JPH07174422A - Heat accumulation air-conditioning device - Google Patents
Heat accumulation air-conditioning deviceInfo
- Publication number
- JPH07174422A JPH07174422A JP5320198A JP32019893A JPH07174422A JP H07174422 A JPH07174422 A JP H07174422A JP 5320198 A JP5320198 A JP 5320198A JP 32019893 A JP32019893 A JP 32019893A JP H07174422 A JPH07174422 A JP H07174422A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- refrigerant
- circuit
- heat
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 6
- 238000009825 accumulation Methods 0.000 title abstract 3
- 239000003507 refrigerant Substances 0.000 claims abstract description 316
- 238000001816 cooling Methods 0.000 claims abstract description 283
- 238000010438 heat treatment Methods 0.000 claims abstract description 157
- 238000005338 heat storage Methods 0.000 claims description 222
- 238000003860 storage Methods 0.000 claims description 102
- 239000007788 liquid Substances 0.000 claims description 38
- 230000005855 radiation Effects 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 13
- 230000001172 regenerating effect Effects 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- 230000007812 deficiency Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 4
- 239000003570 air Substances 0.000 description 48
- 238000010586 diagram Methods 0.000 description 19
- 238000009826 distribution Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 12
- 230000006837 decompression Effects 0.000 description 11
- 230000017525 heat dissipation Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000010721 machine oil Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば蓄熱媒体を内蔵
した蓄熱槽を備え、昼間の消費電力量の平準化に貢献し
得る蓄熱式空気調和装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner equipped with a heat storage tank containing a heat storage medium and capable of contributing to leveling of power consumption during the daytime.
【0002】[0002]
【従来の技術】図13は、例えば特開平2−33573
号公報に開示された従来の蓄熱式空気調和装置の回路構
成を示す冷媒配管系統図である。同図に示した回路は、
圧縮機1、凝縮器である非利用側熱交換器2、第1の減
圧機構3、蒸発器である利用側熱交換器4を順次接続し
て成る主冷媒回路6と、蓄冷可能な蓄熱媒体7を内蔵す
る蓄熱槽8と、上記蓄熱槽8の蓄熱媒体7と冷媒との熱
交換を行う蓄冷熱用熱交換器9aを介して上記非利用側
熱交換器2〜第1の減圧機構3間の液側配管5aとガス
側配管5bとの間で冷媒の移動を可能にする第1のバイ
パス回路10と、第1のバイパス回路10の液側配管1
0aに設けられた第2の減圧機構11と、上記第1のバ
イパス回路10のガス側配管10bに並列に接続されて
成る第2のバイパス回路12と、上記第2のバイパス回
路12に設けられ、上記蓄熱槽8に蓄えられた蓄熱媒体
7と冷媒とを熱交換させるために冷媒を循環させる冷媒
ガスポンプ13と、上記第2のバイパス回路12への冷
媒の回り込み量を制御する開閉装置14とから構成され
ている。2. Description of the Related Art FIG.
FIG. 6 is a refrigerant piping system diagram showing a circuit configuration of a conventional heat storage type air conditioner disclosed in Japanese Patent Publication No. The circuit shown in the figure is
A main refrigerant circuit 6 formed by sequentially connecting a compressor 1, a non-use side heat exchanger 2 which is a condenser, a first pressure reducing mechanism 3, and a use side heat exchanger 4 which is an evaporator, and a heat storage medium capable of storing heat. The non-use side heat exchanger 2 to the first decompression mechanism 3 via the heat storage tank 8 containing 7 and the heat exchanger 9a for cold storage which exchanges heat between the heat storage medium 7 of the heat storage tank 8 and the refrigerant. A first bypass circuit 10 that enables the movement of the refrigerant between the liquid side pipe 5a and the gas side pipe 5b, and the liquid side pipe 1 of the first bypass circuit 10
0a, a second depressurizing mechanism 11, a second bypass circuit 12 connected in parallel to the gas side pipe 10b of the first bypass circuit 10, and a second bypass circuit 12 provided in the second bypass circuit 12. A refrigerant gas pump 13 that circulates the refrigerant in order to exchange heat between the heat storage medium 7 stored in the heat storage tank 8 and the refrigerant, and an opening / closing device 14 that controls the amount of the refrigerant flowing into the second bypass circuit 12. It consists of
【0003】次に、この従来装置の動作について説明す
る。尚、符号1〜4を付した各機器は、冷媒配管5を介
して冷媒を循環可能にされており、これらの各機器か
ら、非利用側熱交換器2で室外空気との熱交換により得
た冷媒を利用側熱交換器4で、例えば室内空気に付与す
る主冷媒回路6を構成している。Next, the operation of this conventional device will be described. Each of the devices denoted by reference numerals 1 to 4 is made to be able to circulate a refrigerant through a refrigerant pipe 5, and is obtained from each of these devices by heat exchange with outdoor air in a non-use side heat exchanger 2. The use-side heat exchanger 4 constitutes a main refrigerant circuit 6 that applies, for example, room air to the refrigerant.
【0004】通常の圧縮機利用冷房運転時(以下、一般
冷房運転と称す)には、上記第2の減圧機構11を全閉
した状態で運転が行われ、冷媒は主冷媒回路6内のみを
循環する。即ち、圧縮機1から吐出された高温高圧のガ
ス状の冷媒は、非利用側熱交換器2で凝縮され、第1の
減圧機構3で断熱膨張して低温の気液二相流になった
後、利用側熱交換器4に流入し、ここで周囲の空気から
熱を奪って周囲を冷房し、自身は蒸発気化して圧縮機1
に戻るように循環する。また、電力負荷の小さい夜間の
時間帯を利用して上記蓄熱槽8に冷熱を蓄える蓄冷運転
時(以下、蓄冷運転と称す)には、第1の減圧機構3を
全閉した状態で運転が行われる。即ち、圧縮機1から吐
出されたガス状の冷媒は、非利用側熱交換器2で凝縮さ
れて液冷媒になり、第1のバイパス回路10に流れ込ん
で、第2の減圧機構11で断熱膨張した後、蓄冷熱用熱
交換器9aにて蒸発気化して、蓄熱槽8内の蓄熱媒体7
に冷熱を蓄える。蒸発後の冷媒は開放中の開閉装置14
を通り冷媒配管5を経て圧縮機1に戻る。During a normal cooling operation using a compressor (hereinafter referred to as a general cooling operation), the operation is performed with the second decompression mechanism 11 fully closed, and the refrigerant is only in the main refrigerant circuit 6. Circulate. That is, the high-temperature high-pressure gaseous refrigerant discharged from the compressor 1 is condensed in the non-use side heat exchanger 2 and adiabatically expanded in the first pressure reducing mechanism 3 to become a low-temperature gas-liquid two-phase flow. After that, the heat flows into the heat exchanger 4 on the use side, where heat is taken from the surrounding air to cool the surroundings, and the heat is evaporated and vaporized by the compressor 1 itself.
Circulate back to. Further, during a cold storage operation in which cold heat is stored in the heat storage tank 8 (hereinafter, referred to as a cold storage operation) by utilizing a nighttime time period when the power load is small, the operation is performed with the first pressure reducing mechanism 3 fully closed. Done. That is, the gaseous refrigerant discharged from the compressor 1 is condensed into the liquid refrigerant by the non-use side heat exchanger 2, flows into the first bypass circuit 10, and is adiabatically expanded by the second pressure reducing mechanism 11. After that, the heat storage medium 7 in the heat storage tank 8 is evaporated and vaporized by the heat exchanger 9a for cold heat storage.
Store cold heat. The opening and closing device 14 that the refrigerant after evaporation is open
To the compressor 1 via the refrigerant pipe 5.
【0005】そして、夜間の間に蓄熱槽8に予め蓄えた
冷熱を、例えば昼間に利用する蓄冷熱利用冷房運転(以
下、放冷運転と称す)では、上記圧縮機1を停止させ開
閉装置14を閉じた状態で冷媒ガスポンプ13を運転さ
せると、冷媒ガスポンプ13により昇圧された低温低圧
のガス冷媒は、第1のバイパス回路10のガス側配管1
0bを経て蓄冷熱用熱交換器9aに入って蓄熱媒体7に
熱を与え、自身は凝縮液化する。そして、凝縮液化後の
冷媒は、第2の減圧機構11にて断熱膨張し、低温の気
液二相流体となって利用側熱交換器4に流れ込み、ここ
で周囲の空気から熱を奪って周囲を冷房する事により、
自身は蒸発気化してガス側配管5bを通り第2のバイパ
ス回路12を経て再び冷媒ガスポンプ13に戻る。さら
に、この従来装置によると、圧縮機1の運転による一般
冷房運転と放冷運転とを同時に行うこともできる。即
ち、圧縮機1及び冷媒ガスポンプ13をいずれも作動さ
せた状態で運転が行われ、主冷媒回路6の非利用側熱交
換器2で凝縮した冷媒と、第1のバイパス回路10の蓄
冷熱用熱交換器9aで凝縮した冷媒とが、主冷媒回路6
の液側配管5aにて合流し、共に第1の減圧機構3を経
て利用側熱交換器4で蒸発して周囲を冷房するように循
環する。[0005] Then, in the cooling operation using cold storage (hereinafter referred to as "cooling operation") in which the cold heat previously stored in the heat storage tank 8 is used during the night, for example, in the daytime, the compressor 1 is stopped and the opening / closing device 14 is operated. When the refrigerant gas pump 13 is operated in the closed state, the low-temperature low-pressure gas refrigerant boosted by the refrigerant gas pump 13 becomes the gas side pipe 1 of the first bypass circuit 10.
After passing through 0b, it enters the heat exchanger 9a for cold heat storage to give heat to the heat storage medium 7, and condenses and liquefies itself. Then, the condensed and liquefied refrigerant adiabatically expands in the second decompression mechanism 11, becomes a low-temperature gas-liquid two-phase fluid, and flows into the utilization side heat exchanger 4, where heat is taken from ambient air. By cooling the surrounding area,
It evaporates and vaporizes itself, and returns to the refrigerant gas pump 13 again through the gas side pipe 5b and the second bypass circuit 12. Further, according to this conventional device, the general cooling operation and the cooling operation by the operation of the compressor 1 can be simultaneously performed. That is, the operation is performed in a state where both the compressor 1 and the refrigerant gas pump 13 are operated, and the refrigerant condensed in the non-use side heat exchanger 2 of the main refrigerant circuit 6 and the cold storage heat of the first bypass circuit 10 are used. The refrigerant condensed in the heat exchanger 9a is the main refrigerant circuit 6
The liquid-side pipes 5a merge together, and both of them pass through the first pressure reducing mechanism 3 to evaporate in the utilization-side heat exchanger 4 and circulate so as to cool the surroundings.
【0006】以上に示した圧縮機1と冷媒ガスポンプ1
3の同時運転、つまり一般冷房運転と放冷運転との混成
運転は、昼間の電力需要に対する負荷低減策として有効
に作用するものであるが、この従来装置のように非利用
側熱交換器2及び蓄冷熱用熱交換器9aで各々凝縮した
冷媒を合流させ、同一の利用側熱交換器4で蒸発させる
方法であれば、室内空気温度や室外空気温度等の周囲環
境条件の変動、或いは蓄熱媒体7の温度変化による蓄冷
熱用熱交換器9aにおける負荷変動により、一般冷房用
回路側(主冷媒回路6側)と放冷用回路側(第1、第2
のバイパス回路11,12側)とにおいて、それぞれに
必要となる冷媒量や冷凍機油量に不均衡を生じることが
ある。その結果、運転状態の悪化に伴う冷房能力の低下
はもとより、それぞれの側の回路で冷媒量の過不足によ
る高圧上昇や圧縮機1への液バック(液冷媒のままで吸
込側に戻ること)、冷凍機油の枯渇による圧縮機軸受の
焼き付き等といった、この冷媒回路を構成する部品に直
接損傷を与えるほどの危険性が存在する。The compressor 1 and the refrigerant gas pump 1 shown above
Simultaneous operation 3 of 3, that is, a mixed operation of the general cooling operation and the cooling operation, effectively acts as a load reduction measure for the daytime power demand, but like the conventional device, the non-use side heat exchanger 2 And a method of merging the refrigerants condensed respectively in the heat exchanger 9a for cold storage and evaporating them in the same heat exchanger 4 on the use side, fluctuations in ambient environmental conditions such as indoor air temperature and outdoor air temperature, or heat storage Due to load fluctuations in the heat exchanger 9a for cold storage due to temperature changes of the medium 7, the general cooling circuit side (main refrigerant circuit 6 side) and the cooling circuit side (first, second)
The bypass circuits 11 and 12) may have imbalances in the amount of refrigerant and the amount of refrigerating machine oil required for each. As a result, not only the cooling capacity decreases with the deterioration of the operating condition, but also the high pressure rises due to the excess and deficiency of the amount of refrigerant in each side circuit and liquid back to the compressor 1 (returns to the suction side as liquid refrigerant) There is a risk of directly damaging the components of the refrigerant circuit, such as seizure of the compressor bearing due to depletion of refrigerating machine oil.
【0007】そこで、上記のような問題点の解決策とし
て、圧縮機1や冷媒ガスポンプ13の運転容量調節を行
い、一般冷房用回路側の凝縮冷媒と放冷用回路側の凝縮
冷媒との合流時の流量比を調節するような方法が考えら
れる。しかしながら、このような方法であれば、制御方
法が複雑になるので、比較的高価な制御機器を使用しな
ければならないこと、多くの場合は制御機器に接続すべ
き電送線を増加させる必要があること、或いは圧縮機1
や冷媒ガスポンプ13の容量調節器を設ける必要がある
こと等の理由によって装置の製作に高コスト化を強いら
れるため、実際の機器への応用に関して有効な方法であ
るとは言えない。また、一般冷房運転のみまたは放冷運
転のみで運転する際、蓄冷熱用熱交換器9a、ガス側配
管5b、または非利用側熱交換器2に冷媒が寝込み(即
ち、運転停止中に比較的多量の冷媒が滞留している状態
をいう。以下、同様である。)を生じて運転に必要な冷
媒が不足しているときに、その冷媒の回収機構が存在し
ないことによる冷媒不足を生じた場合、空気調和能力不
足、圧縮機1からの吐出冷媒温度上昇等の不具合により
運転の継続に支障をきたす恐れがあり、実際の機器応用
は困難である。Therefore, as a solution to the above problems, the operating capacities of the compressor 1 and the refrigerant gas pump 13 are adjusted so that the condensed refrigerant on the general cooling circuit side and the condensed refrigerant on the cooling circuit side merge. A method of adjusting the flow rate ratio at time can be considered. However, such a method complicates the control method, so that it is necessary to use a relatively expensive control device, and in many cases, it is necessary to increase the number of electric transmission lines to be connected to the control device. Or the compressor 1
Since it is necessary to increase the cost for manufacturing the device due to the need to provide a capacity controller for the refrigerant gas pump 13 and the like, it cannot be said that this is an effective method for application to actual devices. Further, when operating only in the general cooling operation or only in the cooling operation, the refrigerant stagnates in the heat exchanger 9a for cold heat storage, the gas side pipe 5b, or the non-use side heat exchanger 2 (that is, when the operation is stopped relatively, When a large amount of refrigerant stays, the same shall apply hereinafter) and there is a shortage of refrigerant necessary for operation, a refrigerant shortage occurs due to the absence of a refrigerant recovery mechanism. In this case, there is a risk that the operation may be interrupted due to a defect such as insufficient air conditioning capacity and a rise in the temperature of the refrigerant discharged from the compressor 1, and it is difficult to actually apply the device.
【0008】[0008]
【発明が解決しようとする課題】従来の蓄熱式空気調和
装置は、以上のように構成されているので、一般冷房用
回路と放冷用回路とを同時に運転する際、各々の回路で
過冷却・減圧された冷媒は合流した後に利用側熱交換器
4に流入するために、周囲環境条件や蓄冷熱用熱交換器
9aにおける負荷変動により各々の回路間で冷媒量や冷
凍機油量の不均衡を生じ、運転の継続に支障をきたすと
いう問題があった。また、一般冷房運転のみまたは放冷
運転のみによる運転の際、蓄冷熱用熱交換器9a、ガス
側配管5b、または非利用側熱交換器2に冷媒が寝込ん
でいて運転に必要な冷媒が回路間で偏っている場合に、
その冷媒の回収機構が存在しないための冷媒不足による
空気調和能力不足や吐出冷媒温度の上昇等の不具合によ
り、運転の継続に支障をきたすという問題があった。こ
のような問題は、ヒートポンプ式の冷暖房切換可能な蓄
熱式空気調和装置についても同様にいえることである。Since the conventional heat storage type air conditioner is constructed as described above, when the general cooling circuit and the cooling circuit are operated at the same time, subcooling is performed in each circuit. Since the depressurized refrigerant merges and then flows into the use-side heat exchanger 4, the imbalance of the refrigerant amount and the refrigerating machine oil amount between the circuits due to ambient environmental conditions and load fluctuations in the heat exchanger 9a for cold storage heat. There is a problem in that it causes a trouble in continuing driving. In addition, when operating only in the general cooling operation or only in the cooling operation, the refrigerant stored in the heat exchanger 9a for cold heat storage, the gas side pipe 5b, or the non-use side heat exchanger 2 has a refrigerant necessary for operation in the circuit. If there is a bias between
There is a problem that the continuation of operation is hindered due to problems such as insufficient air conditioning capability due to lack of refrigerant recovery mechanism due to the absence of the refrigerant recovery mechanism and increase in discharged refrigerant temperature. Such a problem can be similarly applied to the heat storage type heat storage type air conditioner capable of switching between heating and cooling.
【0009】本発明は上記のような問題点を解決するた
めになされたもので、冷房・暖房切り換え可能な一般冷
暖房用回路と放冷・放熱用回路とを同時または個別に運
転させる際に、冷媒等が一方の回路に偏って構成部品へ
の寝込みを解消することにより、双方の回路内の冷媒の
過不足による圧縮機の損傷や冷暖房能力の減少といった
不具合がなく、年間を通じて運転経費が安価ですむ蓄熱
式空気調和装置を得ることを目的とするものである。The present invention has been made to solve the above problems, and when operating a general cooling / heating circuit capable of cooling / heating switching and a cooling / radiating circuit simultaneously or individually, Since the refrigerant, etc. is biased to one circuit and the stagnation of the components is eliminated, there are no problems such as damage to the compressor due to excess or deficiency of refrigerant in both circuits and decrease in heating and cooling capacity, and operating costs are low throughout the year The purpose is to obtain a heat storage type air conditioner.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る蓄熱式空気調和装置は、圧縮機、第1
の四方切換弁、非利用側熱交換器、第1の減圧機構、及
び第1の利用側熱交換器を順次接続して成り、第1の四
方切換弁の冷媒流路切り換えにより第1の利用側熱交換
器を介して冷房または暖房を切り換え自在に行う一般冷
暖房用回路と、冷媒ポンプ、第2の四方切換弁、蓄冷熱
用熱交換器、第2の減圧機構、及び第2の利用側熱交換
器を順次接続して成り、第2の四方切換弁の冷媒流路切
り換えにより第2の利用側熱交換器を介して冷房または
暖房を切り換え自在に行う放冷・放熱用回路と、蓄冷熱
用熱交換器を介して蓄冷・蓄熱または放冷・放熱する蓄
熱媒体を内蔵した蓄熱槽と、一般冷暖房用回路の第1の
ガス側配管と放冷・放熱用回路の第2のガス側配管との
間に設けた第1の開閉装置を有し第1の開閉装置の開閉
により冷媒の回路間移動を可能にする第1のバイパス回
路と、一般冷暖房用回路の第1の液側配管と放冷・放熱
用回路の第2の液側配管との間に設けた第2の開閉装置
を有し第2の開閉装置の開閉により冷媒の回路間移動を
可能にする第2のバイパス回路とを備え、蓄熱槽に蓄冷
または蓄熱された熱エネルギーを利用する放冷・放熱用
回路及び一般冷暖房用回路、または放冷・放熱用回路も
しくは一般冷暖房用回路のいずれか一方による冷房運転
または暖房運転の際には、第1の開閉装置及び第2の開
閉装置をともに遮断して一般冷暖房用回路と放冷・放熱
用回路とを個別独立に運転させると共に、蓄熱槽への蓄
冷運転または蓄熱運転の際には、第1の開閉装置及び第
2の開閉装置をともに開放して、圧縮機、第1の四方切
換弁、非利用側熱交換器、第1または第2の減圧機構、
及び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路を形成
するようにした蓄熱式空気調和装置において、予め設定
された所定時間を計時するタイマーと、蓄冷または蓄熱
運転終了後で冷房または暖房運転立ち上げ前に、第1及
び第2の開閉装置、または第1もしくは第2の開閉装置
のいずれか一方をタイマーにより計時される所定時間だ
け開放して、放冷・放熱用回路と一般冷暖房用回路との
間で冷媒を移動させる第1の制御装置とを具備してなる
ものである。In order to achieve the above object, a heat storage type air conditioner according to the present invention comprises a compressor and a first
The four-way switching valve, the non-use side heat exchanger, the first pressure reducing mechanism, and the first use-side heat exchanger are sequentially connected, and the first use is achieved by switching the refrigerant flow path of the first four-way switching valve. A general cooling / heating circuit for freely switching between cooling and heating via a side heat exchanger, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, a second pressure reducing mechanism, and a second utilization side. A heat release / heat radiation circuit that is formed by sequentially connecting heat exchangers, and that freely switches between cooling and heating via the second usage-side heat exchanger by switching the refrigerant flow path of the second four-way switching valve, and a cold storage A heat storage tank with a built-in heat storage medium that stores or stores heat or releases and radiates heat via a heat exchanger for heat, a first gas side pipe of a general cooling and heating circuit, and a second gas side of a cooling and radiating circuit A first switching device provided between the pipe and the refrigerant circuit by opening and closing the first switching device. It has a first bypass circuit that enables movement, and a second switchgear provided between the first liquid-side pipe of the general cooling and heating circuit and the second liquid-side pipe of the cooling / radiating circuit. And a second bypass circuit that enables the refrigerant to move between circuits by opening and closing the second switchgear, and a cooling / radiating circuit that uses heat energy stored in the heat storage tank or stored in the heat storage tank and for general cooling and heating During the cooling operation or the heating operation by either the circuit, or the cooling / radiating circuit or the general heating / cooling circuit, the first opening / closing device and the second opening / closing device are both shut off to form the general cooling / heating circuit. The cooling / radiating circuit is operated independently, and at the time of the cold storage operation or the heat storage operation in the heat storage tank, both the first opening / closing device and the second opening / closing device are opened so that the compressor, 4 way switching valve, non-use side heat exchanger, 1st or Second pressure reducing mechanism,
In a heat storage type air conditioner configured to form a cool storage / heat storage circuit comprising a heat storage heat exchanger for cold storage heat, a timer for measuring a preset predetermined time, and a cooling or heating operation after completion of the cold storage or heat storage operation. Before starting up, either the first and second switchgear, or either the first or second switchgear is opened for a predetermined period of time measured by a timer, and a cooling / radiating circuit and general cooling and heating are used. And a first control device for moving the refrigerant to and from the circuit.
【0011】また、圧縮機、第1の四方切換弁、非利用
側熱交換器、第1の減圧機構、及び第1の利用側熱交換
器を順次接続して成り、第1の四方切換弁の冷媒流路切
り換えにより第1の利用側熱交換器を介して冷房または
暖房を切り換え自在に行う一般冷暖房用回路と、冷媒ポ
ンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2の減
圧機構、及び第2の利用側熱交換器を順次接続して成
り、第2の四方切換弁の冷媒流路切り換えにより第2の
利用側熱交換器を介して冷房または暖房を切り換え自在
に行う放冷・放熱用回路と、蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄
熱槽と、一般冷暖房用回路の第1のガス側配管と放冷・
放熱用回路の第2のガス側配管との間に設けた第1の開
閉装置を有し第1の開閉装置の開閉により冷媒の回路間
移動を可能にする第1のバイパス回路と、一般冷暖房用
回路の第1の液側配管と放冷・放熱用回路の第2の液側
配管との間に設けた第2の開閉装置を有し第2の開閉装
置の開閉により冷媒の回路間移動を可能にする第2のバ
イパス回路とを備え、蓄熱槽に蓄冷または蓄熱された熱
エネルギーを利用する放冷・放熱用回路及び一般冷暖房
用回路、または放冷・放熱用回路もしくは一般冷暖房用
回路のいずれか一方による冷房運転または暖房運転の際
には、第1の開閉装置及び第2の開閉装置をともに遮断
して一般冷暖房用回路と放冷・放熱用回路とを個別独立
に運転させると共に、蓄熱槽への蓄冷運転または蓄熱運
転の際には、第1の開閉装置及び第2の開閉装置をとも
に開放して、圧縮機、第1の四方切換弁、非利用側熱交
換器、第1または第2の減圧機構、及び蓄冷熱用熱交換
器より成る蓄冷・蓄熱用回路を形成するようにした蓄熱
式空気調和装置において、一般冷暖房用回路と放冷・放
熱用回路との冷媒量差を検出する冷媒量差検出装置と、
蓄冷または蓄熱運転後で冷房または暖房運転立ち上げ前
に、冷媒量差検出装置により検出された冷媒量差に基づ
いて第1の開閉装置及び第2の開閉装置、または第2の
開閉装置を開閉して、放冷・放熱用回路と一般冷房・暖
房用回路との間で冷媒を移動させる第2の制御装置とを
具備してなるものである。The compressor, the first four-way switching valve, the non-use side heat exchanger, the first decompression mechanism, and the first use side heat exchanger are sequentially connected, and the first four-way switching valve is provided. A general cooling / heating circuit for freely switching between cooling and heating via the first use-side heat exchanger by switching the refrigerant flow path, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, a second The pressure reducing mechanism and the second use side heat exchanger are sequentially connected, and cooling or heating can be freely switched through the second use side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. Cooling / radiating circuit to perform, a heat storage tank that contains a heat storage medium that stores / heats or cools / radiates heat via a heat exchanger for cold storage heat, and the first gas side pipe and cooling of the general cooling / heating circuit・
A first bypass circuit that has a first switchgear provided between the heat dissipation circuit and the second gas side pipe, and that allows the refrigerant to move between circuits by opening and closing the first switchgear, and general cooling and heating Has a second opening / closing device provided between the first liquid side pipe of the cooling circuit and the second liquid side pipe of the cooling / radiating circuit, and moves the refrigerant between circuits by opening / closing the second opening / closing device. And a second bypass circuit that enables the heat storage tank to cool and radiate heat and use the heat energy stored in the heat storage tank, and a general cooling and heating circuit, or a cooling and radiating circuit or a general cooling and heating circuit. At the time of the cooling operation or the heating operation by either one of the above, the first opening / closing device and the second opening / closing device are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently. In the cold storage operation or heat storage operation in the heat storage tank, the first A cool storage that is configured by opening both the switchgear and the second switchgear, and including a compressor, a first four-way switching valve, a non-use side heat exchanger, a first or second pressure reducing mechanism, and a heat exchanger for cold heat storage. A heat storage type air conditioner configured to form a heat storage circuit, a refrigerant amount difference detection device for detecting a refrigerant amount difference between a general cooling and heating circuit and a cooling and radiating circuit,
Opening or closing the first opening / closing device and the second opening / closing device or the second opening / closing device based on the refrigerant amount difference detected by the refrigerant amount difference detection device after the cold storage or heat storage operation and before the start of the cooling or heating operation Then, the second control device for moving the refrigerant between the cooling / radiating circuit and the general cooling / heating circuit is provided.
【0012】また、圧縮機、第1の四方切換弁、非利用
側熱交換器、第1の減圧機構、及び第1の利用側熱交換
器を順次接続して成り、第1の四方切換弁の冷媒流路切
り換えにより第1の利用側熱交換器を介して冷房または
暖房を切り換え自在に行う一般冷暖房用回路と、冷媒ポ
ンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2の減
圧機構、及び第2の利用側熱交換器を順次接続して成
り、第2の四方切換弁の冷媒流路切り換えにより第2の
利用側熱交換器を介して冷房または暖房を切り換え自在
に行う放冷・放熱用回路と、蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄
熱槽と、一般冷暖房用回路の第1のガス側配管と放冷・
放熱用回路の第2のガス側配管との間に設けた第1の開
閉装置を有し第1の開閉装置の開閉により冷媒の回路間
移動を可能にする第1のバイパス回路と、一般冷暖房用
回路の第1の液側配管と放冷・放熱用回路の第2の液側
配管との間に設けた第2の開閉装置を有し第2の開閉装
置の開閉により冷媒の回路間移動を可能にする第2のバ
イパス回路とを備え、蓄熱槽に蓄冷または蓄熱された熱
エネルギーを利用する放冷・放熱用回路及び一般冷暖房
用回路、または放冷・放熱用回路もしくは一般冷暖房用
回路のいずれか一方による冷房運転または暖房運転の際
には、第1の開閉装置及び第2の開閉装置をともに遮断
して一般冷暖房用回路と放冷・放熱用回路とを個別独立
に運転させると共に、蓄熱槽への蓄冷運転または蓄熱運
転の際には、第1の開閉装置及び第2の開閉装置を共に
開放して、圧縮機、第1の四方切換弁、非利用側熱交換
器、第1または第2の減圧機構、及び蓄冷熱用熱交換器
より成る蓄冷・蓄熱用回路を形成するようにした蓄熱式
空気調和装置において、予め設定された所定時間を計時
するタイマーと、蓄冷運転終了後で冷房運転立ち上げ前
に、第1の四方切換弁をタイマーにより計時された所定
時間だけ切り換えて蓄熱運転を行い、または蓄熱運転終
了後で暖房運転立ち上げ前に、第1の四方切換弁をタイ
マーにより計時された所定時間だけ切り換えて蓄冷運転
を行って、放冷・放熱用回路と一般冷房・暖房用回路と
の間で冷媒量を調整する第3の制御装置とを具備してな
るものである。The first four-way switching valve is formed by sequentially connecting the compressor, the first four-way switching valve, the non-use side heat exchanger, the first decompression mechanism, and the first use-side heat exchanger. A general cooling / heating circuit for freely switching between cooling and heating via the first use-side heat exchanger by switching the refrigerant flow path, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, a second The pressure reducing mechanism and the second use side heat exchanger are sequentially connected, and cooling or heating can be freely switched through the second use side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. Cooling / radiating circuit to perform, a heat storage tank that contains a heat storage medium that stores / heats or cools / radiates heat via a heat exchanger for cold storage heat, and the first gas side pipe and cooling of the general cooling / heating circuit・
A first bypass circuit that has a first switchgear provided between the heat dissipation circuit and the second gas side pipe, and that allows the refrigerant to move between circuits by opening and closing the first switchgear, and general cooling and heating Has a second opening / closing device provided between the first liquid side pipe of the cooling circuit and the second liquid side pipe of the cooling / radiating circuit, and moves the refrigerant between circuits by opening / closing the second opening / closing device. And a second bypass circuit that enables the heat storage tank to cool and radiate heat and use the heat energy stored in the heat storage tank, and a general cooling and heating circuit, or a cooling and radiating circuit or a general cooling and heating circuit. At the time of the cooling operation or the heating operation by either one of the above, the first opening / closing device and the second opening / closing device are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently. In the cold storage operation or heat storage operation in the heat storage tank, the first A cold storage comprising a compressor, a first four-way switching valve, a non-use side heat exchanger, a first or second pressure reducing mechanism, and a heat exchanger for cold storage heat by opening both the opening / closing device and the second opening / closing device. -In a heat storage type air conditioner configured to form a heat storage circuit, a timer for measuring a preset predetermined time and a timer for the first four-way switching valve after the end of the cold storage operation and before the start of the cooling operation The heat storage operation is performed by switching the timed predetermined time, or after the end of the heat storage operation and before the heating operation is started, the first four-way switching valve is switched for the predetermined time timed by the timer to perform the cold storage operation and then released. A third control device for adjusting the amount of refrigerant between the cooling / radiating circuit and the general cooling / heating circuit is provided.
【0013】更に、圧縮機、第1の四方切換弁、非利用
側熱交換器、第1の減圧機構、及び第1の利用側熱交換
器を順次接続して成り、第1の四方切換弁の冷媒流路切
り換えにより第1の利用側熱交換器を介して冷房または
暖房を切り換え自在に行う一般冷暖房用回路と、冷媒ポ
ンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2の減
圧機構、第4の減圧機構、及び第2の利用側熱交換器を
順次接続して成り、第2の四方切換弁の冷媒流路切り換
えにより第2の利用側熱交換器を介して冷房または暖房
を切り換え自在に行う放冷・放熱用回路と、蓄冷熱用熱
交換器を介して蓄冷・蓄熱または放冷・放熱する蓄熱媒
体を内蔵した蓄熱槽と、一般冷暖房用回路の第1のガス
側配管と放冷・放熱用回路の第2のガス側配管との間に
設けた第1の開閉装置を有し第1の開閉装置の開閉によ
り冷媒の回路間移動を可能にする第1のバイパス回路
と、一般冷暖房用回路の第1の液側配管と放冷・放熱用
回路の第2の液側配管との間に設けた第2の開閉装置を
有し第2の開閉装置の開閉により冷媒の回路間移動を可
能にする第2のバイパス回路とを備え、蓄熱槽に蓄冷ま
たは蓄熱された熱エネルギーを利用する放冷・放熱用回
路及び一般冷暖房用回路、または放冷・放熱用回路もし
くは一般冷暖房用回路のいずれか一方による冷房運転ま
たは暖房運転の際には、第1の開閉装置及び第2の開閉
装置をともに遮断して一般冷暖房用回路と放冷・放熱用
回路とを個別独立に運転させると共に、蓄熱槽への蓄冷
運転または蓄熱運転の際には、第1の開閉装置及び第2
の開閉装置をともに開放して、圧縮機、第1の四方切換
弁、非利用側熱交換器、第1または第2の減圧機構、及
び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路を形成す
るようにした蓄熱式空気調和装置において、蓄熱運転終
了直前に第4の減圧機構を全開して、第2の利用側熱交
換器内の冷媒を第2の液側配管に流出させる第4の制御
装置を具備してなるものである。Further, the compressor, the first four-way switching valve, the non-use side heat exchanger, the first decompression mechanism, and the first use side heat exchanger are sequentially connected, and the first four-way switching valve is provided. A general cooling / heating circuit for freely switching between cooling and heating via the first use-side heat exchanger by switching the refrigerant flow path, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, a second The pressure reducing mechanism, the fourth pressure reducing mechanism, and the second use-side heat exchanger are sequentially connected, and cooling is performed via the second use-side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. Alternatively, a cooling / radiating circuit for freely switching heating and heating, a heat storage tank having a built-in heat storage medium for storing / cooling heat or releasing / radiating heat via a heat exchanger for cold storage heat, and a first cooling / heating circuit First opening / closing provided between the gas side pipe and the second gas side pipe of the cooling / radiating circuit A first bypass circuit that has a storage unit to enable the refrigerant to move between circuits by opening and closing the first switchgear, a first liquid side pipe of a general cooling and heating circuit, and a second cooling and radiating circuit. A second bypass circuit which has a second opening / closing device provided between the liquid side pipe and allows the refrigerant to move between circuits by opening / closing the second opening / closing device, and stores or stores heat in the heat storage tank. The first switchgear in the cooling operation or the heating operation by the cooling / radiating circuit and the general cooling / heating circuit using the heat energy, or the cooling / radiating circuit or the general cooling / heating circuit And the second switchgear are both cut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently of each other, and the first switchgear is operated during the cold storage operation or the heat storage operation in the heat storage tank. And the second
The switchgear of both is opened, and the cold storage / heat storage circuit including the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or second pressure reducing mechanism, and the cold storage heat exchanger is formed. In the heat storage type air conditioner configured to be formed, the fourth pressure reducing mechanism is fully opened immediately before the end of the heat storage operation, and the refrigerant in the second usage-side heat exchanger is caused to flow out to the second liquid-side pipe. It is equipped with a control device.
【0014】そして、圧縮機、第1の四方切換弁、非利
用側熱交換器、第1の減圧機構、及び第1の利用側熱交
換器を順次接続して成り、第1の四方切換弁の冷媒流路
切り換えにより第1の利用側熱交換器を介して冷房また
は暖房を切り換え自在に行う一般冷暖房用回路と、冷媒
ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2の
減圧機構、第2の利用側熱交換器、及び第2のアキュム
レータを順次接続して成り、第2の利用側熱交換器と第
2のアキュムレータとを接続する第3の開閉装置を備
え、第2の四方切換弁の冷媒流路切り換えにより第2の
利用側熱交換器を介して冷房または暖房を切り換え自在
に行う放冷・放熱用回路と、蓄冷熱用熱交換器を介して
蓄冷・蓄熱または放冷・放熱する蓄熱媒体を内蔵した蓄
熱槽と、一般冷暖房用回路の第1のガス側配管と放冷・
放熱用回路の第2のガス側配管との間に設けた第1の開
閉装置を有し第1の開閉装置の開閉により冷媒の回路間
移動を可能にする第1のバイパス回路と、一般冷暖房用
回路の第1の液側配管と放冷・放熱用回路の第2の液側
配管との間に設けた第2の開閉装置を有し第2の開閉装
置の開閉により冷媒の回路間移動を可能にする第2のバ
イパス回路とを備え、蓄熱槽に蓄冷または蓄熱された熱
エネルギーを利用する放冷・放熱用回路及び一般冷暖房
用回路、または放冷・放熱用回路もしくは一般冷暖房用
回路のいずれか一方による冷房運転または暖房運転の際
には、第1の開閉装置及び第2の開閉装置をともに遮断
して一般冷暖房用回路と放冷・放熱用回路とを個別独立
に運転させると共に、蓄熱槽への蓄冷運転または蓄熱運
転の際には、第1の開閉装置及び第2の開閉装置をとも
に開放して、圧縮機、第1の四方切換弁、非利用側熱交
換器、第1または第2の減圧機構、及び蓄冷熱用熱交換
器より成る蓄冷・蓄熱用回路を形成するようにした蓄熱
式空気調和装置において、予め設定された所定時間を計
時するタイマーと、蓄熱運転または蓄熱運転開始直後
に、第1の四方切換弁をタイマーにより計時された所定
時間だけ切り換えて蓄冷運転するとともに第3の開閉装
置を開放して、第2のアキュムレータ内の冷媒を第2の
ガス側配管に流出させる第5の制御手段とを具備してな
るものである。The compressor, the first four-way switching valve, the non-use side heat exchanger, the first pressure reducing mechanism, and the first use side heat exchanger are sequentially connected, and the first four-way switching valve is provided. A general cooling / heating circuit for freely switching between cooling and heating via the first use-side heat exchanger by switching the refrigerant flow path, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, a second A pressure reducing mechanism, a second use-side heat exchanger, and a second accumulator are sequentially connected, and a third switchgear for connecting the second use-side heat exchanger and the second accumulator is provided, A cooling / radiating circuit for freely switching between cooling and heating via the second utilization side heat exchanger by switching the refrigerant flow path of the second four-way switching valve, and cold storage via the cold storage heat exchanger. A heat storage tank with a built-in heat storage medium that stores heat or releases and radiates heat, and general cooling and heating Cooling the first gas side pipe of the circuit-
A first bypass circuit that has a first switchgear provided between the heat dissipation circuit and the second gas side pipe, and that allows the refrigerant to move between circuits by opening and closing the first switchgear, and general cooling and heating Has a second opening / closing device provided between the first liquid side pipe of the cooling circuit and the second liquid side pipe of the cooling / radiating circuit, and moves the refrigerant between circuits by opening / closing the second opening / closing device. And a second bypass circuit that enables the heat storage tank to cool and radiate heat and use the heat energy stored in the heat storage tank, and a general cooling and heating circuit, or a cooling and radiating circuit or a general cooling and heating circuit. At the time of the cooling operation or the heating operation by either one of the above, the first opening / closing device and the second opening / closing device are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently. In the cold storage operation or heat storage operation in the heat storage tank, the first A cool storage that is configured by opening both the switchgear and the second switchgear, and including a compressor, a first four-way switching valve, a non-use side heat exchanger, a first or second pressure reducing mechanism, and a heat exchanger for cold heat storage. -In a heat storage type air conditioner configured to form a heat storage circuit, a timer for measuring a predetermined time set in advance and the first four-way switching valve was timed by the timer immediately after the heat storage operation or the start of the heat storage operation. A fifth control means is provided for performing a cold storage operation by switching for a predetermined time, opening the third switchgear, and causing the refrigerant in the second accumulator to flow out to the second gas side pipe. .
【0015】[0015]
【作用】本発明による蓄熱式空気調和装置では、蓄冷運
転、蓄熱運転、一般冷房運転、一般暖房運転、放冷運
転、放熱運転の各運転モードでそれぞれ適正冷媒量が異
なる。例えば、一般冷房運転における必要冷媒量は比較
的少なく、逆に放冷運転では多い。しかしながら、第1
のバイパス回路及び第2のバイパス回路を開放して行う
蓄冷運転では、凝縮器として機能する非利用側熱交換器
に冷媒が多く偏在し、蒸発器として機能する蓄冷熱利用
の第2の利用側熱交換器内には少なくなる。従って、蓄
冷運転終了後に第1の開閉装置及び第2の開閉装置を遮
断して一般冷房運転及び放冷運転に運転切り換えを行っ
て運転を立ち上げた際、非利用側熱交換器を接続して成
る一般冷房用回路では冷媒量が多く冷媒余剰の状態にな
る一方、第2の利用側熱交換器を接続して成る放冷用回
路では冷媒量が少なく冷媒不足の状態となる。そして、
一般暖房運転における必要冷媒量は比較的多く、逆に放
熱運転では少なくなる。しかしながら、第1のバイパス
回路及び第2のバイパス回路を開放して行う蓄熱運転で
は、凝縮器として機能する第2の利用側熱交換器に冷媒
が多く偏在し、蒸発器として機能する非利用側熱交換器
内には少なくなる。従って、蓄熱運転終了後に第1の開
閉装置及び第2の開閉装置を遮断して一般暖房運転及び
放冷運転に運転切り換えを行って運転を立ち上げた際、
非利用側熱交換器を接続して成る一般暖房用回路では冷
媒量が少なく冷媒不足の状態になる一方、第2の利用側
熱交換器を接続して成る放冷用回路では冷媒量が多く冷
媒余剰の状態となる。そこで、蓄冷運転終了時点では、
蓄冷エネルギーが低温の状態で蓄熱槽内に蓄えられてい
るため、放冷用回路は低圧力の状態でバランスされてお
り、このとき一般冷房用回路は周囲環境温度における飽
和圧力に保たれているため、蓄冷運転終了後に第1の開
閉装置、第2の開閉装置をタイマーにより予め決められ
た所定時間だけ第1の制御装置によって開放しておくこ
とにより、冷媒を低圧である放冷側回路に移動させ一般
冷房用回路と放冷用回路との間で冷媒量調整が行われて
両回路とも冷媒の過不足が解消され、運転に適正な冷媒
量を確保することができる。また、蓄熱運転から一般暖
房運転、放熱運転に切り換える際に、蓄熱媒体は高温の
状態に保たれているため、タイマーにより所定時間だけ
第1の開閉装置及び第2の開閉装置を第1の制御装置に
よって開放させることにより、放冷・放熱用回路から一
般冷暖房用回路側へ冷媒を移動させて回路間で冷媒量調
整が行われて両回路とも冷媒の過不足が解消され、運転
に適正な冷媒量を確保することができるのである。In the heat storage type air conditioner according to the present invention, the proper amount of refrigerant is different in each operation mode of the cold storage operation, the heat storage operation, the general cooling operation, the general heating operation, the cooling operation, and the heat radiation operation. For example, the amount of refrigerant required in general cooling operation is relatively small, and conversely, it is large in cooling operation. However, the first
In the cold storage operation in which the bypass circuit and the second bypass circuit are opened, a large amount of refrigerant is unevenly distributed in the non-use side heat exchanger that functions as a condenser, and the second use side of the cold storage heat use that functions as an evaporator. Less in the heat exchanger. Therefore, after the end of the cold storage operation, the first switchgear and the second switchgear are shut off to switch the operation to the general cooling operation and the cooling operation, and when the operation is started, the non-use side heat exchanger is connected. In the general cooling circuit constituted by the above, the refrigerant amount is large and the refrigerant is in a surplus state, while in the cooling circuit formed by connecting the second utilization side heat exchanger, the refrigerant amount is small and the refrigerant is in a shortage state. And
The amount of refrigerant required in the general heating operation is relatively large, and conversely, it is small in the heat radiation operation. However, in the heat storage operation performed by opening the first bypass circuit and the second bypass circuit, a large amount of refrigerant is unevenly distributed in the second heat exchanger on the use side that functions as a condenser, and the non-use side that functions as an evaporator. Less in the heat exchanger. Therefore, when the first switchgear and the second switchgear are shut off after the end of the heat storage operation and the operation is switched to the general heating operation and the cooling operation, the operation is started,
In the general heating circuit that is connected to the non-use side heat exchanger, the amount of refrigerant is small and there is a shortage of refrigerant, while in the cooling circuit that is connected to the second use side heat exchanger, the amount of refrigerant is large. The refrigerant is in a surplus state. Therefore, at the end of the cold storage operation,
Since the cold energy is stored in the heat storage tank at a low temperature, the cooling circuit is balanced at a low pressure, while the general cooling circuit is kept at the saturated pressure at the ambient temperature. Therefore, after the cold storage operation is completed, the first switchgear and the second switchgear are opened by the first control device for a predetermined time predetermined by a timer, so that the refrigerant is released into the low pressure side circuit. The amount of refrigerant is moved between the general cooling circuit and the cooling circuit to adjust the amount of refrigerant, and the excess and deficiency of the refrigerant in both circuits are eliminated, so that an appropriate amount of refrigerant for operation can be secured. Further, when the heat storage operation is switched to the general heating operation and the heat radiation operation, the heat storage medium is kept in a high temperature state. Therefore, the timer controls the first switchgear and the second switchgear for the predetermined time by the first control. By opening it by the device, the refrigerant is moved from the cooling / radiating circuit to the general cooling / heating circuit side, the refrigerant amount is adjusted between the circuits, the excess and deficiency of the refrigerant in both circuits is eliminated, and it is suitable for operation. The amount of refrigerant can be secured.
【0016】また、第1の開閉装置、第2の開閉装置の
開閉をタイマーにより行うのではなく、一般冷暖房用回
路と放冷・放熱用回路とのそれぞれの冷媒量に対応する
例えば圧力状態を各回路の圧力検出装置(冷媒量差検出
装置)により検出して回路間の圧力差、即ち冷媒量差に
基づいて、運転モード切り換えの際に上記第1の開閉装
置及び第2の開閉装置、または上記第2の開閉装置のみ
を開閉して冷媒を回路間移動させることにより、より適
正かつ短時間に冷媒移動を行える。加えて、なんらかの
異常で蓄熱媒体の温度に異常を来して回路間の圧力差が
逆転し冷媒移動方向が逆方向になったり、或いは開閉装
置の故障によって回路間の冷媒移動が不可能となったり
するなどの不具合を検出圧力差に基づいて事前に検知す
ることができる。Further, the opening and closing of the first opening and closing device and the second opening and closing device is not performed by a timer, but, for example, pressure states corresponding to respective refrigerant amounts of the general cooling and heating circuit and the cooling and radiating circuit are set. Based on the pressure difference between the circuits detected by the pressure detection device (refrigerant amount difference detection device) of each circuit, that is, the refrigerant amount difference, the first switchgear and the second switchgear when switching the operation mode, Alternatively, the refrigerant can be moved more appropriately and in a shorter time by opening and closing only the second opening / closing device to move the refrigerant between the circuits. In addition, due to some abnormality, the temperature of the heat storage medium becomes abnormal, the pressure difference between the circuits reverses, and the direction of refrigerant movement becomes opposite, or the failure of the switchgear makes it impossible to move the refrigerant between circuits. It is possible to detect in advance such as a malfunction based on the detected pressure difference.
【0017】また、前述したような蓄冷運転、蓄熱運転
における冷媒分布の差を利用して、蓄冷運転から一般冷
房運転に運転切り換えを行う場合、蓄冷運転終了後、蓄
熱運転をタイマーの計時による予め決められた時間(即
ち、蓄熱量に影響を及ぼさない時間)だけ第3の制御装
置によって運転させ、その後蓄熱運転を終了させて冷房
運転に切り換えることにより、蓄熱運転では凝縮器とし
て機能する第2の利用側熱交換器に冷媒が多く分布する
一方、蒸発器として機能する非利用側熱交換器には分布
量が少ないため、第1の開閉装置及び第2の開閉装置を
遮断し、一般冷房運転、放冷運転を立ち上げた際に、一
般冷房用回路側には冷媒量が比較的少なく、逆に放冷用
回路には比較的多量の冷媒が分配される。これにより、
一般冷房の必要冷媒量は少なく、放冷運転の必要冷媒量
は多いので、ほぼ適正な冷媒分布で運転を継続させるこ
とができる。また、蓄熱運転から蓄冷運転に運転切り換
えを行う場合、蓄熱運転終了後、蓄冷運転をタイマーの
計時による予め決められた時間(即ち、蓄熱量に影響を
及ぼさない時間)だけ第3の制御装置によって運転さ
せ、その後蓄冷運転を終了させて暖房運転に切り換える
ことにより、蓄冷運転では凝縮器として機能する非利用
側熱交換器に冷媒が多く分布する一方、蒸発器として機
能する第2の利用側熱交換器には分布量が少ないため、
第1の開閉装置及び第2の開閉装置を遮断し、一般暖房
運転、放熱運転を立ち上げた際に一般暖房用回路側には
冷媒量が比較的多く、逆に放熱用回路側には比較的少な
い量の冷媒が分配される。これにより、一般冷房の必要
冷媒量は多く、放冷運転の必要冷媒量は少ないため、ほ
ぼ適正冷媒分布で運転を継続させることができる。Further, when the operation is switched from the cold storage operation to the general cooling operation by utilizing the difference in the refrigerant distribution in the cold storage operation and the heat storage operation as described above, the heat storage operation is preliminarily measured by a timer after the cold storage operation is completed. A second control functioning as a condenser in the heat storage operation is performed by the third control device for a predetermined time (that is, a time that does not affect the heat storage amount), after which the heat storage operation is terminated and switched to the cooling operation. While a large amount of refrigerant is distributed to the heat exchanger on the use side, the distribution amount is small on the heat exchanger on the non-use side that functions as an evaporator. Therefore, the first switchgear and the second switchgear are shut off, and general cooling is performed. When the operation and the cooling operation are started, the amount of refrigerant is relatively small on the general cooling circuit side, and conversely, a relatively large amount of refrigerant is distributed to the cooling circuit. This allows
Since the amount of refrigerant required for general cooling is small and the amount of refrigerant required for cooling operation is large, the operation can be continued with an almost appropriate refrigerant distribution. When the operation is switched from the heat storage operation to the cold storage operation, after the end of the heat storage operation, the cool storage operation is performed by the third control device for a predetermined time (that is, a time that does not affect the heat storage amount) by the timer. By operating and then ending the cold storage operation and switching to the heating operation, a large amount of refrigerant is distributed to the non-use side heat exchanger that functions as a condenser in the cold storage operation, while the second use side heat that functions as an evaporator. Since the distribution amount is small in the exchanger,
When the general heating operation and the heat radiation operation are started by shutting off the first switchgear and the second switchgear, the amount of refrigerant is relatively large on the general heating circuit side, and conversely on the heat radiation circuit side. A very small amount of refrigerant is distributed. As a result, since the required amount of refrigerant for general cooling is large and the required amount of refrigerant for cooling operation is small, the operation can be continued with an almost appropriate refrigerant distribution.
【0018】更に、蓄熱運転中に凝縮器として機能する
第2の利用側熱交換器側、即ち放熱用回路側に多くの冷
媒量が分布するが、放熱運転での必要冷媒量は比較的少
なく蓄冷運転からの放熱運転に運転を切り換えた場合、
放熱運転において冷媒余剰となり高圧の上昇、圧縮機吸
込側への液バック等の不具合により運転継続不能となる
恐れがある。また、蓄熱運転では第2の利用側熱交換器
に冷媒が液冷媒として寝込んでおり、放熱運転開始時に
冷媒余剰の原因となるため、予め回収しておく必要があ
る。そこで、第4の制御装置により蓄熱運転終了直前に
第4の減圧機構を全開に開放し、圧縮機出側冷媒の吐出
圧力と凝縮圧力との圧力差を利用して冷媒を第2の液側
配管に回収し、蓄冷運転を終了する。これにより、放熱
運転が立ち上がった際に冷媒余剰による不具合を生じる
ことなく、スムースに運転を継続させることができる。Further, while a large amount of refrigerant is distributed on the side of the second heat exchanger on the use side that functions as a condenser during heat storage operation, that is, on the side of the heat radiation circuit, the amount of refrigerant required in heat radiation operation is relatively small. When the operation is switched from the cold storage operation to the heat radiation operation,
There is a possibility that the operation will not be able to continue due to problems such as excessive refrigerant in the heat dissipation operation, a rise in high pressure, and liquid back to the compressor suction side. Further, in the heat storage operation, the refrigerant is laid as a liquid refrigerant in the second heat exchanger on the utilization side, which causes an excess of the refrigerant at the start of the heat radiation operation, and therefore needs to be recovered in advance. Therefore, the fourth pressure reducing mechanism is fully opened by the fourth control device immediately before the end of the heat storage operation, and the refrigerant is discharged to the second liquid side by utilizing the pressure difference between the discharge pressure and the condensation pressure of the refrigerant on the compressor outlet side. Collect in the pipe and finish the cold storage operation. As a result, when the heat radiation operation is started up, the operation can be smoothly continued without causing a problem due to excess refrigerant.
【0019】そして、もし前日の放熱運転後に第2のア
キュムレータ内に冷媒が寝込んでいる場合、蓄熱運転に
は最大冷媒量の冷媒を必要とするため、蓄熱運転開始直
後に、第5の制御装置はタイマーにより計時された所定
時間リバース運転(蓄冷運転)を行うと同時に、第2の
アキュムレータと第2の利用側熱交換器との間に設けら
れている第3の開閉装置を開放し、第2のアキュムレー
タ内に寝込んでいる冷媒を取り出して分配する制御を行
うことにより、冷媒取り出し後速やかにかつ不具合なく
蓄熱運転に移行させることができる。また、この冷媒分
配動作を予め設定された所定の蓄熱時間内に行うことに
より、翌日の放熱運転開始時に第2のアキュムレータ内
に寝込んだ冷媒による冷媒余剰の不具合を生じることな
く、放熱運転を継続させることができる。If the refrigerant accumulates in the second accumulator after the heat dissipation operation on the previous day, the maximum amount of refrigerant is required for the heat storage operation, and therefore, the fifth control device immediately after the start of the heat storage operation. Performs a reverse operation (cold storage operation) for a predetermined time counted by a timer, and at the same time opens a third switchgear provided between the second accumulator and the second utilization side heat exchanger, By performing the control of taking out and distributing the refrigerant lying in the accumulator of No. 2, it is possible to shift to the heat storage operation promptly and without trouble after taking out the refrigerant. In addition, by performing this refrigerant distribution operation within a preset predetermined heat storage time, the heat radiation operation is continued without causing a refrigerant excess problem due to the refrigerant laid in the second accumulator at the start of the heat radiation operation on the next day. Can be made.
【0020】[0020]
実施例1.以下、本発明の実施例1を図1〜図5に基づ
いて説明する。図1は請求項1、請求項3、請求項4の
発明に対応してそれぞれ適用した実施例1、実施例3、
実施例4による蓄熱式空気調和装置の全体構成を示す冷
媒配管系統図である。図中、1は圧縮機、2は例えば室
外空気と冷媒との間で熱交換を行う、非利用側熱交換器
3は第1の減圧機構、4aは第1の利用側熱交換器、1
7は第1のアキュムレータであって、これらを順次接続
して圧縮機利用冷暖房回路(以下、一般冷暖房用回路と
称す)18を構成しており、上記第1の利用側熱交換器
4aを介して、例えば室内の冷房または暖房を行うよう
になっている。そして、上記一般冷暖房用回路18は、
第1の利用側熱交換器4aに接続され、開閉装置16a
を含むバイパス回路16bに並列してなる第3の減圧機
構16と、上記第1の減圧機構3の出入側に並列に接続
され開閉装置3aを含むバイパス回路3bとを備えてい
る。Example 1. Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 shows a first embodiment, a third embodiment, which are applied in correspondence with the inventions of claim 1, claim 3, and claim 4, respectively.
It is a refrigerant piping system diagram showing the whole heat storage type air harmony device composition by Example 4. In the figure, 1 is a compressor, 2 is heat exchange between, for example, outdoor air and a refrigerant, a non-use side heat exchanger 3 is a first pressure reducing mechanism, 4a is a first use side heat exchanger, 1
Reference numeral 7 denotes a first accumulator, which is sequentially connected to form a compressor-utilizing cooling / heating circuit (hereinafter, referred to as a general cooling / heating circuit) 18 through the first utilization-side heat exchanger 4a. For example, the room is cooled or heated. Then, the general cooling and heating circuit 18 is
The switchgear 16a is connected to the first utilization side heat exchanger 4a.
And a bypass circuit 3b connected in parallel to the inlet / outlet side of the first pressure reducing mechanism 3 and including a switchgear 3a.
【0021】一方、13は冷媒ガスポンプ、9は蓄冷熱
用熱交換器、20は第2の減圧機構、4bは第2の利用
側熱交換器、13aは第2のアキュムレータであって、
これらを順次接続して蓄冷熱利用冷暖房回路(以下、放
冷・放熱用回路と称す)21をを構成しており、上記第
2の利用側熱交換器4bを介して、例えば室内の冷房ま
たは暖房を行うようになっている。そして、7は上記蓄
冷熱用熱交換器9を介して蓄冷または蓄熱する蓄熱媒体
であり、8は上記蓄熱媒体7を内蔵する蓄熱槽である。
蓄熱媒体7としては、例えば水が用いられ、この場合の
蓄熱手段としては、蓄冷時は製氷により冷熱の大部分を
潜熱として蓄え、蓄熱時は定常な暖房運転に達するまで
の立ち上げに十分な顕熱量を温湯として蓄えることによ
り実現される。また、11は第2の利用側熱交換器4b
に接続され開閉装置11aを含むバイパス回路11bを
並列してなる第4の減圧機構である。上記第2の減圧機
構20はその出入側に開閉装置20aを含むバイパス回
路20bが並列に接続されて構成されている。尚、上記
第1の利用側熱交換器4a及び第2の利用側熱交換器4
bは、それぞれ個別独立の冷媒回路に配備されており、
双方を併せて利用側熱交換器4と称するが、それぞれの
熱交換部分は共通の風路内或いは個々に独立した風路内
の何れに設けられてあっても構わない。On the other hand, 13 is a refrigerant gas pump, 9 is a heat exchanger for cold storage heat, 20 is a second pressure reducing mechanism, 4b is a second utilization side heat exchanger, and 13a is a second accumulator.
These are connected in sequence to form a cooling / heating circuit (hereinafter referred to as a cooling / radiating circuit) 21 that uses the accumulated heat, and is used for cooling the inside of the room, for example, through the second heat exchanger 4b on the use side. It is designed to heat. Further, 7 is a heat storage medium for storing or storing heat via the heat exchanger 9 for heat storage for cold storage, and 8 is a heat storage tank containing the heat storage medium 7 therein.
As the heat storage medium 7, for example, water is used. As the heat storage means in this case, most of the cold heat is stored as latent heat by ice making at the time of cold storage, and at the time of heat storage, it is sufficient to start up until a steady heating operation is reached. It is realized by storing the amount of sensible heat as hot water. Further, 11 is the second utilization side heat exchanger 4b.
Is a fourth depressurizing mechanism which is connected in parallel with a bypass circuit 11b including a switchgear 11a. The second depressurization mechanism 20 is configured such that a bypass circuit 20b including an opening / closing device 20a is connected in parallel to the inlet / outlet side thereof. In addition, the first usage-side heat exchanger 4a and the second usage-side heat exchanger 4 described above.
b is provided in each independent refrigerant circuit,
Both of them are collectively referred to as a utilization side heat exchanger 4, but the respective heat exchange portions may be provided in either a common air passage or an individually independent air passage.
【0022】22は第1の四方切換弁15〜第1の利用
側熱交換器4a間の第1のガス側配管18bと第2の四
方切換弁19〜第2の利用側熱交換器4b間のガス側配
管21bとの間に介在する第1の開閉装置22aの開閉
により両回路間の冷媒移動を可能にする第1のバイパス
回路である。23は第1の減圧機構3〜第3の減圧機構
16間の第1の液側配管18aと第2の減圧機構20〜
第4の減圧機構11間の第2の液側配管21aとの間に
介在する第2の開閉装置23aの開閉により両回路の冷
媒移動を可能にする第2のバイパス回路である。これら
のバイパス回路22,23は、蓄冷運転時または蓄熱運
転時には主冷媒回路の一部として用いられる。Reference numeral 22 denotes a first gas side pipe 18b between the first four-way switching valve 15 and the first utilization side heat exchanger 4a and a second four-way switching valve 19 between the second utilization side heat exchanger 4b. It is a first bypass circuit that enables the movement of the refrigerant between the two circuits by opening and closing the first opening / closing device 22a interposed between the first side opening / closing device 22a and the gas side pipe 21b. Reference numeral 23 denotes the first liquid side pipe 18a between the first pressure reducing mechanism 3 to the third pressure reducing mechanism 16 and the second pressure reducing mechanism 20 to.
It is a second bypass circuit that enables the movement of the refrigerant in both circuits by opening / closing a second opening / closing device 23a interposed between the second pressure reducing mechanism 11 and the second liquid side pipe 21a. These bypass circuits 22 and 23 are used as a part of the main refrigerant circuit during cold storage operation or heat storage operation.
【0023】24は上記冷媒ガスポンプ13と第2の四
方切換弁19を含む冷媒ガスポンプ回路の出入口間に並
列に開閉装置24aを含んで設けられた第5のバイパス
回路、27は蓄熱式空気調和装置の種々の動作を制御す
る制御装置、28は上記第1の利用側熱交換器4a近傍
の第1のガス側配管18bに設けられた開閉装置、29
は上記第2の利用側熱交換器4b近傍の第2のガス側配
管21bに設けられた開閉装置、32は所定の制御動作
時間を計時する制御装置27のタイマーである。Reference numeral 24 is a fifth bypass circuit including an opening / closing device 24a in parallel between the inlet and outlet of the refrigerant gas pump circuit including the refrigerant gas pump 13 and the second four-way switching valve 19, and 27 is a heat storage type air conditioner. A control device for controlling various operations of the switch, 28 is an opening / closing device provided in the first gas side pipe 18b near the first utilization side heat exchanger 4a, 29
Is an opening / closing device provided in the second gas side pipe 21b near the second utilization side heat exchanger 4b, and 32 is a timer of the control device 27 for measuring a predetermined control operation time.
【0024】図2の(a)は本発明の実施例1による蓄
熱式空気調和装置の蓄冷運転終了時の冷媒量分布と一般
冷房用回路及び放冷用回路での必要冷媒量とを示す。ま
た、図2の(b)は第1の開閉装置及び第2の開閉装置
を開放した場合の冷媒移動方向を示す。蓄冷運転終了時
点では、凝縮器として機能する非利用側熱交換器2側、
即ち一般冷房用回路側に冷媒量V1 (kg)の冷媒が存
在する一方、蒸発器として機能する蓄冷利用の第2の利
用側熱交換器4b側、即ち放冷用回路側には冷媒量V2
(kg)の冷媒が存在する(このとき、V1 >V2 )。
一般冷房用回路または放冷用回路において正常運転に要
求される必要冷媒量が、それぞれVr,Vhr(kg)
であるとすると、V1 −Vr(=Vhr−V2)(k
g)の冷媒量の移動が正常運転を行う上で必要となる。FIG. 2A shows the distribution of the amount of refrigerant at the end of the cold storage operation of the heat storage type air conditioner according to the first embodiment of the present invention and the required amount of refrigerant in the general cooling circuit and the cooling air circuit. Further, FIG. 2B shows a refrigerant moving direction when the first opening / closing device and the second opening / closing device are opened. At the end of the cold storage operation, the non-use side heat exchanger 2 side that functions as a condenser,
That is, while the refrigerant amount V 1 (kg) of refrigerant is present on the side of the general cooling circuit, the amount of refrigerant is on the side of the second utilization side heat exchanger 4b used for cold storage that functions as an evaporator, that is, on the side of the cooling circuit. V 2
There is (kg) refrigerant (at this time, V 1 > V 2 ).
The necessary refrigerant amounts required for normal operation in the general cooling circuit or the cooling circuit are Vr and Vhr (kg), respectively.
, V 1 −Vr (= Vhr−V 2 ) (k
The movement of the amount of refrigerant in g) is necessary for normal operation.
【0025】図3の(a)は蓄熱運転終了時の冷媒量分
布と一般暖房用回路及び放熱用回路での必要冷媒量とを
示す。また、図3の(b)は第1の開閉装置及び第2の
開閉装置を開放した場合の冷媒移動方向を示す。蓄冷運
転終了時点では、凝縮器として機能する蓄熱利用の第2
の利用側熱交換器4b側、即ち放熱運転用回路側に冷媒
量V3 (kg)の冷媒が存在する一方、蒸発器として機
能する非利用側熱交換器2側、即ち一般暖房用回路側に
は冷媒量V4 (kg)の冷媒が存在する(このとき、V
3 >V4 )。一般暖房用回路または放熱用回路において
正常運転に要求される必要冷媒量が、それぞれVd,V
hn(kg)であるとすると、V3 −Vhn(=Vd−
V4)(kg)の冷媒量の移動が正常運転を行う上で必
要となる。FIG. 3A shows the distribution of the amount of refrigerant at the end of the heat storage operation and the required amount of refrigerant in the general heating circuit and the heat radiation circuit. Further, FIG. 3B shows the refrigerant moving direction when the first opening / closing device and the second opening / closing device are opened. At the end of the cold storage operation, the second heat storage utilization that functions as a condenser
While there is a refrigerant amount V 3 (kg) of refrigerant on the utilization side heat exchanger 4b side, that is, the heat radiation operation circuit side, the non-use side heat exchanger 2 side that functions as an evaporator, that is, the general heating circuit side A refrigerant having a refrigerant amount of V 4 (kg) is present (at this time, V
3 > V 4 ). The necessary refrigerant amounts required for normal operation in the general heating circuit or heat dissipation circuit are Vd and V, respectively.
If it is hn (kg), V 3 −Vhn (= Vd−
The transfer of the refrigerant amount of V 4 ) (kg) is necessary for normal operation.
【0026】図4は実施例1に係る制御フローを示した
ものである。同図中、S1,S2,S3,・・・は、そ
れぞれ制御装置27による動作ステップを示すものであ
って、以下後述する他の実施例に用いられる制御フロー
についても同様である。蓄冷・蓄熱運転時間終了後(S
1)、制御装置27(第1の制御装置)は、タイマー3
2によって計時される5分間第2の開閉装置23aを開
放させ(S2〜S4)、この間に必要な量の冷媒を一般
冷暖房用回路と放冷・放熱用回路との回路間で移動させ
る。タイマー32に計時終了により第2の開閉装置23
aを閉じ回路間を遮断して(S5)、冷媒移動を完了さ
せる。冷媒移動完了後、一般冷暖房運転、放冷・放熱運
転を開始させる(S6,S7)。FIG. 4 shows a control flow according to the first embodiment. In the figure, S1, S2, S3, ... Represent operation steps by the control device 27, respectively, and the same applies to control flows used in other embodiments described below. After the cool storage / heat storage operation time ends (S
1), the control device 27 (first control device) uses the timer 3
The second opening / closing device 23a is opened for 5 minutes which is timed by 2 (S2 to S4), and a necessary amount of refrigerant is moved between the general cooling and heating circuit and the cooling / radiating circuit during this period. The second opening / closing device 23 is activated by the timer 32 when the timing is completed.
A is closed and the circuits are cut off (S5) to complete the transfer of the refrigerant. After the completion of the movement of the refrigerant, the general cooling / heating operation and the cooling / radiating operation are started (S6, S7).
【0027】上記の動作に関して、図5は蓄冷運転時、
例えば蓄熱媒体が0℃の場合における第1の開閉装置及
び第2の開閉装置の開放時間と冷媒移動量との関係を示
している。例えば、蓄熱運転時により蓄熱媒体7が40
℃の高温に蓄熱されている場合、第1の開閉装置22a
及び第2の開閉装置23aの開放時間と冷媒移動量との
関係にも対応している。この関係により回路間の冷媒移
動に必要な時間データが制御装置27の記憶回路(図
外)に予めインプットされており、制御装置27は上記
時間データに基づくタイマー32の計時により、ここで
は第2の開閉装置23aの開閉制御を行うようになって
いる。尚、運転中に液冷媒の存在する第2の開閉装置2
3aを開閉制御するのが、回路間での冷媒移動に関して
有効であるが、ガス冷媒の存在する第1の開閉装置22
aを第2の開閉装置23aと同時に開閉させるようにす
れば、より迅速に冷媒移動を行うことができる。Regarding the above operation, FIG.
For example, it shows the relationship between the opening time of the first switchgear and the second switchgear and the amount of refrigerant movement when the heat storage medium is 0 ° C. For example, the heat storage medium 7 is 40
When the heat is stored at a high temperature of ℃, the first switchgear 22a
And the relationship between the opening time of the second opening / closing device 23a and the refrigerant movement amount. Due to this relationship, the time data necessary for the movement of the refrigerant between the circuits is previously input to the memory circuit (not shown) of the control device 27, and the control device 27 measures the time of the timer 32 based on the time data, and here the second data is used. The open / close control of the open / close device 23a is performed. The second opening / closing device 2 in which liquid refrigerant is present during operation
Controlling the opening and closing of 3a is effective for the movement of the refrigerant between the circuits, but the first opening and closing device 22 in which the gas refrigerant exists
If a is opened and closed at the same time as the second opening / closing device 23a, the refrigerant can be moved more quickly.
【0028】実施例2.以下、本発明の実施例2を図6
〜図8に基づいて説明する。尚、図6中、図1に示した
実施例1と同一部分には、同一符号を付してその説明を
省略する。図6は請求項2の発明を適用した実施例2に
係る蓄熱式空気調和装置の全体構成図である。図におい
て、30は一般冷暖房用回路の運転停止時の冷媒バラン
ス状態に対応した圧力を検出する圧力検出装置、31は
放冷・放熱用回路の冷媒バランス状態に対応した圧力を
検出する圧力検出装置である。尚、この運転停止時の各
回路における冷媒バランス状態を検出する手段(冷媒量
差検出手段)としては、上記の圧力検出装置に限らず、
例えば回路毎の温度検出装置等を用いることも可能であ
る。また、冷媒分布及び冷媒量は図2〜図3を用いて示
した実施例1で説明済みのため、ここでは省略する。Example 2. Example 2 of the present invention will be described below with reference to FIG.
~ It demonstrates based on FIG. In FIG. 6, the same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. FIG. 6 is an overall configuration diagram of a heat storage type air conditioner according to a second embodiment to which the invention of claim 2 is applied. In the figure, 30 is a pressure detection device that detects the pressure corresponding to the refrigerant balance state when the general cooling and heating circuit is stopped, and 31 is a pressure detection device that detects the pressure corresponding to the refrigerant balance state of the cooling / radiating circuit. Is. The means for detecting the refrigerant balance state in each circuit when the operation is stopped (refrigerant amount difference detecting means) is not limited to the above pressure detecting device,
For example, it is possible to use a temperature detecting device for each circuit. Further, the refrigerant distribution and the amount of the refrigerant have been already described in the first embodiment shown in FIGS.
【0029】図7は実施例2に係る制御フローを示した
ものである。先ず、制御装置27(第2の制御装置)に
より、蓄冷・蓄熱運転の終了が検知されると(S1
1)、その時点から5分後に(S12)、一般冷暖房用
回路及び放冷・放熱用回路でそれぞれの飽和圧力P1 ,
P2 を圧力検出装置30,31により検出する(S1
3)。ここで、回路間で圧力差がなければ(S13のP
1 −P2 =0)、開閉装置等の故障や冷媒回路内の異常
として検出信号を出力する(S14)。一方、圧力差が
存在することを確認した上で(S13のP1 −P2 >
0、またはP1 −P2 <0)、第2の開閉装置23aを
開放し(S15)、回路間の冷媒移動を行う。制御装置
27の演算装置(図外)により計算され予め決められた
移動量の冷媒が移動完了したことを判断した上で(S1
6)、制御装置27は第2の開閉装置23aを閉じて回
路間を遮断し(S17)、冷媒移動を終了させる。冷媒
移動完了後、一般冷暖房運転、放冷・放熱運転を開始す
る(S18,S19)。FIG. 7 shows a control flow according to the second embodiment. First, when the controller 27 (second controller) detects the end of the cold storage / heat storage operation (S1).
1), and after 5 minutes from that time (S12), the saturation pressure P 1 , respectively in the general cooling and heating circuit and the cooling and radiating circuit
P 2 is detected by the pressure detection devices 30 and 31 (S1
3). If there is no pressure difference between the circuits (P in S13,
1 -P 2 = 0), and outputs a detection signal as an abnormality in the breakdown or the refrigerant circuit of the switchgear or the like (S14). Meanwhile, P 1 -P 2 of after confirming that the pressure difference exists (S13>
0 or P 1 -P 2 <0), the second switchgear 23a is opened (S15), and the refrigerant is moved between the circuits. After it is determined that the refrigerant having the predetermined movement amount calculated by the arithmetic unit (not shown) of the control device 27 is completed (S1
6), the control device 27 closes the second opening / closing device 23a to interrupt the circuits (S17), and ends the refrigerant movement. After the completion of the transfer of the refrigerant, the general cooling / heating operation and the cooling / radiating operation are started (S18, S19).
【0030】上記の動作に関して、図8は一般冷暖房用
回路における検出圧力または温度検出値に基づいて得た
圧力Pi(kg/cm2 )と放冷・放熱用回路の検出圧
力または温度検出値に基づいて得た圧力Ph(kg/c
m2 )との圧力差(=Pi−Ph(kg/cm2 ))
と、単位時間当たりの冷媒移動量(kg/min)との
関係を示すものである。制御装置27により第2の開閉
装置23aを開放した場合、両回路間の圧力差は次第に
小さくなって均一になろうとするため、第2の開閉装置
23aの開閉時間により圧力は変化する。この関係を制
御装置27の記憶装置(図外)に予め記憶しておき、さ
らに上記の関係に基づいて冷媒移動量を計算する演算装
置(図外)を制御装置27に組み込むことで制御する。
尚、運転中に液冷媒の存在する第2の開閉装置23aを
開閉制御するのが、回路間での冷媒移動に関して有効で
あるが、ガス冷媒の存在する第1の開閉装置22aを第
2の開閉装置23aと同時に開閉させるようにすれば、
より迅速に冷媒移動を行うことができる。Regarding the above operation, FIG. 8 shows the pressure Pi (kg / cm 2 ) obtained based on the detected pressure or temperature detected value in the general cooling and heating circuit and the detected pressure or temperature detected value in the cooling / radiating circuit. Based on the obtained pressure Ph (kg / c
m 2 ) and pressure difference (= Pi-Ph (kg / cm 2 ))
And the amount of refrigerant movement per unit time (kg / min). When the second switching device 23a is opened by the control device 27, the pressure difference between the two circuits gradually decreases and tends to become uniform, so the pressure changes depending on the opening / closing time of the second switching device 23a. This relationship is stored in advance in a storage device (not shown) of the control device 27, and an arithmetic device (not shown) for calculating the refrigerant movement amount based on the above relationship is incorporated into the control device 27 for control.
It is effective to control the opening / closing of the second opening / closing device 23a in which the liquid refrigerant is present during operation, which is effective for the refrigerant movement between the circuits, but the first opening / closing device 22a in which the gas refrigerant is present is set to the second opening / closing device 22a. If the opening / closing device 23a is opened and closed at the same time,
The refrigerant can be moved more quickly.
【0031】実施例3.以下、本発明の実施例3を図9
に基づいて説明する。尚、図1に示した実施例1と同一
部分には、同一符号を付してその説明を省略する。図9
は実施例3に係る制御フローを示したものである。例え
ば蓄冷運転終了後(S21)、制御装置27(第3の制
御装置)は蓄熱運転を15分間行い(S22〜S2
4)、蓄熱運転を終了させる(S25)。この蓄冷運転
終了後に一般冷房運転、放冷運転を開始する(S26,
S27)。また、冬期においては蓄熱運転終了後、蓄冷
運転を15分間実施し、運転を終了させ回路間の冷媒量
分布調整を行って、その後一般暖房運転、放熱運転を開
始する。Example 3. Example 3 of the present invention will be described below with reference to FIG.
It will be described based on. The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Figure 9
Shows a control flow according to the third embodiment. For example, after the end of the cold storage operation (S21), the control device 27 (third control device) performs the heat storage operation for 15 minutes (S22 to S2).
4) The heat storage operation is ended (S25). After the completion of the cold storage operation, the general cooling operation and the cooling operation are started (S26,
S27). In the winter, after the heat storage operation ends, the cold storage operation is performed for 15 minutes, the operation is ended and the refrigerant amount distribution adjustment between the circuits is performed, and then the general heating operation and the heat radiation operation are started.
【0032】これらの動作により、蓄冷運転終了時の冷
媒量分布は一般冷房用回路の冷媒量がV1 からV3 にな
り放冷用回路の冷媒量はV2 からV4 となり、冷房運転
に切り換えた際、各回路の冷媒量はそれぞれV3 =V
r、V4 =Vhrであるため、ほぼ適正量の冷媒を確保
できた状態となり、運転を切り換えた後も冷媒の過不足
なく運転することができる。また、蓄熱運転終了時の冷
媒量分布は、一般暖房用回路の冷媒量がV3 からV1 に
なり、放冷用回路の冷媒量がV4 からV2 となる。ま
た、暖房運転に運転を切り換えた際、各回路の冷媒量は
それぞれV1 =Vd、V2 =Vhnであるため、ほぼ適
正量の冷媒を確保できた状態となり、運転を切り換えた
後も冷媒の過不足なく運転することができる。By these operations, the refrigerant amount distribution at the end of the cold storage operation is such that the refrigerant amount in the general cooling circuit changes from V 1 to V 3 and the refrigerant amount in the cooling circuit changes from V 2 to V 4 , and the cooling operation is performed. When switching, the amount of refrigerant in each circuit is V 3 = V
Since r and V 4 = Vhr, an appropriate amount of refrigerant can be secured, and the refrigerant can be operated without excess or deficiency even after the operation is switched. The refrigerant quantity distribution at the time of heat storage operation terminates, the refrigerant amount of general heating circuit is a V 3 to V 1, the amount of the refrigerant cooling circuit is V 2 from V 4. Further, when the operation is switched to the heating operation, the amounts of refrigerant in each circuit are V 1 = Vd and V 2 = Vhn, respectively, so that an almost proper amount of refrigerant can be secured, and the refrigerant remains after the operation is switched. You can drive without excess or deficiency.
【0033】実施例4.以下、本発明の実施例4を図1
0に基づいて説明する。尚、図1に示した実施例1と同
一部分には、同一符号を付してその説明を省略する。図
10は実施例4に係る制御フローを示したものである。
蓄熱運転が行われているとき(S31)、制御装置27
(第4の制御装置)は蓄熱運転終了5分前に(S32,
S33)、第4の減圧機構11例えばリニア膨張弁を全
開にし(S34)、第2の利用側熱交換器4bに寝込ん
でいる液冷媒を取り出して5分後に(S35,YES)
全閉にして(S36)、蓄熱運転を終了させる。その
後、一般暖房運転、放冷運転を開始する(S37,S3
8)。Example 4. Example 4 of the present invention will be described below with reference to FIG.
A description will be given based on 0. The same parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. FIG. 10 shows a control flow according to the fourth embodiment.
When the heat storage operation is performed (S31), the control device 27
(Fourth control device) 5 minutes before the end of the heat storage operation (S32,
S33), the fourth pressure reducing mechanism 11, for example, the linear expansion valve is fully opened (S34), and the liquid refrigerant lying in the second utilization side heat exchanger 4b is taken out and 5 minutes later (S35, YES).
It is fully closed (S36), and the heat storage operation is ended. Then, the general heating operation and the cooling operation are started (S37, S3).
8).
【0034】実施例5.以下、本発明の実施例5を図1
1〜図12に基づいて説明する。図11は請求項5の発
明を適用した実施例5に係る蓄熱式空気調和装置の全体
構成を示す冷媒配管系統図である。図11中、1は圧縮
機、2は例えば室外空気と冷媒との間で熱交換を行う非
利用側熱交換器、3は第1の減圧機構、4aは第1の利
用側熱交換器、17は第1のアキュムレータで、これら
を順次接続して圧縮機利用冷暖房回路(以下、一般冷暖
房用回路と称す)18を構成しており、上記第1の利用
側熱交換器4aを介して例えば室内の冷房または暖房を
行う。そして、上記一般冷暖房用回路18は、第1の利
用側熱交換器4aに接続され開閉装置16aを含むバイ
パス回路16bに並列してなる第3の減圧機構16と、
上記第1の減圧機構3の出入側に並列に接続され開閉装
置3aを含むバイパス回路3bとを備えている。一方、
13は冷媒ガスポンプ、9は蓄冷熱用熱交換器、20は
第2の減圧機構、4bは第2の利用側熱交換器、25は
放冷・放熱運転時にのみ開放される第3の開閉装置、1
3aは第2のアキュムレータで、これらを順次接続して
蓄冷熱用冷暖房回路(以下、放冷・放熱用回路と称す)
21をを構成しており、上記第2の利用側熱交換器4b
を介して、例えば室内の冷房または暖房を行うようにな
っている。また、26は第2の四方切換弁19と蓄冷熱
用熱交換器9との間に介設され第3の開閉装置25と同
時に開閉制御される開閉装置である。Example 5. Example 5 of the present invention will be described below with reference to FIG.
1 to 12 will be described. FIG. 11 is a refrigerant piping system diagram showing an overall configuration of a heat storage type air conditioner according to a fifth embodiment to which the invention of claim 5 is applied. In FIG. 11, 1 is a compressor, 2 is a non-use side heat exchanger that performs heat exchange between, for example, outdoor air and a refrigerant, 3 is a first pressure reducing mechanism, 4a is a first use side heat exchanger, Reference numeral 17 denotes a first accumulator, which is sequentially connected to form a compressor-utilizing cooling / heating circuit (hereinafter, referred to as a general cooling / heating circuit) 18 and, for example, via the first utilization-side heat exchanger 4a. Cool or heat the room. The general cooling and heating circuit 18 is connected to the first utilization side heat exchanger 4a and is parallel to the bypass circuit 16b including the switchgear 16a.
A bypass circuit 3b that is connected in parallel to the inlet / outlet side of the first pressure reducing mechanism 3 and includes a switchgear 3a is provided. on the other hand,
13 is a refrigerant gas pump, 9 is a heat exchanger for cold storage heat, 20 is a second pressure reducing mechanism, 4b is a second heat exchanger on the use side, and 25 is a third switchgear which is opened only during cooling / radiating operation. 1
Reference numeral 3a is a second accumulator, which is sequentially connected to each other to cool and heat the cold storage circuit (hereinafter, referred to as a cooling / radiating circuit).
21 of the second user side heat exchanger 4b.
For example, the room is cooled or heated through the. Further, 26 is an opening / closing device which is interposed between the second four-way switching valve 19 and the heat exchanger 9 for cold heat storage and is controlled to be opened / closed simultaneously with the third opening / closing device 25.
【0035】7は上記蓄冷熱用熱交換器9を介して蓄冷
または蓄熱する蓄熱媒体であり、8は上記蓄熱媒体7を
内蔵する蓄熱槽である。蓄熱媒体7としては、例えば水
が用いられる。この場合の蓄熱手段としては、蓄冷時は
製氷により冷熱の大部分を潜熱として蓄え、蓄熱時は定
常な暖房運転に達するまでの立ち上げに充分な顕熱量を
温湯として蓄えることにより実現される。また、11は
第2の利用側熱交換器4bに接続され、開閉装置11a
を含むバイパス回路11bを並列してなる第4の減圧機
構である。上記第2の減圧機構20はその出入口側に開
閉装置20aを含むバイパス回路20bが並列に接続さ
れてなっている。尚、上記第1の利用側熱交換器4a及
び第2の利用側熱交換器4bは、それぞれ個別独立の冷
媒回路に配備されており、双方を併せて利用側熱交換器
4と称するが、それぞれの熱交換部分は共通の風路内、
或いは個々に独立した風路内の何れに設けられても構わ
ない。Reference numeral 7 is a heat storage medium that stores or stores heat via the heat exchanger 9 for cold storage heat, and 8 is a heat storage tank containing the heat storage medium 7. For example, water is used as the heat storage medium 7. The heat storage means in this case is realized by storing most of the cold heat as latent heat by ice making during cold storage, and as sensible heat sufficient for startup until reaching a steady heating operation as hot water during heat storage. Further, 11 is connected to the second utilization side heat exchanger 4b, and the switchgear 11a
Is a fourth depressurizing mechanism formed by arranging in parallel the bypass circuits 11b including the. The second decompression mechanism 20 has a bypass circuit 20b including an opening / closing device 20a connected in parallel on the inlet / outlet side thereof. The first usage-side heat exchanger 4a and the second usage-side heat exchanger 4b are respectively provided in independent refrigerant circuits, and both are collectively referred to as a usage-side heat exchanger 4, Each heat exchange part is in the common air passage,
Alternatively, it may be provided in any of the individual air passages.
【0036】22は第1の四方切換弁15〜第1の利用
側熱交換器4aの間の第1のガス側配管18bと第2の
四方切換弁19〜第2の利用側熱交換器4b間の第2の
ガス側配管21bとの間に介在する第1の開閉装置22
aの開閉により両回路間の冷媒移動を可能にする第1の
バイパス回路である。23は第1の減圧機構3〜第3の
減圧機構16間の第1の液側配管18aと第2の減圧機
構20〜第4の減圧機構11間の第2の液側配管21a
との間に介在する第2の開閉装置23aの開閉により両
回路の冷媒移動を可能にする第2のバイパス回路であ
る。これらのバイパス回路22,23は、蓄冷運転時ま
たは蓄熱運転時には主冷媒回路の一部として用いられ
る。Reference numeral 22 denotes a first gas side pipe 18b between the first four-way switching valve 15 and the first usage-side heat exchanger 4a, and a second four-way switching valve 19-second usage-side heat exchanger 4b. First switchgear 22 interposed between the second gas side pipe 21b
It is a first bypass circuit that enables the refrigerant to move between both circuits by opening and closing a. Reference numeral 23 denotes a first liquid side pipe 18a between the first pressure reducing mechanism 3 to the third pressure reducing mechanism 16 and a second liquid side pipe 21a between the second pressure reducing mechanism 20 to the fourth pressure reducing mechanism 11.
It is a second bypass circuit that enables the movement of the refrigerant in both circuits by opening and closing the second opening / closing device 23a interposed between and. These bypass circuits 22 and 23 are used as a part of the main refrigerant circuit during cold storage operation or heat storage operation.
【0037】24は上記冷媒ガスポンプ13と第2の四
方切換弁19を含む冷媒ガスポンプ回路の出入口間に並
列に開閉装置24aを含んで設けられた第5のバイパス
回路、27はこの蓄熱式空気調和装置の種々の動作を制
御する制御装置、28は上記第1の利用側熱交換器4a
近傍の第1のガス側配管18bに設けられた開閉装置、
29は上記第2の利用側熱交換器4b近傍の第2のガス
側配管21bに設けられた開閉装置、32は所定の制御
動作時間を計時する制御装置27のタイマーである。Reference numeral 24 is a fifth bypass circuit provided in parallel with the opening / closing device 24a between the inlet and outlet of the refrigerant gas pump circuit including the refrigerant gas pump 13 and the second four-way switching valve 19, and 27 is the heat storage air conditioner. A control device for controlling various operations of the device, 28 is the first utilization side heat exchanger 4a.
A switchgear provided on the first gas side pipe 18b in the vicinity,
Reference numeral 29 is an opening / closing device provided in the second gas side pipe 21b near the second utilization side heat exchanger 4b, and 32 is a timer of the control device 27 that measures a predetermined control operation time.
【0038】図12は実施例5に係る制御フローを示す
ものである。蓄熱運転には最大冷媒量の冷媒が必要とな
るため、前日の放熱運転終了後に第2のアキュムレータ
13a内に冷媒が寝込んでいる場合、蓄熱運転開始直後
に冷媒リバース運転(蓄冷運転)を行い、同時に第3の
開閉装置25を一定時間開放し、寝込んだ冷媒を第2の
アキュムレータ13aから取り出す必要がある。そこ
で、制御装置27(第5の制御装置)は、蓄熱運転開始
直後に(S41)蓄冷運転を行い(S42)、さらに第
3の開閉装置25をタイマー32により計時された30
分間開放にすることにより(S43,S44)、第2の
アキュムレータ13aから圧縮機1の吸込側となる第2
のガス側配管21b側に冷媒を取り出した後、蓄熱運転
に移行させるのである。FIG. 12 shows a control flow according to the fifth embodiment. Since the maximum amount of refrigerant is required for the heat storage operation, if the refrigerant lays in the second accumulator 13a after the heat dissipation operation on the previous day, the refrigerant reverse operation (cold operation) is performed immediately after the heat storage operation starts, At the same time, it is necessary to open the third opening / closing device 25 for a certain period of time and take out the laid refrigerant from the second accumulator 13a. Therefore, the control device 27 (fifth control device) performs the cold storage operation immediately after the start of the heat storage operation (S41) (S42), and further, the third opening / closing device 25 is clocked by the timer 32 30.
By opening for a minute (S43, S44), the second accumulator 13a becomes the suction side of the compressor 1 from the second accumulator 13a.
After taking out the refrigerant to the gas side pipe 21b side, the heat storage operation is started.
【0039】[0039]
【発明の効果】以上のように本発明によれば、第1の制
御装置が一般冷暖房用回路と放冷・放熱用回路の第1の
開閉装置と第2の開閉装置とをタイマーにより計時され
る所定時間だけ開放する。これによって、蓄熱媒体温度
における冷媒飽和圧力と非利用側の周囲環境温度におけ
る冷媒飽和圧力の圧力差により、放冷・放熱用回路と一
般冷暖房用回路との間で冷媒の回路間移動が行われて回
路間の冷媒量調整を行うようにしたので、冷房または暖
房運転立ち上げ時に放冷・放熱用回路及び一般冷暖房用
回路のいずれも、冷媒余剰や余剰不足による不具合が無
く、適正な冷媒量を確保した運転をし得る効果を奏す
る。また、特別な冷媒移動機構(例えば、冷媒移動用回
路)を別途設ける必要がないため、安価な蓄熱式空気調
和装置を得ることができる。As described above, according to the present invention, the first control device clocks the first opening / closing device and the second opening / closing device of the general cooling / heating circuit and the cooling / radiating circuit by the timer. Open for a specified time. As a result, due to the pressure difference between the refrigerant saturation pressure at the heat storage medium temperature and the refrigerant saturation pressure at the ambient environment temperature on the non-use side, the refrigerant is moved between circuits between the cooling / radiating circuit and the general cooling / heating circuit. Since the amount of refrigerant between the circuits is adjusted by adjusting the amount of refrigerant between the circuits, neither the cooling / radiating circuit nor the general cooling / heating circuit at the time of startup of the cooling or heating operation has a problem due to excess or insufficient refrigerant There is an effect that it is possible to drive with secured. Moreover, since it is not necessary to separately provide a special refrigerant moving mechanism (for example, a refrigerant moving circuit), an inexpensive heat storage type air conditioner can be obtained.
【0040】また、冷媒量差検出装置が一般冷暖房用回
路と放冷・放熱用回路側にてそれぞれ検出された圧力差
または温度差等を基に各回路間の冷媒量差を検出し、第
2の制御装置が冷媒量差検出装置により検出された冷媒
量差に基づいて、運転モード切り換え前に冷媒の回路間
移動を行うようにしたので、より正確にかつ短時間で冷
媒移動を行えるばかりでなく、各回路における不具合を
事前に検知できる。Further, the refrigerant amount difference detection device detects the refrigerant amount difference between the circuits based on the pressure difference or temperature difference detected on the general cooling and heating circuit side and the cooling / radiating circuit side, respectively. Since the second control device moves the refrigerant between the circuits before switching the operation mode based on the refrigerant amount difference detected by the refrigerant amount difference detection device, the refrigerant movement can be performed more accurately and in a short time. Instead, it is possible to detect a defect in each circuit in advance.
【0041】また、蓄冷運転から冷房運転に切り換える
際に、蓄冷運転または蓄熱運転時の一般冷暖房用回路と
放冷・放熱用回路とにおける冷媒量分布の差を考慮し
て、第3の制御装置が蓄冷運転終了後で冷房運転立ち上
げ前に、例えば蓄熱量に影響を及ぼさないような所定時
間だけ蓄熱運転を行った後に冷房運転に切り換えるよう
にしたので、冷房運転に対して単なる冷媒逆流運転を行
うだけの簡易な制御により、比較的短時間で回路間の冷
媒量調整を行える安価な蓄熱式空気調和装置を得ること
ができる。Further, when switching from the cold storage operation to the cooling operation, the third control device is considered in consideration of the difference in the refrigerant amount distribution between the general cooling / heating circuit and the cooling / radiating circuit during the cold storage operation or the heat storage operation. After the end of the cold storage operation, but before the start of the cooling operation, for example, after switching to the cooling operation after performing the heat storage operation for a predetermined time that does not affect the heat storage amount, it is a mere refrigerant reverse flow operation with respect to the cooling operation. It is possible to obtain an inexpensive heat storage type air conditioner capable of adjusting the amount of refrigerant between the circuits in a relatively short time by a simple control that simply performs.
【0042】更に、第4の制御手段が蓄熱運転終了直前
に第4の減圧機構を全開して放熱側である第2の利用側
熱交換器内の冷媒を第2の液側配管に流出させるように
したので、蓄熱運転から放熱運転に運転を切り換えた際
の冷媒余剰による高圧上昇や圧縮機への液バック等の不
具合を生じることがなく、スムースに運転継続できる効
果を奏する。Further, immediately before the end of the heat storage operation, the fourth control means fully opens the fourth pressure reducing mechanism to allow the refrigerant in the second heat exchanger on the heat dissipation side to flow out to the second liquid side pipe. Therefore, there is no problem such as high pressure rise due to excess refrigerant and liquid back to the compressor when the operation is switched from the heat storage operation to the heat dissipation operation, and the operation can be smoothly continued.
【0043】そして、放熱運転終了時に第2のアキュム
レータ内に液冷媒が滞留している場合でも、第5の制御
装置が蓄熱運転開始直後に蓄冷運転(蓄熱運転に対する
冷媒逆流運転)を行い同時に第3の開閉装置を開放して
第2のアキュムレータ内の冷媒を第2のガス側配管に流
出させたのちに蓄熱運転の実運転を開始するので、蓄熱
運転に必要な冷媒量を確保した上で実運転を開始するこ
とができる。Even when the liquid refrigerant remains in the second accumulator at the end of the heat radiation operation, the fifth control device performs the cold storage operation (refrigerant backflow operation for the heat storage operation) immediately after the heat storage operation starts. Since the opening / closing device of 3 is opened to allow the refrigerant in the second accumulator to flow out to the second gas side pipe, the actual operation of the heat storage operation is started, so that the amount of refrigerant required for the heat storage operation is ensured. The actual operation can be started.
【図1】本発明の実施例1、実施例3、及び実施例4に
よる蓄熱式空気調和装置の冷媒配管系統図である。FIG. 1 is a refrigerant piping system diagram of a heat storage type air conditioner according to first, third, and fourth embodiments of the present invention.
【図2】(a)は本発明の実施例1による蓄熱式空気調
和装置の蓄冷運転終了時の冷媒量分布と一般冷暖房用回
路及び放冷用回路の必要冷媒量とを示す図である。 (b)は本発明の実施例1による蓄熱式空気調和装置の
冷媒調整運転の冷媒の流れを示した図である。FIG. 2 (a) is a diagram showing a refrigerant amount distribution at the end of the cold storage operation of the heat storage type air conditioner according to the first embodiment of the present invention and a required amount of refrigerant in the general cooling / heating circuit and the cooling air circuit. (B) is a diagram showing a refrigerant flow in a refrigerant adjustment operation of the heat storage type air conditioner according to the first embodiment of the present invention.
【図3】(a)は本発明の実施例1による蓄熱式空気調
和装置の暖房運転時の冷媒の流れと冷媒量分布を示す図
である。 (b)は本発明の実施例1による蓄熱式空気調和装置の
冷媒調整運転時の冷媒の流れを示した図である。FIG. 3A is a diagram showing a refrigerant flow and a refrigerant amount distribution during a heating operation of the heat storage type air conditioner according to the first embodiment of the present invention. (B) is a diagram showing the flow of the refrigerant during the refrigerant adjustment operation of the heat storage type air conditioner according to the first embodiment of the present invention.
【図4】本発明の実施例1による蓄熱式空気調和装置の
冷媒調整運転の制御フローチャートを示した図である。FIG. 4 is a diagram showing a control flowchart of a refrigerant adjustment operation of the heat storage type air conditioner according to the first embodiment of the present invention.
【図5】本発明の実施例1による蓄熱式空気調和装置の
冷媒移動量と開閉装置の開閉時間との関係を示した図で
ある。FIG. 5 is a diagram showing the relationship between the amount of refrigerant movement of the heat storage type air conditioner according to the first embodiment of the present invention and the opening / closing time of the switchgear.
【図6】本発明の実施例2による蓄熱式空気調和装置の
冷媒配管系統図である。FIG. 6 is a refrigerant piping system diagram of a heat storage type air conditioner according to a second embodiment of the present invention.
【図7】本発明の実施例2による蓄熱式空気調和装置の
冷媒調整運転の制御フローチャートを示した図である。FIG. 7 is a diagram showing a control flowchart of a refrigerant adjusting operation of the heat storage type air conditioner according to the second embodiment of the present invention.
【図8】本発明の実施例2による蓄熱式空気調和装置の
冷媒移動量と移動に必要な回路間の圧力差との関係を示
した図である。FIG. 8 is a diagram showing a relationship between a refrigerant movement amount and a pressure difference between circuits necessary for movement of the heat storage type air conditioner according to the second embodiment of the present invention.
【図9】本発明の実施例3による蓄熱式空気調和装置の
冷媒調整運転の制御フローチャートを示した図である。FIG. 9 is a diagram showing a control flowchart of a refrigerant adjustment operation of the heat storage type air conditioner according to the third embodiment of the present invention.
【図10】本発明の実施例4による蓄熱式空気調和装置
の冷媒調整運転の制御フローチャートを示した図であ
る。FIG. 10 is a diagram showing a control flowchart of a refrigerant adjustment operation of the heat storage type air conditioner according to Example 4 of the present invention.
【図11】本発明の実施例5による蓄熱式空気調和装置
の冷媒配管系統図である。FIG. 11 is a refrigerant piping system diagram of a heat storage type air conditioner according to a fifth embodiment of the present invention.
【図12】本発明の実施例5による蓄熱式空気調和装置
の冷媒調整運転の制御フローチャートを示した図であ
る。FIG. 12 is a diagram showing a control flowchart of a refrigerant adjustment operation of the heat storage type air conditioner according to Example 5 of the present invention.
【図13】従来例による蓄熱式空気調和装置の冷媒配管
系統図である。FIG. 13 is a refrigerant piping system diagram of a conventional heat storage type air conditioner.
1 圧縮機 2 非利用側熱交換器 3 減圧機構 4 利用側熱交換器 4a 第1の利用側熱交換器 4b 第2の利用側熱交換器 7 蓄熱媒体 8 蓄熱槽 9 蓄冷熱用熱交換器 11 第4の減圧機構 13 冷媒ガスポンプ 13a 第2のアキュムレータ 15 第1の四方切換弁 16 第3の減圧機構 18 圧縮機利用冷暖房回路(一般冷暖房用回路) 18b 第1のガス側配管 19 第2の四方切換弁 20 第2の減圧機構 21 蓄冷熱利用冷暖房回路(放冷・放熱用回路) 21b 第2のガス側配管 22 第1のバイパス回路 22a 第1の開閉装置 23 第2のバイパス回路 23a 第2の開閉装置 25 第3の開閉装置 27 制御装置 30 圧力検出装置 31 圧力検出装置 32 タイマー 1 Compressor 2 Non-use side heat exchanger 3 Decompression mechanism 4 Use side heat exchanger 4a First use side heat exchanger 4b Second use side heat exchanger 7 Heat storage medium 8 Heat storage tank 9 Heat exchanger for cold storage heat 11 4th decompression mechanism 13 Refrigerant gas pump 13a 2nd accumulator 15 1st four-way switching valve 16 3rd decompression mechanism 18 Compressor using heating / cooling circuit (general cooling / heating circuit) 18b 1st gas side piping 19 2nd Four-way switching valve 20 Second decompression mechanism 21 Cooling / heating circuit (cooling / radiating circuit) utilizing stored heat 21b Second gas side piping 22 First bypass circuit 22a First switchgear 23 Second bypass circuit 23a 2 switchgear 25 3rd switchgear 27 control device 30 pressure detection device 31 pressure detection device 32 timer
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 13/00 U 351 (72)発明者 今西 正美 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F25B 13/00 U 351 (72) Inventor Masami Imanishi 6-5-6 Tehira, Wakayama Mitsubishi Electric Incorporated company Wakayama Works
Claims (5)
交換器、第1の減圧機構、及び第1の利用側熱交換器を
順次接続して成り、上記第1の四方切換弁の冷媒流路切
り換えにより上記第1の利用側熱交換器を介して冷房ま
たは暖房を切り換え自在に行う一般冷暖房用回路と、冷
媒ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2
の減圧機構、及び第2の利用側熱交換器を順次接続して
成り、上記第2の四方切換弁の冷媒流路切り換えにより
上記第2の利用側熱交換器を介して冷房または暖房を切
り換え自在に行う放冷・放熱用回路と、上記蓄冷熱用熱
交換器を介して蓄冷・蓄熱または放冷・放熱する蓄熱媒
体を内蔵した蓄熱槽と、上記一般冷暖房用回路の第1の
ガス側配管と上記放冷・放熱用回路の第2のガス側配管
との間に設けた第1の開閉装置を有し上記第1の開閉装
置の開閉により冷媒の回路間移動を可能にする第1のバ
イパス回路と、上記一般冷暖房用回路の第1の液側配管
と上記放冷・放熱用回路の第2の液側配管との間に設け
た第2の開閉装置を有し上記第2の開閉装置の開閉によ
り冷媒の回路間移動を可能にする第2のバイパス回路と
を備え、上記蓄熱槽に蓄冷または蓄熱された熱エネルギ
ーを利用する放冷・放熱用回路及び上記一般冷暖房用回
路、または上記放冷・放熱用回路もしくは上記一般冷暖
房用回路のいずれか一方による冷房運転または暖房運転
の際には、上記第1の開閉装置及び第2の開閉装置をと
もに遮断して上記一般冷暖房用回路と放冷・放熱用回路
とを個別独立に運転させると共に、上記蓄熱槽への蓄冷
運転または蓄熱運転の際には、上記第1の開閉装置及び
第2の開閉装置をともに開放して、上記圧縮機、第1の
四方切換弁、非利用側熱交換器、第1または第2の減圧
機構、及び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路
を形成するようにした蓄熱式空気調和装置において、予
め設定された所定時間を計時するタイマーと、蓄冷また
は蓄熱運転終了後で冷房または暖房運転立ち上げ前に、
上記第1及び第2の開閉装置、または上記第1もしくは
第2の開閉装置のいずれか一方を上記タイマーにより計
時される所定時間だけ開放して、上記放冷・放熱用回路
と一般冷暖房用回路との間で冷媒を移動させる第1の制
御装置とを具備してなることを特徴とする蓄熱式空気調
和装置。1. A first four-way switching system comprising a compressor, a first four-way switching valve, a non-use side heat exchanger, a first pressure reducing mechanism, and a first use side heat exchanger, which are sequentially connected. A general cooling / heating circuit for freely switching between cooling and heating through the first utilization side heat exchanger by switching the refrigerant flow path of the valve, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, Second
The pressure reducing mechanism and the second use side heat exchanger are sequentially connected, and cooling or heating is switched through the second use side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. A heat release / heat radiation circuit that is freely performed, a heat storage tank that incorporates a heat storage medium that stores or releases heat or cools / radiates heat via the heat storage heat exchanger, and the first gas side of the general cooling / heating circuit A first opening / closing device provided between the pipe and the second gas side pipe of the cooling / radiating circuit, wherein the opening / closing of the first opening / closing device enables movement of the refrigerant between circuits; And a second opening / closing device provided between the first liquid side pipe of the general cooling / heating circuit and the second liquid side pipe of the cooling / radiating circuit. A second bypass circuit that allows the refrigerant to move between circuits by opening and closing the switchgear; In the cooling operation or the heating operation by the cooling / radiating circuit and the general cooling / heating circuit, or the cooling / radiating circuit or the general cooling / heating circuit that uses the heat energy stored or stored in the The first switchgear and the second switchgear are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently of each other, and the cold storage operation or heat storage in the heat storage tank is performed. During operation, both the first switchgear and the second switchgear are opened, and the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or the second pressure reducing mechanism. In a heat storage type air conditioner configured to form a heat storage / heat storage circuit including a heat storage heat storage heat exchanger, a timer for measuring a preset predetermined time and cooling or heating after the end of the heat storage or heat storage operation. Before launching the rolling,
The first and second switchgear, or either the first or second switchgear, is opened for a predetermined period of time measured by the timer, and the cooling / radiating circuit and the general cooling / heating circuit are opened. And a first control device for moving the refrigerant between the heat storage type air conditioning device and the first control device.
交換器、第1の減圧機構、及び第1の利用側熱交換器を
順次接続して成り、上記第1の四方切換弁の冷媒流路切
り換えにより上記第1の利用側熱交換器を介して冷房ま
たは暖房を切り換え自在に行う一般冷暖房用回路と、冷
媒ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2
の減圧機構、及び第2の利用側熱交換器を順次接続して
成り、上記第2の四方切換弁の冷媒流路切り換えにより
上記第2の利用側熱交換器を介して冷房または暖房を切
り換え自在に行う放冷・放熱用回路と、上記蓄冷熱用熱
交換器を介して蓄冷・蓄熱または放冷・放熱する蓄熱媒
体を内蔵した蓄熱槽と、上記一般冷暖房用回路の第1の
ガス側配管と上記放冷・放熱用回路の第2のガス側配管
との間に設けた第1の開閉装置を有し上記第1の開閉装
置の開閉により冷媒の回路間移動を可能にする第1のバ
イパス回路と、上記一般冷暖房用回路の第1の液側配管
と上記放冷・放熱用回路の第2の液側配管との間に設け
た第2の開閉装置を有し上記第2の開閉装置の開閉によ
り冷媒の回路間移動を可能にする第2のバイパス回路と
を備え、上記蓄熱槽に蓄冷または蓄熱された熱エネルギ
ーを利用する放冷・放熱用回路及び上記一般冷暖房用回
路、または上記放冷・放熱用回路もしくは上記一般冷暖
房用回路のいずれか一方による冷房運転または暖房運転
の際には、上記第1の開閉装置及び第2の開閉装置をと
もに遮断して上記一般冷暖房用回路と放冷・放熱用回路
とを個別独立に運転させると共に、上記蓄熱槽への蓄冷
運転または蓄熱運転の際には、上記第1の開閉装置及び
第2の開閉装置をともに開放して、上記圧縮機、第1の
四方切換弁、非利用側熱交換器、第1または第2の減圧
機構、及び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路
を形成するようにした蓄熱式空気調和装置において、上
記一般冷暖房用回路と放冷・放熱用回路との冷媒量差を
検出する冷媒量差検出装置と、蓄冷または蓄熱運転後で
冷房または暖房運転立ち上げ前に、上記冷媒量差検出装
置により検出された冷媒量差に基づいて上記第1の開閉
装置及び第2の開閉装置、または上記第2の開閉装置を
開閉して、上記放冷・放熱用回路と一般冷房・暖房用回
路との間で冷媒を移動させる第2の制御装置とを具備し
てなることを特徴とする蓄熱式空気調和装置。2. A first four-way switching system comprising a compressor, a first four-way switching valve, a non-use side heat exchanger, a first pressure reducing mechanism, and a first use side heat exchanger, which are sequentially connected. A general cooling / heating circuit for freely switching between cooling and heating through the first utilization side heat exchanger by switching the refrigerant flow path of the valve, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, Second
The pressure reducing mechanism and the second use side heat exchanger are sequentially connected, and cooling or heating is switched through the second use side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. A heat release / heat radiation circuit that is freely performed, a heat storage tank that incorporates a heat storage medium that stores or releases heat or cools / radiates heat via the heat storage heat exchanger, and the first gas side of the general cooling / heating circuit A first opening / closing device provided between the pipe and the second gas side pipe of the cooling / radiating circuit, wherein the opening / closing of the first opening / closing device enables movement of the refrigerant between circuits; And a second opening / closing device provided between the first liquid side pipe of the general cooling / heating circuit and the second liquid side pipe of the cooling / radiating circuit. A second bypass circuit that allows the refrigerant to move between circuits by opening and closing the switchgear; In the cooling operation or the heating operation by the cooling / radiating circuit and the general cooling / heating circuit, or the cooling / radiating circuit or the general cooling / heating circuit that uses the heat energy stored or stored in the The first switchgear and the second switchgear are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently of each other, and the cold storage operation or heat storage in the heat storage tank is performed. During operation, both the first switchgear and the second switchgear are opened, and the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or the second pressure reducing mechanism. In the heat storage type air conditioner configured to form a cold storage / heat storage circuit comprising a heat storage heat exchanger for cold storage, and a refrigerant amount for detecting a difference in refrigerant amount between the general cooling / heating circuit and the cooling / radiating circuit. Difference detector and cold storage Or the first opening / closing device and the second opening / closing device, or the second opening / closing device based on the refrigerant amount difference detected by the refrigerant amount difference detection device after the heat storage operation and before the start of the cooling or heating operation. A heat storage type air conditioner comprising: a second control device that opens and closes the device to move the refrigerant between the cooling / radiating circuit and the general cooling / heating circuit.
交換器、第1の減圧機構、及び第1の利用側熱交換器を
順次接続して成り、上記第1の四方切換弁の冷媒流路切
り換えにより上記第1の利用側熱交換器を介して冷房ま
たは暖房を切り換え自在に行う一般冷暖房用回路と、冷
媒ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2
の減圧機構、及び第2の利用側熱交換器を順次接続して
成り、上記第2の四方切換弁の冷媒流路切り換えにより
上記第2の利用側熱交換器を介して冷房または暖房を切
り換え自在に行う放冷・放熱用回路と、上記蓄冷熱用熱
交換器を介して蓄冷・蓄熱または放冷・放熱する蓄熱媒
体を内蔵した蓄熱槽と、上記一般冷暖房用回路の第1の
ガス側配管と上記放冷・放熱用回路の第2のガス側配管
との間に設けた第1の開閉装置を有し上記第1の開閉装
置の開閉により冷媒の回路間移動を可能にする第1のバ
イパス回路と、上記一般冷暖房用回路の第1の液側配管
と上記放冷・放熱用回路の第2の液側配管との間に設け
た第2の開閉装置を有し上記第2の開閉装置の開閉によ
り冷媒の回路間移動を可能にする第2のバイパス回路と
を備え、上記蓄熱槽に蓄冷または蓄熱された熱エネルギ
ーを利用する放冷・放熱用回路及び上記一般冷暖房用回
路、または上記放冷・放熱用回路もしくは上記一般冷暖
房用回路のいずれか一方による冷房運転または暖房運転
の際には、上記第1の開閉装置及び第2の開閉装置をと
もに遮断して上記一般冷暖房用回路と放冷・放熱用回路
とを個別独立に運転させると共に、上記蓄熱槽への蓄冷
運転または蓄熱運転の際には、上記第1の開閉装置及び
第2の開閉装置を共に開放して、上記圧縮機、第1の四
方切換弁、非利用側熱交換器、第1または第2の減圧機
構、及び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路を
形成するようにした蓄熱式空気調和装置において、予め
設定された所定時間を計時するタイマーと、蓄冷運転終
了後で冷房運転立ち上げ前に、上記第1の四方切換弁を
上記タイマーにより計時された所定時間だけ切り換えて
蓄熱運転を行い、または蓄熱運転終了後で暖房運転立ち
上げ前に、上記第1の四方切換弁を上記タイマーにより
計時された所定時間だけ切り換えて蓄冷運転を行って、
上記放冷・放熱用回路と一般冷房・暖房用回路との間で
冷媒量を調整する第3の制御装置とを具備してなること
を特徴とする蓄熱式空気調和装置。3. A first four-way switch comprising a compressor, a first four-way switching valve, a non-use side heat exchanger, a first pressure reducing mechanism, and a first use side heat exchanger, which are sequentially connected. A general cooling / heating circuit for freely switching between cooling and heating through the first utilization side heat exchanger by switching the refrigerant flow path of the valve, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, Second
The pressure reducing mechanism and the second use side heat exchanger are sequentially connected, and cooling or heating is switched through the second use side heat exchanger by switching the refrigerant flow path of the second four-way switching valve. A heat release / heat radiation circuit that is freely performed, a heat storage tank that incorporates a heat storage medium that stores or releases heat or cools / radiates heat via the heat storage heat exchanger, and the first gas side of the general cooling / heating circuit A first opening / closing device provided between the pipe and the second gas side pipe of the cooling / radiating circuit, wherein the opening / closing of the first opening / closing device enables movement of the refrigerant between circuits; And a second opening / closing device provided between the first liquid side pipe of the general cooling / heating circuit and the second liquid side pipe of the cooling / radiating circuit. A second bypass circuit that allows the refrigerant to move between circuits by opening and closing the switchgear; In the cooling operation or the heating operation by the cooling / radiating circuit and the general cooling / heating circuit, or the cooling / radiating circuit or the general cooling / heating circuit that uses the heat energy stored or stored in the The first switchgear and the second switchgear are both shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently of each other, and the cold storage operation or heat storage in the heat storage tank is performed. During operation, both the first switchgear and the second switchgear are opened, and the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or the second pressure reducing mechanism. In a heat storage type air conditioner configured to form a heat storage / heat storage circuit composed of a heat storage heat exchanger for heat storage, and a timer for measuring a predetermined time set in advance, and before the start of the cooling operation after the end of the cold storage operation. To the above The four-way switching valve No. 1 is switched for a predetermined time period counted by the timer to perform the heat storage operation, or the first four-way switching valve is clocked by the timer after the end of the heat storage operation and before the heating operation is started. Switch only the time to perform cold storage operation,
A heat storage type air conditioner comprising a third control device for adjusting the amount of refrigerant between the cooling / radiating circuit and the general cooling / heating circuit.
交換器、第1の減圧機構、及び第1の利用側熱交換器を
順次接続して成り、上記第1の四方切換弁の冷媒流路切
り換えにより上記第1の利用側熱交換器を介して冷房ま
たは暖房を切り換え自在に行う一般冷暖房用回路と、冷
媒ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2
の減圧機構、第4の減圧機構、及び第2の利用側熱交換
器を順次接続して成り、上記第2の四方切換弁の冷媒流
路切り換えにより上記第2の利用側熱交換器を介して冷
房または暖房を切り換え自在に行う放冷・放熱用回路
と、上記蓄冷熱用熱交換器を介して蓄冷・蓄熱または放
冷・放熱する蓄熱媒体を内蔵した蓄熱槽と、上記一般冷
暖房用回路の第1のガス側配管と上記放冷・放熱用回路
の第2のガス側配管との間に設けた第1の開閉装置を有
し上記第1の開閉装置の開閉により冷媒の回路間移動を
可能にする第1のバイパス回路と、上記一般冷暖房用回
路の第1の液側配管と上記放冷・放熱用回路の第2の液
側配管との間に設けた第2の開閉装置を有し上記第2の
開閉装置の開閉により冷媒の回路間移動を可能にする第
2のバイパス回路とを備え、上記蓄熱槽に蓄冷または蓄
熱された熱エネルギーを利用する放冷・放熱用回路及び
上記一般冷暖房用回路、または上記放冷・放熱用回路も
しくは上記一般冷暖房用回路のいずれか一方による冷房
運転または暖房運転の際には、上記第1の開閉装置及び
第2の開閉装置をともに遮断して上記一般冷暖房用回路
と放冷・放熱用回路とを個別独立に運転させると共に、
上記蓄熱槽への蓄冷運転または蓄熱運転の際には、上記
第1の開閉装置及び第2の開閉装置をともに開放して、
上記圧縮機、第1の四方切換弁、非利用側熱交換器、第
1または第2の減圧機構、及び蓄冷熱用熱交換器より成
る蓄冷・蓄熱用回路を形成するようにした蓄熱式空気調
和装置において、蓄熱運転終了直前に上記第4の減圧機
構を全開して、上記第2の利用側熱交換器内の冷媒を上
記第2の液側配管に流出させる第4の制御装置を具備し
てなることを特徴とする蓄熱式空気調和装置。4. A compressor, a first four-way switching valve, a non-use side heat exchanger, a first pressure reducing mechanism, and a first use side heat exchanger, which are sequentially connected, and the first four-way switching is provided. A general cooling / heating circuit for freely switching between cooling and heating through the first utilization side heat exchanger by switching the refrigerant flow path of the valve, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, Second
The pressure reducing mechanism, the fourth pressure reducing mechanism, and the second use-side heat exchanger are sequentially connected, and the refrigerant flow passage switching of the second four-way switching valve causes the second use-side heat exchanger to pass through. Cooling / radiating circuit for freely switching between heating and cooling, a heat storage tank having a built-in heat storage medium for storing / heating heat or releasing / radiating heat via the heat storage heat exchanger, and the general cooling / heating circuit Has a first opening / closing device provided between the first gas side pipe and the second gas side pipe of the cooling / radiating circuit, and moves the refrigerant between circuits by opening / closing the first opening / closing device. A first bypass circuit, and a second switchgear provided between the first liquid side pipe of the general cooling and heating circuit and the second liquid side pipe of the cooling / radiating circuit. And a second bypass circuit that enables the refrigerant to move between circuits by opening and closing the second switchgear. A cooling operation using the cooling / radiating circuit and the general cooling / heating circuit, or the cooling / radiating circuit or the general cooling / heating circuit, which uses the heat energy stored or stored in the heat storage tank. Alternatively, during the heating operation, both the first switchgear and the second switchgear are shut off to operate the general cooling / heating circuit and the cooling / radiating circuit independently of each other.
During the cold storage operation or the heat storage operation in the heat storage tank, both the first switchgear and the second switchgear are opened,
Regenerative air for forming a cold storage / heat storage circuit including the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or second pressure reducing mechanism, and the cold storage heat exchanger. In the harmony device, a fourth control device is provided which fully opens the fourth pressure reducing mechanism immediately before the end of the heat storage operation and causes the refrigerant in the second usage-side heat exchanger to flow out to the second liquid-side pipe. A heat storage type air conditioner characterized by being formed.
交換器、第1の減圧機構、及び第1の利用側熱交換器を
順次接続して成り、上記第1の四方切換弁の冷媒流路切
り換えにより上記第1の利用側熱交換器を介して冷房ま
たは暖房を切り換え自在に行う一般冷暖房用回路と、冷
媒ポンプ、第2の四方切換弁、蓄冷熱用熱交換器、第2
の減圧機構、第2の利用側熱交換器、及び第2のアキュ
ムレータを順次接続して成り、上記第2の利用側熱交換
器と第2のアキュムレータとを接続する第3の開閉装置
を備え、上記第2の四方切換弁の冷媒流路切り換えによ
り上記第2の利用側熱交換器を介して冷房または暖房を
切り換え自在に行う放冷・放熱用回路と、上記蓄冷熱用
熱交換器を介して蓄冷・蓄熱または放冷・放熱する蓄熱
媒体を内蔵した蓄熱槽と、上記一般冷暖房用回路の第1
のガス側配管と上記放冷・放熱用回路の第2のガス側配
管との間に設けた第1の開閉装置を有し第1の開閉装置
の開閉により冷媒の回路間移動を可能にする第1のバイ
パス回路と、上記一般冷暖房用回路の第1の液側配管と
上記放冷・放熱用回路の第2の液側配管との間に設けた
第2の開閉装置を有し第2の開閉装置の開閉により冷媒
の回路間移動を可能にする第2のバイパス回路とを備
え、上記蓄熱槽に蓄冷または蓄熱された熱エネルギーを
利用する放冷・放熱用回路及び上記一般冷暖房用回路、
または上記放冷・放熱用回路もしくは上記一般冷暖房用
回路のいずれか一方による冷房運転または暖房運転の際
には、上記第1の開閉装置及び第2の開閉装置をともに
遮断して上記一般冷暖房用回路と放冷・放熱用回路とを
個別独立に運転させると共に、上記蓄熱槽への蓄冷運転
または蓄熱運転の際には、上記第1の開閉装置及び第2
の開閉装置をともに開放して、上記圧縮機、第1の四方
切換弁、非利用側熱交換器、第1または第2の減圧機
構、及び蓄冷熱用熱交換器より成る蓄冷・蓄熱用回路を
形成するようにした蓄熱式空気調和装置において、予め
設定された所定時間を計時するタイマーと、蓄熱運転ま
たは蓄熱運転開始直後に、上記第1の四方切換弁を上記
タイマーにより計時された所定時間だけ切り換えて蓄冷
運転するとともに上記第3の開閉装置を開放して、上記
第2のアキュムレータ内の冷媒を上記第2のガス側配管
に流出させる第5の制御手段とを具備してなることを特
徴とする蓄熱式空気調和装置。5. A first four-way switching system comprising a compressor, a first four-way switching valve, a non-use side heat exchanger, a first pressure reducing mechanism, and a first use side heat exchanger, which are sequentially connected. A general cooling / heating circuit for freely switching between cooling and heating through the first utilization side heat exchanger by switching the refrigerant flow path of the valve, a refrigerant pump, a second four-way switching valve, a cold storage heat exchanger, Second
A pressure reducing mechanism, a second usage-side heat exchanger, and a second accumulator are sequentially connected, and a third switchgear for connecting the second usage-side heat exchanger and the second accumulator is provided. , A cooling / radiating circuit for freely switching between cooling and heating through the second utilization side heat exchanger by switching the refrigerant flow path of the second four-way switching valve, and the cold storage heat exchanger. A heat storage tank having a built-in heat storage medium that stores and stores heat or releases and radiates heat through the first and second general cooling and heating circuits.
Has a first switchgear provided between the gas side pipe and the second gas side pipe of the cooling / radiating circuit, and allows the refrigerant to move between circuits by opening and closing the first switchgear. A second bypass device; and a second opening / closing device provided between the first liquid side pipe of the general cooling and heating circuit and the second liquid side pipe of the cooling / radiating circuit. A second bypass circuit that allows the refrigerant to move between circuits by opening and closing the switch device, and a cooling / radiating circuit that uses heat energy stored in the heat storage tank or stored in the heat storage tank, and the general cooling and heating circuit. ,
Alternatively, during the cooling operation or the heating operation by one of the cooling / radiating circuit or the general cooling / heating circuit, the first opening / closing device and the second opening / closing device are both shut off for the general cooling / heating The circuit and the cooling / radiating circuit are operated independently, and at the time of the cold storage operation or the heat storage operation in the heat storage tank, the first switchgear and the second switch
And the open / close devices of both of them are opened, and a circuit for cold storage / heat storage including the compressor, the first four-way switching valve, the non-use side heat exchanger, the first or second pressure reducing mechanism, and the heat storage heat exchanger for cold storage In the heat storage type air conditioner configured to form a timer, a timer for measuring a predetermined time set in advance, and a predetermined time measured by the timer for the first four-way switching valve immediately after the heat storage operation or the start of the heat storage operation. And a fifth control means for causing the refrigerant in the second accumulator to flow out to the second gas side pipe while switching only the cold storage operation and opening the third switchgear. Characteristic heat storage type air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5320198A JPH07174422A (en) | 1993-12-20 | 1993-12-20 | Heat accumulation air-conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5320198A JPH07174422A (en) | 1993-12-20 | 1993-12-20 | Heat accumulation air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07174422A true JPH07174422A (en) | 1995-07-14 |
Family
ID=18118804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5320198A Pending JPH07174422A (en) | 1993-12-20 | 1993-12-20 | Heat accumulation air-conditioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07174422A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007183077A (en) * | 2006-01-10 | 2007-07-19 | Ebara Corp | Refrigerating device |
JP2013231591A (en) * | 2009-06-29 | 2013-11-14 | Johnson Controls Technology Co | System for limiting pressure difference in dual compressor chiller |
EP3115715A4 (en) * | 2015-06-02 | 2017-03-29 | Mitsubishi Electric Corporation | Refrigeration cycle system |
CN106931563A (en) * | 2015-12-31 | 2017-07-07 | 青岛海尔智能技术研发有限公司 | Natural cold scattering formula air-conditioning equipment |
-
1993
- 1993-12-20 JP JP5320198A patent/JPH07174422A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007183077A (en) * | 2006-01-10 | 2007-07-19 | Ebara Corp | Refrigerating device |
JP2013231591A (en) * | 2009-06-29 | 2013-11-14 | Johnson Controls Technology Co | System for limiting pressure difference in dual compressor chiller |
JP2017036910A (en) * | 2009-06-29 | 2017-02-16 | ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company | System for limiting pressure difference in dual compressor chiller |
EP3115715A4 (en) * | 2015-06-02 | 2017-03-29 | Mitsubishi Electric Corporation | Refrigeration cycle system |
US10508845B2 (en) | 2015-06-02 | 2019-12-17 | Mitsubishi Electric Corporation | Refrigeration cycle system |
CN106931563A (en) * | 2015-12-31 | 2017-07-07 | 青岛海尔智能技术研发有限公司 | Natural cold scattering formula air-conditioning equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2894421B2 (en) | Thermal storage type air conditioner and defrosting method | |
US8713951B2 (en) | Air conditioning apparatus | |
AU719697B2 (en) | Thermal energy storage air conditioning system | |
JP5855129B2 (en) | Outdoor unit and air conditioner | |
EP2527751B1 (en) | Air conditioning-hot water supply combined system | |
US5381671A (en) | Air conditioning apparatus with improved ice storage therein | |
JP2006284035A (en) | Air conditioner and its control method | |
JPH07174422A (en) | Heat accumulation air-conditioning device | |
JP4270555B2 (en) | Reheat dehumidification type air conditioner | |
JP3511161B2 (en) | Air conditioner | |
JP2757660B2 (en) | Thermal storage type air conditioner | |
JP3814877B2 (en) | Thermal storage air conditioner | |
JP2001124419A (en) | Heat storage type cooling device | |
JP4270803B2 (en) | Cold generation system | |
JP2006242506A (en) | Thermal storage air conditioner | |
JP2006220332A (en) | Combined air conditioner | |
JP3304866B2 (en) | Thermal storage type air conditioner | |
JPH1089729A (en) | Ice heat storage device by supercooled water and operation method | |
JP2870392B2 (en) | Thermal storage type air conditioner | |
JP2855954B2 (en) | Thermal storage type air conditioner | |
US20230070076A1 (en) | Enhanced air conditioning chiller system | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof | |
JP2006220335A (en) | Combined air conditioner | |
JPH1061984A (en) | Heat storage type air conditioner | |
JPH09280668A (en) | Composite refrigerant circuit equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080214 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100214 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |