for example, when the indoor intake air temperature is high (low) and the required heating (cooling) load is relatively low. Then, the ability is suppressed and the consumption of heat (cold heat) energy is suppressed. On the contrary, when the required heating (cooling) load is large, the capacity is not suppressed and the maximum capacity at that time is exhibited.
【0019】更に、冷媒ポンプ駆動による放熱(放冷)
運転の際に、蓄熱槽内の蓄冷熱温度検出装置により蓄熱
媒体の温度が検出される。そして、第3の制御装置は、
蓄熱媒体温度が高く(低く)、暖房(冷房)能力が著し
く大きく供給されていると判断した場合、冷媒ポンプの
吐出配管と吸入配管との間に接続された第2のバイパス
回路の第2の開閉装置を開放して、放冷・放熱用回路の
主回路における冷媒循環流量を減少させて所定能力以上
の供給を抑える。また、放熱(放冷)運転により蓄熱槽
の熱(冷熱)エネルギーが消費され蓄熱媒体の温度が低
下(上昇)してきた場合は速やかに第2の開閉装置を閉
の状態にし、能力供給を増進させる。この蓄熱媒体温度
をパラメータとする制御により供給能力を一定に保ち能
力を平準化させるので、一日の供給能力を平均して長時
間にわたり安定供給する。Further, heat dissipation (cooling) by driving the refrigerant pump
During operation, the temperature of the heat storage medium is detected by the cool heat storage temperature detection device in the heat storage tank. And the third control device
When it is determined that the heat storage medium temperature is high (low) and the heating (cooling) capacity is significantly high, the second bypass circuit of the second bypass circuit connected between the discharge pipe and the suction pipe of the refrigerant pump is connected. The switchgear is opened to reduce the refrigerant circulation flow rate in the main circuit of the cooling / radiating circuit to suppress the supply of more than a predetermined capacity. When the heat (cooling) energy of the heat storage tank is consumed by the heat radiation (cooling) operation and the temperature of the heat storage medium decreases (rises), the second switchgear is immediately closed to increase the capacity supply. Let By controlling the heat storage medium temperature as a parameter, the supply capacity is kept constant and the capacity is leveled, so that the supply capacity of one day is averaged and stable supply is performed for a long time.
【0020】そして、冷媒ポンプ駆動による放熱(放
冷)運転の際に、冷媒ポンプの運転負荷量が負荷量検出
装置により検出される。そして、第4の制御装置は、冷
媒ポンプの運転負荷量が高く、即ち所定能力以上の能力
が供給されていると判断した場合、冷媒ポンプの吐出配
管と吸入配管との間に接続された第2のバイパス回路の
第2の開閉装置を開放して、放冷・放熱用回路の主回路
における冷媒循環流量を減少させて所定能力まで抑制す
る。また、冷媒ポンプの運転負荷量が低下してきた場合
は速やかに第2の開閉装置を閉の状態にする。この冷媒
ポンプの運転負荷量をパラメータとする制御により運転
負荷量が高い、即ち必要暖房(冷房)負荷として比較的
低い場合は、蓄熱槽の熱(冷熱)エネルギーの消費を抑
える。逆に、必要暖房(冷房)負荷が大きい場合は最大
能力を供給させる。この能力制御により負荷が小さい場
合に供給能力を抑制して蓄熱槽の熱(冷熱)エネルギー
を温存しておいて、負荷のピーク時に最大の能力を供給
するのである。During the heat radiation (cooling) operation by driving the refrigerant pump, the operation load amount of the refrigerant pump is detected by the load amount detecting device. Then, when the fourth control device determines that the operation load amount of the refrigerant pump is high, that is, the capacity equal to or higher than the predetermined capacity is supplied, the fourth control device is connected between the discharge pipe and the suction pipe of the refrigerant pump. The second opening / closing device of the second bypass circuit is opened to reduce the refrigerant circulation flow rate in the main circuit of the cooling / radiating circuit to suppress it to a predetermined capacity. Further, when the operating load of the refrigerant pump decreases, the second switchgear is immediately closed. When the operating load is high, that is, when the required heating (cooling) load is relatively low, the consumption of heat (cooling) energy in the heat storage tank is suppressed by the control using the operating load of the refrigerant pump as a parameter. On the contrary, when the required heating (cooling) load is large, the maximum capacity is supplied. By this capacity control, when the load is small, the supply capacity is suppressed to save the heat (cold heat) energy of the heat storage tank, and the maximum capacity is supplied at the peak of the load.
【0021】また、冷媒ポンプ駆動による放熱(放冷)
運転時に、第5の制御装置が、能力調整のため液側配管
と冷媒ポンプの吸入配管との間に接続された第1のバイ
パス回路の第1の開閉装置を開いて冷媒をバイパスさせ
るが、そのとき、液側配管からの液冷媒が冷媒ポンプの
吸入側へ直接バイパスされるため液圧縮による冷媒ポン
プ故障にいたるおそれがある。そこで、第5の制御装置
は、第1の開閉装置を開にすると同時に、第2のバイパ
ス回路の第2の開閉装置を開の状態にして冷媒ポンプ吐
出側から吸入側にバイパスさせた高温高圧のガス冷媒を
用いて、第1のバイパスからの液冷媒を過熱蒸発させる
程度まで吸入側の冷媒の過熱度を上昇させる。これによ
って、冷媒ポンプへの液バックを防止し、不具合のない
安定した運転を継続させる。Further, heat radiation (cooling) by driving a refrigerant pump
During operation, the fifth control device opens the first opening / closing device of the first bypass circuit connected between the liquid side pipe and the suction pipe of the refrigerant pump for capacity adjustment to bypass the refrigerant, At that time, since the liquid refrigerant from the liquid side pipe is directly bypassed to the suction side of the refrigerant pump, there is a possibility that the refrigerant pump may malfunction due to liquid compression. Therefore, the fifth control device opens the first switchgear and simultaneously opens the second switchgear of the second bypass circuit to open the high-temperature high-pressure system that bypasses the refrigerant pump from the discharge side to the suction side. Using the gas refrigerant of No. 3, the degree of superheat of the refrigerant on the suction side is increased to the extent that the liquid refrigerant from the first bypass is superheated and evaporated. As a result, liquid backing to the refrigerant pump is prevented, and stable and stable operation is continued.
【0022】また、冷媒ポンプ駆動による放熱(放冷)
運転時に、第6の制御装置が、能力調整のため液側配管
と冷媒ポンプの吸入配管との間に接続された第1のバイ
パス回路を通して冷媒をバイパスさせた場合、液側配管
からの液冷媒が冷媒ポンプ吸入側に直接バイパスされる
ため液圧縮による冷媒ポンプ故障を生じるおそれがあ
る。そこで、第6の制御装置は、第1の開閉装置を開い
たときには、液側配管の冷媒流通方向上流側に配備され
た減圧機構による冷媒の絞り調整を絞り気味にして、冷
媒ポンプ吸入側における冷媒をガス状態とする程度まで
に吸入側の過熱度を大きくする。これによって、冷媒ポ
ンプへの液バックを防止し、不具合のない安定した運転
を継続させる。Further, heat dissipation (cooling) by driving the refrigerant pump
During operation, when the sixth control device bypasses the refrigerant through the first bypass circuit connected between the liquid side pipe and the suction pipe of the refrigerant pump for capacity adjustment, the liquid refrigerant from the liquid side pipe Is directly bypassed to the suction side of the refrigerant pump, which may cause a failure of the refrigerant pump due to liquid compression. Therefore, the sixth control device, when the first opening / closing device is opened, makes the throttle adjustment of the refrigerant by the pressure reducing mechanism arranged on the upstream side in the refrigerant circulation direction of the liquid side pipe slightly throttle, and causes the refrigerant pump suction side. The degree of superheat on the suction side is increased to such an extent that the refrigerant becomes a gas state. As a result, liquid backing to the refrigerant pump is prevented, and stable and stable operation is continued.
【0023】[0023]
実施例1.以下、本発明の実施例1を図1〜図3に基づ
いて説明する。図1は請求項1及び請求項2を適用した
実施例1及び実施例2に係る蓄熱式空気調和装置の全体
構成を示す冷媒配管系統図である。図中、1は圧縮機、
2は例えば室外空気と冷媒との間で熱交換を行う非利用
側熱交換器、3は第1の減圧機構、4aは第1の利用側
熱交換器、17は第1のアキュムレータであって、これ
らを順次接続して圧縮機利用冷暖房回路(以下、一般冷
暖房用回路と称す)18を構成しており、上記第1の利
用側熱交換器4aを介して、例えば室内の冷房または暖
房を行うようになっている。そして、上記一般冷暖房用
回路18は、第1の利用側熱交換器4aに接続され、開
閉装置16aを含むバイパス回路16bに並列してなる
第3の減圧機構16と、上記第1の減圧機構3の出入側
に並列に接続され開閉装置3aを含むバイパス回路3b
とを備えている。Example 1. Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a refrigerant piping system diagram showing an overall configuration of a heat storage type air conditioner according to Embodiments 1 and 2 to which Claims 1 and 2 are applied. In the figure, 1 is a compressor,
2 is a non-use side heat exchanger that exchanges heat between outdoor air and a refrigerant, 3 is a first pressure reducing mechanism, 4a is a first use side heat exchanger, and 17 is a first accumulator. , And these are sequentially connected to form a compressor-use cooling / heating circuit (hereinafter, referred to as a general cooling / heating circuit) 18, and, for example, cooling or heating of a room is performed via the first use-side heat exchanger 4a. I am supposed to do it. The general cooling and heating circuit 18 is connected to the first usage-side heat exchanger 4a and is arranged in parallel with the bypass circuit 16b including the switchgear 16a, and the third pressure reducing mechanism 16 and the first pressure reducing mechanism. By-pass circuit 3b including switchgear 3a connected in parallel to the inlet and outlet sides of 3
It has and.
【0024】一方、13は冷媒ガスポンプ、9は蓄冷熱
用熱交換器、20は第2の減圧機構、4bは第2の利用
側熱交換器、13aは第2のアキュムレータであって、
これらを順次接続して蓄冷熱利用冷暖房回路(以下、放
冷・放熱用回路と称す)21を構成しており、上記第2
の利用側熱交換器4bを介して、例えば室内の冷房また
は暖房を行うようになっている。そして、7は上記蓄冷
熱用熱交換器9を介して蓄冷または蓄熱する蓄熱媒体で
あり、8は上記蓄熱媒体7を内蔵する蓄熱槽である。蓄
熱媒体7としては、例えば水が用いられ、この場合の蓄
熱手段としては、蓄冷時は製氷により冷熱の大部分を潜
熱として蓄え、蓄熱時は定常な暖房運転に達するまでの
立ち上げに十分な顕熱量を温湯として蓄えることにより
実現される。また、11は第2の利用側熱交換器4bに
接続され開閉装置11aを含むバイパス回路11bを並
列してなる第4の減圧機構である。上記第2の減圧機構
20はその出入口側に開閉装置20aを含むバイパス回
路20bが並列に接続されて構成されている。尚、上記
第1の利用側熱交換器4a及び第2の利用側熱交換器4
bは、それぞれ個別独立の冷媒回路に配備されており、
双方を併せて利用側熱交換器4と称するが、それぞれの
熱交換部分は共通の風路内或いは個々に独立した風路内
の何れに設けられてあっても構わない。On the other hand, 13 is a refrigerant gas pump, 9 is a heat exchanger for cold storage heat, 20 is a second pressure reducing mechanism, 4b is a second utilization side heat exchanger, and 13a is a second accumulator.
These are connected in sequence to form a cooling / heating circuit (hereinafter, referred to as a cooling / radiating circuit) 21 that uses cold storage heat, and the above-mentioned second
For example, the room is cooled or heated via the utilization side heat exchanger 4b. Further, 7 is a heat storage medium for storing or storing heat via the heat exchanger 9 for heat storage for cold storage, and 8 is a heat storage tank containing the heat storage medium 7 therein. As the heat storage medium 7, for example, water is used. As the heat storage means in this case, most of the cold heat is stored as latent heat by ice making at the time of cold storage, and at the time of heat storage, it is sufficient to start up until a steady heating operation is reached. It is realized by storing the amount of sensible heat as hot water. Further, 11 is a fourth pressure reducing mechanism which is connected to the second usage-side heat exchanger 4b and has a bypass circuit 11b including the switchgear 11a in parallel. The second decompression mechanism 20 is configured such that a bypass circuit 20b including an opening / closing device 20a is connected in parallel on the inlet / outlet side thereof. In addition, the first usage-side heat exchanger 4a and the second usage-side heat exchanger 4 described above.
b is provided in each independent refrigerant circuit,
Both of them are collectively referred to as a utilization side heat exchanger 4, but the respective heat exchange portions may be provided in either a common air passage or an individually independent air passage.
【0025】22は第1の四方切換弁15〜第1の利用
側熱交換器4a間の第1のガス側配管18bと第2の四
方切換弁19〜第2の利用側熱交換器4b間のガス側配
管21bとの間に介在する開閉装置22aの開閉により
両回路間の冷媒移動を可能にするバイパス回路である。
23は第1の減圧機構3〜第3の減圧機構16間の第1
の液側配管18aと第2の減圧機構20〜第4の減圧機
構11間の第2の液側配管21aとの間に介在する開閉
装置23aの開閉により両回路の冷媒移動を可能にする
バイパス回路である。これらのバイパス回路22,23
は、蓄冷運転時または蓄熱運転時には主冷媒回路の一部
として用いられる。Reference numeral 22 denotes a first gas side pipe 18b between the first four-way switching valve 15 and the first utilization side heat exchanger 4a and a second four-way switching valve 19 between the second utilization side heat exchanger 4b. It is a bypass circuit that enables the movement of the refrigerant between both circuits by opening and closing the switchgear 22a interposed between the gas side pipe 21b and the gas side pipe 21b.
Reference numeral 23 denotes a first portion between the first pressure reducing mechanism 3 and the third pressure reducing mechanism 16.
By-passing that enables the movement of the refrigerant in both circuits by opening / closing the opening / closing device 23a that is interposed between the liquid side pipe 18a and the second liquid side pipe 21a between the second pressure reducing mechanism 20 and the fourth pressure reducing mechanism 11 Circuit. These bypass circuits 22 and 23
Is used as part of the main refrigerant circuit during cold storage operation or heat storage operation.
【0026】24は上記冷媒ガスポンプ13、第2のア
キュムレータ13a、及び第2の四方切換弁19を含ん
でなる冷媒ガスポンプ回路の出入口間に並列に開閉装置
24aを有して設けられたバイパス回路、25,26は
上記冷媒ガスポンプ回路の出入口にそれぞれ設けられた
開閉装置、27はこの蓄熱式空気調和装置による各々の
動作を制御する制御装置である。28は第2の液側配管
21aと冷媒ガスポンプ13の吸入配管とに接続して設
けられた第1のバイパス回路であり、順次接続された第
1の開閉装置30及び吐出圧力調整弁29を有してい
る。また、32は第2の利用側熱交換器4b近傍の冷媒
配管に設けられ冷媒の凝縮圧力を検出する凝縮圧力検出
装置、35は蓄熱槽8内に配備され蓄熱媒体7の温度を
検出する温度検出装置、36は利用側熱交換器4の風路
内に配備され室内吸込空気温度を検出する空気温度検出
装置、37は冷媒ガスポンプ13の吐出配管に設けられ
冷媒の吐出圧力を検出する吐出圧力検出装置である。Reference numeral 24 is a bypass circuit provided with an opening / closing device 24a in parallel between the inlet and outlet of the refrigerant gas pump circuit including the refrigerant gas pump 13, the second accumulator 13a, and the second four-way switching valve 19. Numerals 25 and 26 are opening / closing devices provided at the inlet and outlet of the refrigerant gas pump circuit, respectively, and 27 is a control device for controlling each operation of the heat storage type air conditioner. Reference numeral 28 denotes a first bypass circuit connected to the second liquid side pipe 21a and the suction pipe of the refrigerant gas pump 13, and has a first opening / closing device 30 and a discharge pressure adjusting valve 29 which are sequentially connected. is doing. Further, 32 is a condensing pressure detection device that is provided in the refrigerant pipe near the second utilization side heat exchanger 4b and that detects the condensing pressure of the refrigerant, and 35 is a temperature that is provided in the heat storage tank 8 and that detects the temperature of the heat storage medium 7. A detection device, 36 is an air temperature detection device that is provided in the air passage of the usage-side heat exchanger 4 and detects the indoor intake air temperature, and 37 is a discharge pressure that is provided in the discharge pipe of the refrigerant gas pump 13 and that detects the discharge pressure of the refrigerant. It is a detection device.
【0027】図2の(a)の蓄熱媒体温度と第1の開閉
装置の開閉動作との関係を示している。蓄熱媒体7の温
度が例えば20℃より高い場合、第1の開閉装置30を
開(以下、ONと記す)にして吐出圧力調整弁29の圧
力制御により冷媒流量調整を行い、蓄熱媒体7の温度が
20℃より低い場合には、第1の開閉装置30を閉(以
下、OFFと記す)にして第1のバイパス回路28を遮
断することを示している。また、図2の(b)は第1の
開閉装置の開閉により放熱能力がどのように変化するか
を示しており、所定能力より能力が大きくなる蓄熱媒体
温度が所定温度(例えば、ここでは20℃)以上の時
に、第1の開閉装置30を開にして、予め設定された凝
縮圧力に圧力制御し、能力を所定値に抑えることができ
る。逆に、蓄熱媒体温度が予め設定された所定温度より
低下すれば、第1の開閉装置30を閉にして、能力の低
下を防止する。この蓄熱媒体7の検出温度に基づいて第
1の開閉装置30を開閉制御して一定の能力を供給する
ことにより、1日の平均供給暖房能力は蓄熱媒体7の温
度に係わらず、平準化された能力を供給できるのであ
る。FIG. 2A shows the relationship between the heat storage medium temperature and the opening / closing operation of the first opening / closing device. When the temperature of the heat storage medium 7 is higher than 20 ° C., for example, the first opening / closing device 30 is opened (hereinafter, referred to as ON) to adjust the refrigerant flow rate by controlling the pressure of the discharge pressure adjustment valve 29, and the temperature of the heat storage medium 7 is adjusted. Is lower than 20 ° C., it means that the first switchgear 30 is closed (hereinafter referred to as OFF) to shut off the first bypass circuit 28. Further, FIG. 2B shows how the heat dissipation capacity changes by opening and closing the first switchgear, and the heat storage medium temperature at which the capacity is larger than the predetermined capacity is a predetermined temperature (for example, 20 degrees here). (° C) or higher, the first switchgear 30 is opened to control the pressure to a preset condensing pressure, and the capacity can be suppressed to a predetermined value. On the contrary, when the temperature of the heat storage medium falls below the preset predetermined temperature, the first opening / closing device 30 is closed to prevent the deterioration of the capacity. By controlling the opening and closing of the first switchgear 30 based on the detected temperature of the heat storage medium 7 to supply a constant capacity, the average daily heating and heating capacity is leveled regardless of the temperature of the heat storage medium 7. Can provide the ability.
【0028】図3に実施例1による制御アルゴリズムを
示す。暖房運転が立ち上げられる際(S1)、蓄熱媒体
7の温度TS が温度検出装置(蓄冷熱温度検出装置の一
例)35により検出される(S2)。制御装置27(第
1の制御装置)は、検出温度TS が所定温度以上である
か否かを判断し、その判断結果に基づいて第1の開閉装
置30の開閉動作を決定し指令信号を出力する。即ち、
検出温度TS が所定温度以上であれば(S3のTS ≧2
0)、第1の開閉装置30が開かれる(S4)。また、
これらの判断処理は常にフィードバックされており、蓄
熱媒体7の温度が所定温度より低くなると(S3のTS
<20)、第1の開閉装置30は閉にされる(S5)。FIG. 3 shows a control algorithm according to the first embodiment. When the heating operation is started (S1), the temperature T S of the heat storage medium 7 is detected by the temperature detection device (an example of a cool heat storage temperature detection device) 35 (S2). The control device 27 (first control device) determines whether or not the detected temperature T S is equal to or higher than a predetermined temperature, determines the opening / closing operation of the first opening / closing device 30 based on the determination result, and outputs a command signal. Output. That is,
If the detected temperature T S is equal to or higher than the predetermined temperature (T S of S3 ≧ 2
0), the first opening / closing device 30 is opened (S4). Also,
These determination processes are always fed back, and when the temperature of the heat storage medium 7 becomes lower than the predetermined temperature (T S in S3).
<20), the first opening / closing device 30 is closed (S5).
【0029】実施例2.以下、本発明の請求項2に係る
実施例2について説明する。構成については実施例1で
述べたような、図1による冷媒回路構成と同様である。
実施例1では蓄熱媒体7の温度をパラメータにして第1
の開閉装置30の開閉指令を判断するようにしたが、本
実施例では冷媒ガスポンプ13の運転負荷量を検出しこ
の検出値に基づいて、第1の開閉装置30の開閉判断を
行い、能力調整を行うものである。尚、冷媒ガスポンプ
13の運転負荷量を検出する負荷量検出手段としては、
凝縮圧力検出装置32により冷媒の圧力を検出するか、
空気温度検出装置36により室内吸込空気温度を検出す
るか、或いは冷媒ガスポンプ13の吐出配管に設けられ
た吐出圧力検出装置37により冷媒の吐出圧力を検出す
るか等して、これらの検出値に基づいて、制御装置27
が第1の開閉装置30を開閉制御するものが挙げられ
る。Example 2. Example 2 according to claim 2 of the present invention will be described below. The configuration is the same as the refrigerant circuit configuration according to FIG. 1 as described in the first embodiment.
In the first embodiment, the temperature of the heat storage medium 7 is used as a parameter for the first
Although the opening / closing command of the opening / closing device 30 is determined, in the present embodiment, the operating load amount of the refrigerant gas pump 13 is detected, and the opening / closing determination of the first opening / closing device 30 is performed based on the detected value to adjust the capacity. Is to do. The load amount detecting means for detecting the operation load amount of the refrigerant gas pump 13 includes:
Whether the pressure of the refrigerant is detected by the condensation pressure detection device 32,
Based on these detected values, whether the indoor intake air temperature is detected by the air temperature detection device 36 or the discharge pressure of the refrigerant is detected by the discharge pressure detection device 37 provided in the discharge pipe of the refrigerant gas pump 13 Control device 27
One that controls the opening / closing of the first opening / closing device 30.
【0030】図4の(a)は実施例2による凝縮圧力検
出値、冷媒吐出温度及び室内吸込空気温度と第1の開閉
装置の開閉動作との関係を示し、図4の(b)は蓄熱媒
体温度と暖房供給能力及び冷媒圧力との関係を示すもの
である。第1の開閉装置30の開閉制御により暖房負荷
が小さい時は、蓄熱媒体7の温度に影響されることなく
能力を一定に保つことができ、さらに必要とされる供給
能力が小さい場合は能力を抑え、負荷ピーク時に備えて
蓄熱量を温存しておくことができる。FIG. 4A shows the relationship between the condensing pressure detection value, the refrigerant discharge temperature, the room intake air temperature, and the opening / closing operation of the first opening / closing device according to the second embodiment, and FIG. It shows the relationship between the medium temperature, the heating supply capacity, and the refrigerant pressure. When the heating load is small due to the opening / closing control of the first switchgear 30, the capacity can be kept constant without being affected by the temperature of the heat storage medium 7, and the capacity can be maintained if the required supply capacity is small. The amount of heat storage can be saved in preparation for peak load.
【0031】図5に実施例2による制御アルゴリズムを
示す。放熱運転が立ち上げられる際(S11)、冷媒ガ
スポンプ13の凝縮圧力Pc等が凝縮圧力検出装置32
等により検出される(S12)。制御装置27(第2の
制御装置)は、検出された凝縮圧力Pc や冷媒の吐出圧
力Pd が例えば20kg/cm2 G以上の場合(S13
のPc ,Pd ≧20)、検出された室内吸込空気温度T
a が例えば21℃以上の場合(S13のTa ≧21)、
或いは検出された冷媒の吐出温度Td が例えば70℃以
上の場合(S13のTd ≧70)に、第1の開閉装置3
0を開放する(S14)。そして、この判断結果は常に
フィードバックされており、凝縮圧力Pc や吐出圧力P
d が低く(S13のPc ,Pd <20)、或いは室内吸
込空気温度Ta や吐出温度Td が低くなると(S13の
Ta <21,Td <70)、第1の開閉装置30を閉に
する(S15)。FIG. 5 shows a control algorithm according to the second embodiment. When the heat radiation operation is started (S11), the condensation pressure P c or the like of the refrigerant gas pump 13 is determined by the condensation pressure detection device 32.
Etc. are detected (S12). The control device 27 (second control device) determines that the detected condensation pressure P c or the refrigerant discharge pressure P d is, for example, 20 kg / cm 2 G or more (S13).
P c , P d ≧ 20), and the detected indoor intake air temperature T
When a is 21 ° C. or higher (T a ≧ 21 in S13),
Alternatively, when the detected refrigerant discharge temperature T d is, for example, 70 ° C. or higher (T d ≧ 70 in S13), the first opening / closing device 3
0 is released (S14). Then, this judgment result is always fed back, and the condensing pressure P c and the discharge pressure P
When d is low (P c , P d <20 in S13) or the indoor intake air temperature T a and the discharge temperature T d are low (T a <21, T d <70 in S13), the first opening / closing device 30 Is closed (S15).
【0032】実施例3.図6は請求項3及び請求項4の
発明を適用した実施例3及び実施例4に係る蓄熱式空気
調和装置の全体構成を示す冷媒配管系統図である。図
中、図1に示した実施例1と同一部分には同一符号を付
し、説明を省略する。放冷・放熱用回路21の冷媒ガス
ポンプ13の吐出配管と吸入配管との間に、第2の開閉
装置34を介した第2のバイパス回路33を設け、蓄熱
媒体7の温度を検出する温度検出装置35と、温度検出
装置35により検出された蓄熱媒体7の温度に基づいて
第2の開閉装置34の開閉制御を行う制御装置27とを
備えている。Example 3. FIG. 6 is a refrigerant piping system diagram showing the overall configuration of a heat storage type air conditioner according to Embodiments 3 and 4 to which the inventions of Claims 3 and 4 are applied. In the figure, the same parts as those of the first embodiment shown in FIG. A temperature detection for detecting the temperature of the heat storage medium 7 by providing a second bypass circuit 33 between the discharge pipe and the suction pipe of the refrigerant gas pump 13 of the cooling / radiating circuit 21 via the second opening / closing device 34. A device 35 and a control device 27 that controls the opening / closing of the second opening / closing device 34 based on the temperature of the heat storage medium 7 detected by the temperature detection device 35 are provided.
【0033】図7(a)は蓄熱媒体温度と第2の開閉装
置の開閉動作との関係を示すものである。蓄熱媒体7の
温度が20℃より高い場合、第2の開閉装置34を開に
し、冷媒ガスポンプ13から吐出された高温高圧のガス
冷媒を第2のバイパス回路33を通してポンプ吸込側へ
戻して液冷媒を蒸発気化させる。逆に、蓄熱媒体7の温
度が20℃より低下すれば、第2の開閉装置34を閉に
する。また、図7の(b)は蓄熱媒体温度及び室内吸込
空気温度の変化により放熱能力がどの様に変化するのか
を示したものである。蓄熱媒体7の温度が、所定能力よ
り能力が大きくなるような予め設定された所定温度(こ
こでは、例えば20℃)以上になったとき、第2の開閉
装置34を開にすることにより、予め設定された凝縮圧
力となり、能力は所定値に抑えられる。この蓄熱媒体7
の検出温度に基づく第2の開閉装置34の開閉制御によ
り、1日の供給能力は蓄熱媒体7の温度に係わらず、平
準化した能力を供給できるものである。FIG. 7A shows the relationship between the heat storage medium temperature and the opening / closing operation of the second opening / closing device. When the temperature of the heat storage medium 7 is higher than 20 ° C., the second opening / closing device 34 is opened, and the high-temperature and high-pressure gas refrigerant discharged from the refrigerant gas pump 13 is returned to the pump suction side through the second bypass circuit 33 to be the liquid refrigerant. Is vaporized. On the contrary, if the temperature of the heat storage medium 7 falls below 20 ° C., the second opening / closing device 34 is closed. Further, FIG. 7B shows how the heat radiation capacity changes with changes in the heat storage medium temperature and the indoor intake air temperature. When the temperature of the heat storage medium 7 becomes equal to or higher than a preset predetermined temperature (here, for example, 20 ° C.) at which the capacity becomes larger than the predetermined capacity, the second opening / closing device 34 is opened in advance. The condensing pressure is set and the capacity is suppressed to a predetermined value. This heat storage medium 7
By the opening / closing control of the second opening / closing device 34 based on the detected temperature, the level of the daily supply capacity can be supplied regardless of the temperature of the heat storage medium 7.
【0034】図8に実施例3による制御アルゴリズムを
示す。放熱運転が立ち上げられる際(S21)、蓄熱媒
体7の温度Ts が温度検出装置35により検出される
(S22)。制御装置27(第3の制御装置)は、検出
温度Ts が所定温度以上であるか否かを判断し、その判
断結果に基づいて第2の開閉装置34の開閉動作を決定
し指令信号を出力する。即ち、検出温度Ts が所定温度
以上であれば(S23のTs ≧20)、第2の開閉装置
34が開かれる(S24)。また、この判断結果は常に
フィードバックされており、蓄熱媒体7の温度Ts が所
定温度より低くなると(S23のTs <20)、第2の
開閉装置34は閉にされる(S25)。FIG. 8 shows a control algorithm according to the third embodiment. When the radiating operation is launched (S21), the temperature T s of the heat storage medium 7 is detected by the temperature detecting device 35 (S22). The control device 27 (third control device) determines whether or not the detected temperature T s is equal to or higher than a predetermined temperature, determines the opening / closing operation of the second opening / closing device 34 based on the determination result, and outputs a command signal. Output. That is, if the detected temperature T s is equal to or higher than the predetermined temperature (T s ≧ 20 in S23), the second opening / closing device 34 is opened (S24). Further, the result of this determination is always fed back, and when the temperature T s of the heat storage medium 7 becomes lower than the predetermined temperature (T s <20 of S23), the second switchgear 34 is closed (S25).
【0035】実施例4.以下、請求項4に係る実施例4
について説明する。構成については実施例3で述べたよ
うな、図6による冷媒回路構成図と同様である。尚、上
記した実施例3では第2の開閉装置34の動作を蓄熱媒
体の温度をパラメータにして開閉を判断したが、本実施
例では冷媒ガスポンプ13の運転負荷量の検出値に基づ
いて第2の開閉装置34の開閉判断を行い冷媒流量調整
による能力調整を行うものである。冷媒ガスポンプ13
の運転負荷量の検出には、凝縮圧力検出装置32を用い
る冷媒ガスポンプ13の吐出配管又は第2の液側配管2
1aの圧力或いは空気調和負荷を検出し、これらの検出
値は制御装置27に電送される。Example 4. Hereinafter, Example 4 according to claim 4
Will be described. The configuration is the same as the refrigerant circuit configuration diagram according to FIG. 6 as described in the third embodiment. In the third embodiment described above, the operation of the second opening / closing device 34 is judged to open / close by using the temperature of the heat storage medium as a parameter, but in the present embodiment, the second opening / closing device 34 is determined based on the detected value of the operating load of the refrigerant gas pump 13. The opening / closing device 34 is opened / closed and the capacity is adjusted by adjusting the refrigerant flow rate. Refrigerant gas pump 13
Of the operation load of the refrigerant gas pump 13 using the condensation pressure detection device 32 or the second liquid side pipe 2
The pressure of 1a or the air conditioning load is detected, and these detected values are transmitted to the control device 27.
【0036】図9は実施例4による室内吸込空気温度及
び蓄熱媒体温度と圧力検出値及び放熱能力との関係を示
すものである。この関係に基づいて第2の開閉装置34
を開閉制御することにより、1日の供給能力を蓄熱媒体
7の温度に関係なく安定した能力を供給できるばかりで
なく、空気調和負荷が小さい場合の供給能力を抑え、負
荷ピーク時に備えて蓄熱量を温存しておくことができる
のである。FIG. 9 shows the relationship between the indoor intake air temperature and the heat storage medium temperature, the pressure detection value, and the heat radiation capacity according to the fourth embodiment. Based on this relationship, the second opening / closing device 34
By controlling the opening and closing of, not only can the stable supply capacity of the daily supply capacity be supplied irrespective of the temperature of the heat storage medium 7, but also the supply capacity can be suppressed when the air conditioning load is small, and the heat storage amount can be prepared for the peak load. Can be preserved.
【0037】図10に実施例4による制御アルゴリズム
を示す。放熱運転が立ち上げられる際(S31)、冷媒
ガスポンプ13の凝縮圧力Pcや吐出圧力Pd が凝縮圧
力検出装置32や吐出圧力検出装置37により検出され
る(S32)。制御装置27(第4の制御装置)は、検
出された吐出圧力Pd や凝縮圧力Pc が20kg/cm
2 G以上の場合(S33のPd ,Pc ≧20)、検出さ
れた室内吸込空気温度Ta が21℃以上の場合(S33
のTa ≧21)、或いは検出された吐出温度Td が70
℃以上の場合(S33のTd ≧70)に、第2の開閉装
置34を開放する(S34)。また、この判断結果は常
にフィードバックされており、吐出圧力Pd や凝縮圧力
Pc が低く(S33のPd ,Pc <20)、或いは室内
吸込空気温度Ta や吐出温度Td が低くなると(S33
のTa <21,Td <70)、第2の開閉装置34が閉
にされる(S35)。FIG. 10 shows a control algorithm according to the fourth embodiment. When the heat radiation operation is started (S31), the condensation pressure P c and the discharge pressure P d of the refrigerant gas pump 13 are detected by the condensation pressure detection device 32 and the discharge pressure detection device 37 (S32). The control device 27 (fourth control device) controls the detected discharge pressure P d and condensing pressure P c to be 20 kg / cm.
In the case of 2 G or more (P d , P c ≧ 20 in S33), when the detected indoor intake air temperature T a is 21 ° C. or more (S33
T a ≧ 21) or the detected discharge temperature T d is 70
When the temperature is equal to or higher than C (T d ≧ 70 in S33), the second opening / closing device 34 is opened (S34). Further, this judgment result is always fed back, and when the discharge pressure P d and the condensing pressure P c are low (P d of S33, P c <20) or the indoor intake air temperature Ta and the discharge temperature T d are low ( S33
T a <21, T d <70), the second opening / closing device 34 is closed (S35).
【0038】実施例5.図11は請求項5の発明を適用
した実施例5に係る蓄熱式空気調和装置の冷媒回路構成
を示す。図中、図1に示した実施例1と同一部分には同
一符号を付し、説明を省略する。33は冷媒ガスポンプ
13の吐出配管と吸入配管との間に接続して設けられ第
2の開放装置34を有する第2のバイパス回路、38は
冷媒ガスポンプ13の吸入配管に設けられ例えば冷媒温
度に基づく過熱度を検出する冷媒状態検出装置である。Example 5. FIG. 11 shows a refrigerant circuit configuration of a heat storage type air conditioner according to a fifth embodiment to which the invention of claim 5 is applied. In the figure, the same parts as those of the first embodiment shown in FIG. Reference numeral 33 denotes a second bypass circuit which is provided between the discharge pipe and the suction pipe of the refrigerant gas pump 13 and has a second opening device 34, and 38 is provided in the suction pipe of the refrigerant gas pump 13 and is based on, for example, the refrigerant temperature. It is a refrigerant state detection device that detects the degree of superheat.
【0039】図12に実施例5による制御アルゴリズム
を示す。放熱運転が立ち上げられる際(S41)、蓄熱
媒体7の温度Ts が温度検出装置35により検出される
(S42)。制御装置27(第5の制御装置)は、検出
された蓄熱媒体7の温度Ts に基づいて、能力制御のた
め第2の液側配管21aから冷媒ガスポンプ13の吸入
配管へ液冷媒をバイパスさせるべく第1の開閉装置30
を開放させた場合(S43のON)、冷媒ガスポンプ1
3が液圧縮して運転上の不具合を生ずる可能性がある。
そこで、制御装置27は、第1の開閉装置30の開放と
同時に、冷媒状態検出装置38により検出された冷媒温
度に基づく過熱度を所定の過熱度(ポンプ吸入側の冷媒
がガス状態となる条件)以上とするように、第2の開閉
装置34も開放調整し(S44,S45)、高温高圧の
冷媒ガスをバイパスさせることにより、液冷媒を蒸発さ
せて冷媒ガスポンプ13への液バック運転を回避させ
る。一方、制御装置27は、第1の開閉装置30を開放
する必要がないと判断した場合、即ち冷媒ガスポンプ1
3吸込側の冷媒が所定の過熱度以上の場合(S43のO
FF)、第1の開閉装置30及び第2の開閉装置34を
閉止して(S46,S47)、各バイパス回路を遮断す
る。FIG. 12 shows a control algorithm according to the fifth embodiment. When the radiating operation is launched (S41), the temperature T s of the heat storage medium 7 is detected by the temperature detecting device 35 (S42). Control device 27 (fifth control device), based on the temperature T s of the detected thermal storage medium 7, thereby bypassing the liquid refrigerant to the suction pipe of the refrigerant gas pump 13 from the second liquid side pipe 21a for capacity control Therefore, the first switchgear 30
When the refrigerant is opened (S43 ON), the refrigerant gas pump 1
3 may be liquid-compressed to cause a malfunction in operation.
Therefore, the control device 27 sets the superheat degree based on the refrigerant temperature detected by the refrigerant state detection device 38 to a predetermined superheat degree (condition that the refrigerant on the pump suction side is in the gas state) at the same time when the first opening / closing device 30 is opened. ) As described above, the second switchgear 34 is also adjusted to open (S44, S45), and the high temperature and high pressure refrigerant gas is bypassed to evaporate the liquid refrigerant and avoid the liquid back operation to the refrigerant gas pump 13. Let On the other hand, when the control device 27 determines that it is not necessary to open the first opening / closing device 30, that is, the refrigerant gas pump 1
3 When the refrigerant on the suction side has a predetermined superheat degree or higher (O of S43
FF), the first switching device 30 and the second switching device 34 are closed (S46, S47), and each bypass circuit is shut off.
【0040】実施例6.図11は請求項6の発明を適用
した実施例6に係る蓄熱式空気調和装置の全体構成を示
す。図中、図1に示した実施例1と同一部分には同一符
号を付し、説明を省略する。Example 6. FIG. 11 shows the overall configuration of a heat storage type air conditioner according to a sixth embodiment to which the invention of claim 6 is applied. In the figure, the same parts as those of the first embodiment shown in FIG.
【0041】図13に実施例6による制御アルゴリズム
を示す。放熱運転が立ち上げられる際(S51)、蓄熱
媒体7の温度Ts が温度検出装置35により検出される
(S52)。制御装置27(第6の制御装置)は、検出
された蓄熱媒体7の温度Ts に基づいて、能力制御のた
め第2の液側配管21aから冷媒ガスポンプ13の吸入
配管へ液冷媒をバイパスさせるべく第1の開閉装置30
を開放させた場合(S53のON)、冷媒ガスポンプ1
3が液圧縮して運転上不具合が生ずる可能性がある。そ
こで、制御装置27は、第1の開閉装置30を開放させ
ると同時に、冷媒状態検出装置38により検出された冷
媒ガスポンプ13吸入側の冷媒の過熱度を基にこれを大
きくするように第4の減圧機構11(減圧機構の一例)
の絞り度を開き(S54,S55)、高温高圧のガス冷
媒の一部を第1のバイパス回路28を通してバイパスさ
せることにより、液冷媒を蒸発させて冷媒ガスポンプ1
3への液バック運転を回避させる。一方、制御装置27
は、第1の開閉装置30を開放する必要がないと判断し
た場合(S53のOFF)、第1の開閉装置30を閉止
するとともに第4の減圧機構11を上記過熱度を小さく
させるように絞り制御する(S56,S57)。FIG. 13 shows a control algorithm according to the sixth embodiment. When the radiating operation is launched (S51), the temperature T s of the heat storage medium 7 is detected by the temperature detecting device 35 (S52). The control device 27 (sixth control device) bypasses the liquid refrigerant from the second liquid side pipe 21 a to the suction pipe of the refrigerant gas pump 13 for capacity control based on the detected temperature T s of the heat storage medium 7. Therefore, the first switchgear 30
When the refrigerant is opened (S53 ON), the refrigerant gas pump 1
3 may be liquid-compressed to cause a malfunction in operation. Therefore, the control device 27 opens the first opening / closing device 30 and, at the same time, increases it based on the degree of superheat of the refrigerant on the suction side of the refrigerant gas pump 13 detected by the refrigerant state detection device 38. Pressure reducing mechanism 11 (an example of pressure reducing mechanism)
Of the high-temperature high-pressure gas refrigerant is bypassed through the first bypass circuit 28 to evaporate the liquid refrigerant and to cool the refrigerant gas pump 1
The liquid back operation to 3 is avoided. On the other hand, the control device 27
When it is determined that it is not necessary to open the first opening / closing device 30 (OFF in S53), the first opening / closing device 30 is closed and the fourth decompression mechanism 11 is throttled so as to reduce the degree of superheat. Control (S56, S57).
【0042】尚、上記した各実施例では、蓄熱槽8の蓄
熱媒体7に予め蓄熱された熱エネルギーを暖房時の放熱
運転に供する例を、それぞれ示したが、本発明はこれら
に限定されるものではなく、蓄熱媒体7に予め蓄熱され
た冷媒エネルギーを冷房時の放冷運転に供する場合にも
適用することができる。但し、この場合の放冷運転とし
ては、顕熱利用のものが好適である。蓄熱媒体として、
例えば水を使用した場合、ほぼ常温から0℃までの温度
域において適用するのがよい。In each of the above-described embodiments, an example in which the heat energy stored in advance in the heat storage medium 7 of the heat storage tank 8 is used for the heat radiation operation during heating is shown, but the present invention is not limited thereto. However, the present invention can also be applied to the case where the refrigerant energy stored in advance in the heat storage medium 7 is used for the cooling operation during cooling. However, as the cooling operation in this case, one using sensible heat is preferable. As a heat storage medium,
For example, when water is used, it is preferable to apply it in a temperature range from almost room temperature to 0 ° C.
【0043】[0043]
【発明の効果】以上のように本発明による蓄熱式空気調
和装置によれば、冷媒ポンプ駆動による放冷・放熱運転
の際に、蓄冷熱温度検出装置により検出された蓄熱媒体
温度が低いまたは高い場合、即ち著しく大きな放冷・放
熱能力が供給される場合、第1の開閉装置が開放されて
予め設定されている凝縮圧力となるように、凝縮液冷媒
が第1のバイパス回路を通して液側配管から吸入配管へ
バイパスされることにより、或いは放冷・放熱運転の継
続により蓄熱槽内の蓄えられたエネルギーが消費されて
蓄熱媒体温度が上昇または低下してきた場合、速やかに
第1の開閉装置を閉の状態にすることにより、蓄熱媒体
温度の変化にかかわらず1日を通して平準化した放冷・
放熱能力を供給できる効果がある。As described above, according to the heat storage type air conditioner of the present invention, the heat storage medium temperature detected by the cool heat storage temperature detecting device is low or high during the cooling / radiating operation by driving the refrigerant pump. In this case, that is, when a significantly large cooling / radiating capacity is supplied, the condensate refrigerant passes through the first bypass circuit so that the first switchgear is opened to reach the preset condensing pressure, and the liquid side pipe is connected. If the energy stored in the heat storage tank is consumed and the temperature of the heat storage medium rises or falls as a result of being bypassed from the intake pipe to the suction pipe or by continuing the cooling / radiating operation, the first switchgear should be promptly opened. By keeping it in a closed state, cooling is leveled throughout the day regardless of changes in the temperature of the heat storage medium.
It has the effect of supplying heat dissipation capability.
【0044】また、冷媒ポンプ駆動による放冷・放熱運
転の際に、負荷量検出装置により検出された冷媒ポンプ
の運転負荷量が低いまたは高い場合、即ち著しく大きな
放冷・放熱能力が供給される場合、第1の開閉装置が開
放されて予め設定されている凝縮圧力となるように、凝
縮液冷媒が第1のバイパス回路を通して液側配管から吸
入配管へバイパスされることにより、或いは空気調和負
荷量が小さい場合には第1の開閉装置を閉止することに
より、蓄熱媒体温度の変化にかかわらず1日を通して平
準化した放冷・放熱能力を供給して蓄熱槽内の蓄えられ
ているエネルギーを温存しておき、空気調和負荷量が大
きな場合にそれに応じた大きな放冷・放熱能力を供給で
きる効果がある。Further, in the cooling / radiating operation by driving the refrigerant pump, when the operating load of the refrigerant pump detected by the load amount detecting device is low or high, that is, a significantly large cooling / radiating capacity is supplied. In this case, the condensate refrigerant is bypassed from the liquid side pipe to the suction pipe through the first bypass circuit so that the first switchgear is opened to a preset condensing pressure or the air conditioning load. When the amount is small, by closing the first switchgear, the energy stored in the heat storage tank can be supplied by supplying the leveled cooling / radiating capacity throughout the day regardless of changes in the temperature of the heat storage medium. The effect of being able to supply a large cooling / radiating capacity in response to a large amount of air-conditioning load by keeping it in storage.
【0045】更に、冷媒ポンプ駆動による放冷・放熱運
転の際に、蓄冷熱温度検出装置により検出された蓄熱槽
内の蓄熱媒体温度が低いまたは高い場合、即ち著しく大
きな放冷・放熱能力が供給される場合、第2の開閉装置
が開放されて、温度の高いガス冷媒を第2のバイパス回
路を通して冷媒ポンプの吐出配管から吸入配管へバイパ
スさせて放冷・放熱用回路の冷媒流量調整を行うことに
より、或いは放冷・放熱運転の継続により蓄熱槽内の蓄
えられたエネルギーが消費されて蓄熱媒体温度が上昇ま
たは低下してきた場合、速やかに第2の開閉装置を閉の
状態にすることにより、蓄熱媒体温度の変化にかかわら
ず1日を通して平準化した放冷・放熱能力を供給できる
効果がある。Further, during the cooling / radiating operation by driving the refrigerant pump, when the temperature of the heat storage medium in the heat storage tank detected by the cold storage temperature detecting device is low or high, that is, a significantly large cooling / radiating capacity is supplied. In this case, the second switchgear is opened to bypass the high-temperature gas refrigerant through the second bypass circuit from the discharge pipe of the refrigerant pump to the suction pipe to adjust the refrigerant flow rate of the cooling / radiating circuit. If the energy stored in the heat storage tank is consumed and the temperature of the heat storage medium rises or falls due to the continuation of the cooling / radiating operation, promptly close the second switchgear. , The effect of being able to supply the leveled cooling / radiating ability throughout the day regardless of changes in the temperature of the heat storage medium.
【0046】そして、冷媒ポンプ駆動による放冷・放熱
運転の際に、負荷量検出装置により検出された冷媒ポン
プの運転負荷量が低いまたは高い場合、即ち著しく大き
な放冷・放熱能力が供給される場合、第2の開閉装置が
開放されて温度の高いガス冷媒を第2のバイパス回路を
通して冷媒ポンプの吐出配管から吸入配管へバイパスさ
せて放冷・放熱用回路の冷媒流量調整を行うことによ
り、或いは放冷・放熱運転の継続により冷媒ポンプの運
転負荷量が低下してきた場合には速やかに第2の開閉装
置を閉の状態にすることにより、蓄熱媒体温度の変化に
かかわらず1日を通して平準化した放冷・放熱能力を供
給して蓄熱槽内の蓄えられているエネルギーを温存して
おき、空気調和負荷量が大きな場合にそれに応じた大き
な放冷・放熱能力を供給できる効果がある。During the cooling / radiating operation by driving the refrigerant pump, when the operating load of the refrigerant pump detected by the load amount detecting device is low or high, that is, a significantly large cooling / radiating capacity is supplied. In this case, the second switchgear is opened to bypass the high temperature gas refrigerant from the discharge pipe of the refrigerant pump to the suction pipe through the second bypass circuit to adjust the refrigerant flow rate of the cooling / radiating circuit. Alternatively, if the operating load of the refrigerant pump decreases due to the continuation of the cooling / radiating operation, the second switchgear is immediately closed to level the temperature throughout the day regardless of changes in the heat storage medium temperature. The stored heat in the heat storage tank is preserved by supplying the improved cooling / radiating ability, and when the air conditioning load is large, the large cooling / radiating ability corresponding to it is provided. There is a supply can effect.
【0047】また、冷媒ポンプ駆動による放冷・放熱運
転時に、蓄冷熱温度検出装置により検出された蓄熱媒体
温度に基づいて第1の開閉装置が開閉制御されて、液冷
媒が第1のバイパス回路を通して液側配管から吸入配管
へバイパスされることにより、蓄熱媒体温度の変化にか
かわらず1日を通して平準化した放冷・放熱能力を供給
できるものはもとより、第1の開閉装置の開放時に第2
のバイパス回路の第2の開閉装置を開放して冷媒ポンプ
の吐出配管からの高温のガス冷媒を吸入配管へ戻して液
側配管からの液冷媒を蒸発させることにより、冷媒ポン
プへの液バックによる不具合のない安定した運転を継続
することができる。During the cooling / radiating operation by driving the refrigerant pump, the opening / closing control of the first opening / closing device is performed based on the heat storage medium temperature detected by the cold storage heat temperature detecting device, so that the liquid refrigerant is in the first bypass circuit. By bypassing from the liquid side pipe to the suction pipe through the through side, it is possible to supply the leveled cooling / radiating ability throughout the day regardless of the change in the temperature of the heat storage medium, and also to provide the second opening / closing device when the opening / closing device is opened.
By opening the second opening / closing device of the bypass circuit, the high temperature gas refrigerant from the discharge piping of the refrigerant pump is returned to the suction piping to evaporate the liquid refrigerant from the liquid side piping, and It is possible to continue stable operation without defects.
【0048】また、冷媒ポンプ駆動による放冷・放熱運
転時に、蓄冷熱温度検出装置により検出された蓄熱媒体
温度に基づいて第1の開閉装置が開閉制御されて、液冷
媒が第1のバイパス回路を通して液側配管から吸入配管
へバイパスされることにより、蓄熱媒体温度の変化にか
かわらず1日を通して平準化した放冷・放熱能力を供給
できるものはもとより、第1の開閉装置の開放時に冷媒
ポンプの吸入配管内の冷媒をガス状態にし得る過熱度と
するように、蓄冷熱用熱交換器と利用側熱交換器との間
の減圧機構を絞り制御することにより、冷媒ポンプへの
液バックによる不具合のない安定した運転を安価な構成
で実現することができるのである。Further, during the cooling / radiating operation by driving the refrigerant pump, the opening / closing control of the first opening / closing device is performed based on the temperature of the heat storage medium detected by the cold storage heat temperature detecting device so that the liquid refrigerant is in the first bypass circuit. By bypassing from the liquid side pipe to the suction pipe through the through side, it is possible to supply a leveled cooling / radiating capacity throughout the day regardless of changes in the temperature of the heat storage medium, as well as a refrigerant pump when the first switchgear is opened. By controlling the pressure reducing mechanism between the cold storage heat exchanger and the use side heat exchanger so that the refrigerant in the suction pipe has a superheat degree capable of turning into a gas state, liquid back to the refrigerant pump It is possible to realize stable operation without trouble with an inexpensive configuration.
【図1】本発明による実施例1及び実施例2に係る蓄熱
式空気調和装置の冷媒配管系統図である。FIG. 1 is a refrigerant piping system diagram of a heat storage type air conditioner according to a first embodiment and a second embodiment of the present invention.
【図2】(a)は本発明による実施例1に係る蓄熱式空
気調和装置の蓄熱媒体温度と第1の開閉装置の開閉動作
との関係を示す一例の図である。(b)は本発明による
実施例1に係る蓄熱式空気調和装置の第1の開閉装置の
開閉により放熱能力がどのように変化するかを示す一例
の図である。FIG. 2A is a diagram showing an example of the relationship between the temperature of the heat storage medium of the heat storage type air conditioner according to the first embodiment of the present invention and the opening / closing operation of the first opening / closing device. (B) is a diagram of an example showing how the heat radiation capacity changes by opening and closing the first switchgear of the heat storage type air conditioner according to the first embodiment of the present invention.
【図3】本発明による実施例1に係る蓄熱式空気調和装
置の制御アルゴリズムを示すフローチャートである。FIG. 3 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the first embodiment of the present invention.
【図4】(a)は本発明による実施例2に係る蓄熱式空
気調和装置の凝縮圧力検出値、冷媒吐出温度及び室内吸
込空気温度と第1の開閉装置の開閉動作との関係を示す
一例の図である。(b)は本発明による実施例2に係る
蓄熱式空気調和装置の蓄熱媒体温度と暖房供給能力及び
冷媒圧力との関係を示す一例の図である。FIG. 4 (a) is an example showing a relationship between a condensing pressure detection value, a refrigerant discharge temperature, a room intake air temperature, and an opening / closing operation of a first opening / closing device of a heat storage type air conditioner according to a second embodiment of the present invention. FIG. (B) is a diagram of an example showing a relationship between a heat storage medium temperature, a heating supply capacity, and a refrigerant pressure of a heat storage type air conditioner according to a second embodiment of the present invention.
【図5】本発明による実施例2に係る蓄熱式空気調和装
置の制御アルゴリズムを示すフローチャートである。FIG. 5 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the second embodiment of the present invention.
【図6】本発明による実施例3及び実施例4に係る蓄熱
式空気調和装置の冷媒配管系統図である。FIG. 6 is a refrigerant piping system diagram of a heat storage type air conditioner according to Embodiments 3 and 4 of the present invention.
【図7】(a)は本発明による実施例3に係る蓄熱式空
気調和装置の蓄熱媒体温度と第2の開閉装置の開閉動作
との関係を示す一例の図である。(b)は本発明による
実施例3に係る蓄熱式空気調和装置の蓄熱媒体温度及び
室内吸込空気温度の変化により放熱能力がどの様に変化
するのかを示した一例の図である。FIG. 7A is a diagram showing an example of the relationship between the temperature of the heat storage medium of the heat storage type air conditioner according to the third embodiment of the present invention and the opening / closing operation of the second opening / closing device. (B) is a diagram showing an example of how the heat radiation capacity changes with changes in the heat storage medium temperature and the indoor intake air temperature of the heat storage type air conditioner according to the third embodiment of the present invention.
【図8】本発明による実施例3に係る蓄熱式空気調和装
置の制御アルゴリズムを示すフローチャートである。FIG. 8 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the third embodiment of the present invention.
【図9】本発明による実施例4に係る蓄熱式空気調和装
置の室内吸込空気温度及び蓄熱媒体温度と圧力検出値及
び放熱能力との関係を示す一例の図である。FIG. 9 is a diagram showing an example of the relationship between the indoor intake air temperature and the heat storage medium temperature, the pressure detection value, and the heat radiation capacity of the heat storage type air conditioner according to the fourth embodiment of the present invention.
【図10】本発明による実施例4に係る蓄熱式空気調和
装置の制御アルゴリズムを示すフローチャートである。FIG. 10 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the fourth embodiment of the present invention.
【図11】本発明による実施例5及び実施例6に係る蓄
熱式空気調和装置の冷媒配管系統図である。FIG. 11 is a refrigerant piping system diagram of a heat storage type air conditioner according to Embodiments 5 and 6 of the present invention.
【図12】本発明による実施例5に係る蓄熱式空気調和
装置の制御アルゴリズムを示すフローチャートである。FIG. 12 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the fifth embodiment of the present invention.
【図13】本発明による実施例6に係る蓄熱式空気調和
装置の制御アルゴリズムを示すフローチャートである。FIG. 13 is a flowchart showing a control algorithm of the heat storage type air conditioner according to the sixth embodiment of the present invention.
【図14】従来に係る蓄熱式空気調和装置の冷媒配管系
統図である。FIG. 14 is a refrigerant piping system diagram of a conventional heat storage type air conditioner.
4 利用側熱交換器 4b 第2の利用側熱交換器 7 蓄熱媒体 8 蓄熱槽 9 蓄冷熱用熱交換器 11 第4の減圧機構 13 冷媒ガスポンプ 19 第2の四方切換弁 20 第2の減圧機構 21 蓄冷熱利用冷暖房回路(放冷・放熱用回路) 21a 第2の液側配管 27 制御装置 28 第1のバイパス回路 30 第1の開閉装置 32 凝縮圧力検出装置 33 第2のバイパス回路 34 第2の開閉装置 35 温度検出装置 36 空気温度検出装置 37 吐出圧力検出装置 38 冷媒状態検出装置 4 Utilization Side Heat Exchanger 4b Second Utilization Side Heat Exchanger 7 Heat Storage Medium 8 Heat Storage Tank 9 Cooling Heat Exchanger 11 Fourth Pressure Reduction Mechanism 13 Refrigerant Gas Pump 19 Second Four-way Switching Valve 20 Second Pressure Reduction Mechanism 21 Cooling / heating circuit using cold storage (cooling / radiating circuit) 21a Second liquid side piping 27 Control device 28 First bypass circuit 30 First switchgear device 32 Condensation pressure detection device 33 Second bypass circuit 34 Second Opening / closing device 35 Temperature detection device 36 Air temperature detection device 37 Discharge pressure detection device 38 Refrigerant state detection device
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 13/00 U 351 (72)発明者 今西 正美 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F25B 13/00 U 351 (72) Inventor Masami Imanishi 6-5-6 Tehira, Wakayama Mitsubishi Electric Incorporated company Wakayama Works
Claims (6)
換器、減圧機構、及び利用側熱交換器を順次接続して成
り、上記四方切換弁の冷媒流路切り換えにより上記利用
側熱交換器を介して冷房または暖房を切り換え自在に行
う放冷・放熱用回路と、上記蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱を行う蓄熱媒体を内蔵した
蓄熱槽と、上記放冷・放熱用回路の液側配管と冷媒ポン
プの吸入配管との間に接続され第1の開閉装置を有して
成る第1のバイパス回路と、上記蓄熱槽に設けられ蓄熱
媒体温度を検出する蓄冷熱温度検出装置と、予め蓄冷・
蓄熱された蓄熱媒体に対し上記蓄冷熱用熱交換器及び利
用側熱交換器を介して放冷・放熱運転を行う際に、上記
蓄冷熱温度検出装置により検出された蓄熱媒体温度に基
づいて上記第1の開閉装置を開閉制御する第1の制御装
置とを具備してなることを特徴とする蓄熱式空気調和装
置。1. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchange is performed by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage device, and a heat storage tank that incorporates a heat storage medium that performs heat storage / heat storage or heat release / heat radiation via the heat storage heat exchanger for heat storage, A first bypass circuit that is connected between the liquid side pipe of the cooling / radiating circuit and the suction pipe of the refrigerant pump and has a first opening / closing device; and the heat storage medium temperature that is provided in the heat storage tank and detects the heat storage medium temperature. Cool storage heat temperature detection device,
Based on the heat storage medium temperature detected by the cool heat storage temperature detecting device when performing cooling / radiating operation via the heat storage heat storage heat exchanger and the utilization side heat exchanger for the stored heat storage medium, A heat storage type air conditioner comprising: a first control device that controls opening and closing of the first opening and closing device.
換器、減圧機構、及び利用側熱交換器を順次接続して成
り、上記四方切換弁の冷媒流路切り換えにより上記利用
側熱交換器を介して冷房または暖房を切り換え自在に行
う放冷・放熱用回路と、上記蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱を行う蓄熱媒体を内蔵した
蓄熱槽と、上記放冷・放熱用回路の液側配管と冷媒ポン
プの吸入配管との間に接続され第1の開閉装置を有して
成る第1のバイパス回路と、上記冷媒ポンプの運転負荷
量を検出する負荷量検出装置と、予め蓄冷・蓄熱された
蓄熱媒体に対し上記蓄冷熱用熱交換器及び利用側熱交換
器を介して放冷・放熱運転を行う際に、上記負荷量検出
装置により検出された冷媒ポンプの運転負荷量に基づい
て上記第1の開閉装置を開閉制御する第2の制御装置と
を具備してなることを特徴とする蓄熱式空気調和装置。2. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchange is performed by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage device, and a heat storage tank that incorporates a heat storage medium that performs heat storage / heat storage or heat release / heat radiation via the heat storage heat exchanger for heat storage, A first bypass circuit having a first opening / closing device connected between the liquid side pipe of the cooling / radiating circuit and the suction pipe of the refrigerant pump, and a load for detecting the operating load of the refrigerant pump. An amount detection device and a heat storage medium that has previously stored and stored heat are detected by the load amount detection device when performing cooling / radiating operation via the heat exchanger for cold storage and the heat exchanger on the use side. The first switching device based on the operating load of the refrigerant pump A heat storage type air conditioner comprising: a second control device for controlling opening and closing of the storage device.
換器、減圧機構、及び利用側熱交換器を順次接続して成
り、上記四方切換弁の冷媒流路切り換えにより上記利用
側熱交換器を介して冷房または暖房を切り換え自在に行
う放冷・放熱用回路と、上記蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄
熱槽と、上記冷媒ポンプの吐出配管と吸入配管との間に
接続され第2の開閉装置を有して成る第2のバイパス回
路と、上記蓄熱槽に設けられ蓄熱媒体温度を検出する蓄
冷熱温度検出装置と、予め蓄冷・蓄熱された蓄熱媒体に
対し上記蓄冷熱用熱交換器及び利用側熱交換器を介して
放冷・放熱運転を行う際に、上記蓄冷熱温度検出装置に
より検出された蓄熱媒体温度に基づいて上記第2の開閉
装置を開閉制御する第3の制御装置とを具備してなるこ
とを特徴とする蓄熱式空気調和装置。3. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchange is performed by switching the refrigerant flow path of the four-way switching valve. Storage / heat radiation circuit for freely switching between cooling and heating via a heat storage device, and a heat storage tank containing a heat storage medium for storing / storing heat or discharging / dissipating heat via the heat storage heat storage heat exchanger, and the refrigerant A second bypass circuit connected between the discharge pipe and the suction pipe of the pump and having a second opening / closing device; a cold storage heat temperature detection device provided in the heat storage tank for detecting the temperature of the heat storage medium; Based on the heat storage medium temperature detected by the cool heat storage temperature detection device when performing cold discharge / heat radiation operation via the heat storage heat storage heat exchanger and the use side heat exchanger for the stored heat storage / heat storage medium To control the opening / closing of the second opening / closing device A heat storage type air conditioner comprising a third control device.
換器、減圧機構、及び利用側熱交換器を順次接続して成
り、上記四方切換弁の冷媒流路切り換えにより上記利用
側熱交換器を介して冷房または暖房を切り換え自在に行
う放冷・放熱用回路と、上記蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄
熱槽と、上記冷媒ポンプの吐出配管と吸入配管との間に
接続され第2の開閉装置を有して成る第2のバイパス回
路と、上記冷媒ポンプの運転負荷量を検出する負荷量検
出装置と、予め蓄冷・蓄熱された蓄熱媒体に対し上記蓄
冷熱用熱交換器及び利用側熱交換器を介して放冷・放熱
運転を行う際に、上記負荷量検出装置により検出された
冷媒ポンプの運転負荷量に基づいて上記第2の開閉装置
を開閉制御する第4の制御装置とを具備してなることを
特徴とする蓄熱式空気調和装置。4. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchange is performed by switching the refrigerant flow path of the four-way switching valve. Storage / heat radiation circuit for freely switching between cooling and heating via a heat storage device, and a heat storage tank containing a heat storage medium for storing / storing heat or discharging / dissipating heat via the heat storage heat storage heat exchanger, and the refrigerant A second bypass circuit connected between the discharge pipe and the suction pipe of the pump and having a second opening / closing device, a load amount detecting device for detecting the operating load amount of the refrigerant pump, and cold storage / heat storage in advance. Based on the operation load amount of the refrigerant pump detected by the load amount detection device when performing cooling / radiating operation through the heat storage medium heat exchanger and the utilization side heat exchanger for the stored heat storage medium A fourth for controlling the opening / closing of the second opening / closing device And a control device for the heat storage type air conditioner.
換器、減圧機構、及び利用側熱交換器を順次接続して成
り、上記四方切換弁の冷媒流路切り換えにより上記利用
側熱交換器を介して冷房または暖房を切り換え自在に行
う放冷・放熱用回路と、上記蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱を行う蓄熱媒体を内蔵した
蓄熱槽と、上記放冷・放熱用回路の液側配管と冷媒ポン
プの吸入配管との間に接続され第1の開閉装置を有して
成る第1のバイパス回路と、上記冷媒ポンプの吐出配管
と吸入配管との間に接続され第2の開閉装置を有して成
る第2のバイパス回路と、上記蓄熱槽に設けられ蓄熱媒
体温度を検出する蓄冷熱温度検出装置と、上記冷媒ポン
プの吸入配管内の冷媒の過熱度を検出する冷媒状態検出
装置と、予め蓄冷・蓄熱された蓄熱媒体に対し上記蓄冷
熱用熱交換器及び利用側熱交換器を介して放冷・放熱運
転を行う際に、上記蓄冷熱温度検出装置により検出され
た蓄熱媒体温度に基づいて上記第1の開閉装置を開閉制
御するとともに、上記第1の開閉装置の開放時に上記冷
媒状態検出装置により検出された過熱度に基づいて上記
第2の開閉装置を開閉制御する第5の制御装置とを具備
してなることを特徴とする蓄熱式空気調和装置。5. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a pressure reducing mechanism, and a usage-side heat exchanger are sequentially connected, and the usage-side heat exchange is performed by switching the refrigerant flow path of the four-way switching valve. A heat release / heat radiation circuit that freely switches between cooling and heating via a heat storage device, and a heat storage tank that incorporates a heat storage medium that performs heat storage / heat storage or heat release / heat radiation via the heat storage heat exchanger for heat storage, A first bypass circuit having a first switchgear connected between the liquid side pipe of the cooling / radiating circuit and the suction pipe of the refrigerant pump; and the discharge pipe and suction pipe of the refrigerant pump. A second bypass circuit connected between and having a second opening / closing device, a cold storage heat temperature detecting device provided in the heat storage tank for detecting a heat storage medium temperature, and a refrigerant in the suction pipe of the refrigerant pump. Refrigerant state detection device that detects the degree of superheat Based on the heat storage medium temperature detected by the cool heat storage temperature detecting device when performing cooling / radiating operation via the heat storage heat storage heat exchanger and the utilization side heat exchanger for the stored heat storage medium, A fifth controller for controlling the opening and closing of the first opening and closing device and for opening and closing the second opening and closing device based on the degree of superheat detected by the refrigerant state detection device when the first opening and closing device is opened; A heat storage type air conditioner comprising:
換器、開度可変の減圧機構、及び利用側熱交換器を順次
接続して成り、上記四方切換弁の冷媒流路切り換えによ
り上記利用側熱交換器を介して冷房または暖房を切り換
え自在に行う放冷・放熱用回路と、上記蓄冷熱用熱交換
器を介して蓄冷・蓄熱または放冷・放熱を行う蓄熱媒体
を内蔵した蓄熱槽と、上記放冷・放熱用回路の液側配管
と冷媒ポンプの吸入配管との間に接続され第1の開閉装
置を有して成る第1のバイパス回路と、上記蓄熱槽に設
けられ蓄熱媒体温度を検出する蓄冷熱温度検出装置と、
上記冷媒ポンプの吸入配管内の冷媒の過熱度を検出する
冷媒状態検出装置と、予め蓄冷・蓄熱された蓄熱媒体に
対し上記蓄冷熱用熱交換器及び利用側熱交換器を介して
放冷・放熱運転を行う際に、上記蓄冷熱温度検出装置に
より検出された蓄熱媒体温度に基づいて上記第1の開閉
装置を開閉制御するとともに、上記第1の開閉装置の開
放時に上記冷媒状態検出装置により検出された過熱度に
基づいて上記減圧機構を絞り制御する第6の制御装置と
を具備してなることを特徴とする蓄熱式空気調和装置。6. A refrigerant pump, a four-way switching valve, a heat exchanger for cold storage heat, a decompression mechanism with a variable opening, and a heat exchanger on the use side are sequentially connected, and the four-way switching valve switches the refrigerant flow path to achieve the above. Cooling / radiating circuit that can freely switch between cooling and heating via the heat exchanger on the use side, and heat storage that has a built-in heat storage medium that stores cold / heat or cools / radiates heat via the heat exchanger for cold storage A tank, a first bypass circuit having a first opening / closing device connected between the liquid side pipe of the cooling / radiating circuit and the suction pipe of the refrigerant pump, and heat storage provided in the heat storage tank. A cold storage temperature detecting device for detecting the medium temperature,
A refrigerant state detection device that detects the degree of superheat of the refrigerant in the suction pipe of the refrigerant pump, and cools the heat storage medium that has previously stored and stored heat through the heat exchanger for cold storage and the heat exchanger on the use side. When performing the heat radiation operation, the opening / closing control of the first opening / closing device is performed based on the heat storage medium temperature detected by the cold storage heat temperature detecting device, and the refrigerant state detection device is used when the first opening / closing device is opened. A heat storage type air conditioner, comprising: a sixth control device that throttle-controls the pressure reducing mechanism based on the detected degree of superheat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5320199A JP2870392B2 (en) | 1993-12-20 | 1993-12-20 | Thermal storage type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5320199A JP2870392B2 (en) | 1993-12-20 | 1993-12-20 | Thermal storage type air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07174423A true JPH07174423A (en) | 1995-07-14 |
JP2870392B2 JP2870392B2 (en) | 1999-03-17 |
Family
ID=18118815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5320199A Expired - Fee Related JP2870392B2 (en) | 1993-12-20 | 1993-12-20 | Thermal storage type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2870392B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3115715A4 (en) * | 2015-06-02 | 2017-03-29 | Mitsubishi Electric Corporation | Refrigeration cycle system |
JP2020115062A (en) * | 2019-01-18 | 2020-07-30 | 清水建設株式会社 | Management system and program |
-
1993
- 1993-12-20 JP JP5320199A patent/JP2870392B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3115715A4 (en) * | 2015-06-02 | 2017-03-29 | Mitsubishi Electric Corporation | Refrigeration cycle system |
US10508845B2 (en) | 2015-06-02 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle system |
JP2020115062A (en) * | 2019-01-18 | 2020-07-30 | 清水建設株式会社 | Management system and program |
Also Published As
Publication number | Publication date |
---|---|
JP2870392B2 (en) | 1999-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2894421B2 (en) | Thermal storage type air conditioner and defrosting method | |
US8713951B2 (en) | Air conditioning apparatus | |
JP5984914B2 (en) | Air conditioner | |
US8850837B2 (en) | Heat pump type speed heating apparatus | |
KR20100101265A (en) | Refrigerating apparatus | |
JP2870392B2 (en) | Thermal storage type air conditioner | |
CN114278984A (en) | Multifunctional air conditioner, control method and computer readable storage medium | |
JP2787882B2 (en) | Heat storage type cooling device | |
JP2757660B2 (en) | Thermal storage type air conditioner | |
JP3370501B2 (en) | Cooling system | |
JPH07174422A (en) | Heat accumulation air-conditioning device | |
JPH1026377A (en) | Heat storage type air conditioner | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof | |
JPH01174834A (en) | Air conditioning system for building | |
JP2855954B2 (en) | Thermal storage type air conditioner | |
JP7645371B2 (en) | Refrigerant circuit for a cooling device having a heat accumulator and method for controlling the refrigerant circuit | |
JP3020384B2 (en) | Thermal storage type air conditioner | |
JP2710883B2 (en) | Operation control method in regenerative refrigerating cycle device | |
JPH102595A (en) | Thermal storage type air conditioner | |
JP2004205142A (en) | Refrigerating and air conditioning apparatus and its operation control method | |
JP3197107B2 (en) | Thermal storage type air conditioner | |
JP2863474B2 (en) | Thermal storage type air conditioner | |
JPH0658578A (en) | Air conditioner | |
JPH05180519A (en) | Heat regenerating freezing cycle device | |
JPH06241581A (en) | Heat accumulating type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |