[go: up one dir, main page]

JPH07173509A - Wear resistant material, production thereof and compressor using the same material - Google Patents

Wear resistant material, production thereof and compressor using the same material

Info

Publication number
JPH07173509A
JPH07173509A JP5320428A JP32042893A JPH07173509A JP H07173509 A JPH07173509 A JP H07173509A JP 5320428 A JP5320428 A JP 5320428A JP 32042893 A JP32042893 A JP 32042893A JP H07173509 A JPH07173509 A JP H07173509A
Authority
JP
Japan
Prior art keywords
phase
alloy
balance
wear
resistant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5320428A
Other languages
Japanese (ja)
Inventor
Tsutomu Morioka
勉 森岡
Kunpei Kobayashi
薫平 小林
Shinobu Sato
佐藤  忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5320428A priority Critical patent/JPH07173509A/en
Publication of JPH07173509A publication Critical patent/JPH07173509A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To produce a wear resistant material reduced in dimensional change of a sliding member and lowering of the hardness even in the case of the rise of the using temp. and excellent in fitness, wear resistance and durability by forming a steadite phase having extremely high hardness between an Fe-based sintered alloy and a Cu-based allay. CONSTITUTION:A metallic structure of primary phases 20 of an F-based sintered alloy obtd. by subjecting a powdery mixture contg. at least two kinds selected from, by weight, 0.2 to 4% Ni, 0.1 to 6% Mo, 0.2 to 8% Cr, 0.5 to 5% Cu, 0.5 to 3% V, 0.3 to 7% W and 0.1 to 1% P and contg. 0.1 to 3% C, and the balance Fe to compacting and thereafter executing sintering, secondary phases 21 with a Cu-based alloy structure in which the pore parts of the same Fe-based sintered alloy are infiltrated with a Cu alloy contg. 0.03 to 3% P or a Cu alloy contg. 0.03 to 3% P and 5 to 15% Sn and steadite phases 22 constituted of a three component eutectic body of Fe-t-P with high hardness and precipitated into a part of the boundary of both is formed. Thus, the wear resistant material withstanding the rise of the using temp. can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗性材料,その製造
方法およびその材料を使用した圧縮機に係り、特に優れ
たなじみ性,耐摩耗性および耐焼付性を有し、耐久性に
優れた耐摩耗性材料,その製造方法およびその材料を使
用した圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant material, a method for producing the same and a compressor using the material, and particularly excellent conformability, wear resistance and seizure resistance, and excellent durability. Abrasion resistant material, manufacturing method thereof and compressor using the material.

【0002】[0002]

【従来の技術】冷凍機、冷蔵庫、空調機やショーケース
においては冷媒を圧縮する圧縮機が主要機器として装備
されている。上記用途例において一般的に使用されてい
る圧縮機として、図1および図2に示すような密閉型の
ロータリ圧縮機がある。
2. Description of the Related Art In refrigerators, refrigerators, air conditioners and showcases, a compressor for compressing a refrigerant is equipped as a main device. As a compressor generally used in the above application example, there is a hermetic rotary compressor as shown in FIGS. 1 and 2.

【0003】この圧縮機1は、ケ―シング2の内部にモ
ータ3aとシリンダ8a,8bおよびローラ10a,1
0bから成る圧縮要素3bとを内装し、圧縮要素3bは
モータ3aから延びる回転軸4を主軸受5と副軸受6に
挿通され、この主軸受5と副軸受6との間に、仕切板7
を介して2基のシリンダ8a,8bを配設し、各シリン
ダ8a,8b内において、前記回転軸4に形成された偏
心部9a,9bにそれぞれ円筒状のローラ10a,10
bを嵌合させる一方、図2に示すように偏心回転するロ
ーラ10a,10bに対して常時押し付けて接触するよ
うに、ベーン11a,11bが配設されて構成される。
ベーン11a,11bは、偏心部9a,9bおよびロー
ラ10a,10bの回転に応じて各ローラ外周面に摺接
しながら往復動し、各シリンダ8a,8b内部を圧力的
に仕切る役割を果している。こうして圧縮機1は、モー
タ3の駆動によって前記ローラ10a,10bをシリン
ダ8a,8b内において偏心回転させることにより、吸
込み口12を通り、シリンダ8a,8b内の吸込みチャ
ンバ13a,13bに吸入したガスを圧縮チャンバ14
a,14b方向に移動させながら圧縮して吐出口15か
ら吐出するものである。
In this compressor 1, a casing 2 has a motor 3a, cylinders 8a and 8b, and rollers 10a and 1 inside.
0b, the compression element 3b is internally mounted, and the compression element 3b has a rotary shaft 4 extending from the motor 3a inserted through a main bearing 5 and a sub bearing 6, and a partition plate 7 between the main bearing 5 and the sub bearing 6.
Two cylinders 8a and 8b are disposed through the cylinders 8a and 8b, and cylindrical rollers 10a and 10b are respectively provided in the eccentric portions 9a and 9b formed on the rotary shaft 4 in the cylinders 8a and 8b.
The vanes 11a and 11b are arranged so that the rollers 10a and 10b that are eccentrically rotated as shown in FIG.
The vanes 11a and 11b reciprocate while slidingly contacting the outer peripheral surfaces of the rollers according to the rotations of the eccentric portions 9a and 9b and the rollers 10a and 10b, and serve to partition the insides of the cylinders 8a and 8b by pressure. Thus, the compressor 1 drives the motor 3 to eccentrically rotate the rollers 10a and 10b in the cylinders 8a and 8b, thereby passing through the suction port 12 and sucking the gas sucked into the suction chambers 13a and 13b in the cylinders 8a and 8b. The compression chamber 14
It is compressed while being moved in the a and 14b directions and discharged from the discharge port 15.

【0004】上記のような圧縮機1においては、主副軸
受5,6と回転軸4、シリンダ8とベーン11a,11
b、このベーンとローラ10など相互に摺接する摺動部
における摩耗が特に顕著になるため、高い耐摩耗性を有
する材料で形成する必要がある。
In the compressor 1 as described above, the main and auxiliary bearings 5 and 6, the rotary shaft 4, the cylinder 8 and the vanes 11a and 11 are provided.
b. Since the wear of the sliding portions such as the vane and the roller 10 that are in sliding contact with each other becomes particularly remarkable, it is necessary to use a material having high wear resistance.

【0005】従来、この種の材料としては、高速度鋼や
共晶黒鉛鋳鉄の溶製材、さらにより具体的には2.3%
Si−3.4%C−残部Feから成るFC鋳物材、SM
F4030などのSMF−4種材(鉄−炭素−銅系合
金)など耐摩耗性を高めた材料が一般に使用されてい
る。特に高度の耐焼付性および耐摩耗性が要求されるロ
ーラを構成する耐摩耗材料としては、Mo−Ni−Cr
−C−Si−残部Fe合金(モニクロ鋳鉄)が広く利用
され、またベーン材としてはSKH−51,SUS44
0C、シリンダ材としては、FC200等が一般に使用
されている。
Conventionally, as a material of this kind, a high-speed steel or a smelting material of eutectic graphite cast iron, and more specifically 2.3%
FC-cast material consisting of Si-3.4% C-balance Fe, SM
A material having improved wear resistance such as SMF-4 type material (iron-carbon-copper alloy) such as F4030 is generally used. Mo-Ni-Cr is a wear-resistant material that constitutes a roller that requires particularly high seizure resistance and wear resistance.
-C-Si-balance Fe alloy (monichrome cast iron) is widely used, and SKH-51 and SUS44 are used as vane materials.
0C, FC200, etc. are generally used as the cylinder material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、近年、
冷凍機用、冷蔵庫用、空調機用などの冷媒として一般的
に使用されていたフロンが環境破壊の一因となることが
判明し、フロンに代替する新しい冷媒の開発が進められ
ている。
However, in recent years,
CFCs, which are generally used as refrigerants for refrigerators, refrigerators, air conditioners, etc., have been found to be a cause of environmental damage, and new refrigerants to replace CFCs are being developed.

【0007】ところが現在までに開発段階にある新規な
冷媒はいずれも運転温度が、従来のフロンと比較して大
幅に上昇するため、従来の耐摩耗性材料で摺動部を形成
した圧縮機では種々の問題点が発生することが確認され
ている。
However, since the operating temperatures of all new refrigerants that are currently in the development stage are significantly higher than those of conventional CFCs, conventional compressors that have sliding parts made of wear-resistant materials have It has been confirmed that various problems occur.

【0008】すなわち冷媒の変更に伴い使用環境温度の
上昇が必至となり、そのため、ローラ等の摺動部材の寸
法が熱膨張により変化し、摺動部材相互の微小なクリア
ランスが拡大して冷媒の圧縮効率が低下し、最終的に冷
却能力の低下を招来する問題点がある。
That is, the change of the refrigerant inevitably raises the operating environment temperature, so that the dimensions of the sliding members such as rollers change due to thermal expansion, and the minute clearance between the sliding members expands to compress the refrigerant. There is a problem that the efficiency is lowered and finally the cooling capacity is lowered.

【0009】また使用温度の上昇に伴い、摺動材を構成
する合金組織の変態等により、その硬度および耐摩耗性
が低下したり、摺動材のなじみ性が悪化して圧縮機とし
ての能力が低下してしまう問題点が確認されている。
Further, as the operating temperature rises, the hardness and wear resistance of the alloy material constituting the sliding material deteriorates, and the conformability of the sliding material deteriorates, resulting in a performance as a compressor. Has been confirmed to decrease.

【0010】本発明は上記の問題点を解決するためにな
されたものであり、冷媒の変更に伴って使用温度が上昇
した場合においても、圧縮機を構成する摺動材の寸法変
化や硬度低下が少なく安定したなじみ性,耐摩耗性およ
び耐久性を発揮する耐摩耗性材料,その製造方法および
その材料を使用した圧縮機を提供することを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and even when the operating temperature rises due to the change of the refrigerant, the dimensional change and the hardness decrease of the sliding member constituting the compressor are achieved. An object of the present invention is to provide a wear-resistant material exhibiting stable conformability, wear resistance, and durability, which has a small amount of heat, a manufacturing method thereof, and a compressor using the material.

【0011】[0011]

【課題を解決するための手段と作用】本発明者らは上記
の目的を達成するため、圧縮機の摺動部を構成する耐摩
耗性合金材料の組成を種々変えて、その摺動特性を比較
検討し、さらに各合金材料の高温度使用条件下において
も安定した合金組織を形成することが可能な材料の調製
方法を研究した。その結果、所定組成を有する鉄(F
e)基焼結合金の空孔部に、所定量のPやSnを含有す
るCu基合金を含浸せしめて潤滑相を形成した合金材料
で摺動部材を形成したときに、高温度使用条件下におい
てもなじみ性が良好で極めて安定した耐摩耗特性および
耐久性を有する圧縮機が得られた。また、上記Fe基焼
結合金組織(第1相)とCu基合金組織(第2相)との
間に硬質なステダイト相(第3相)を形成したときに、
特に耐摩耗性がより向上し、圧縮機のローラ材料として
好適な耐摩耗性材料が初めて得られることを見出した。
本発明は上記知見に基づいて完成されたものである。
In order to achieve the above-mentioned object, the present inventors have changed the composition of the wear-resistant alloy material constituting the sliding portion of the compressor to change its sliding characteristics. Comparative studies were conducted, and a method for preparing a material capable of forming a stable alloy structure even under high temperature use conditions of each alloy material was studied. As a result, iron (F
e) When a sliding member is formed of an alloy material in which a lubricant phase is formed by impregnating a void portion of the base sintered alloy with a Cu base alloy containing a predetermined amount of P or Sn, under high temperature use conditions. A compressor having good conformability and extremely stable wear resistance and durability was obtained. Further, when a hard steadite phase (third phase) is formed between the Fe-based sintered alloy structure (first phase) and the Cu-based alloy structure (second phase),
In particular, it has been found that a wear-resistant material having improved wear resistance and suitable as a roller material for a compressor can be obtained for the first time.
The present invention has been completed based on the above findings.

【0012】すなわち本発明に係る第1の耐摩耗性材料
は、重量%で0.2〜4%のNi,0.1〜6%のM
o,0.2〜8%のCr,0.5〜5%のCu,0.5
〜3%のV,0.3〜7%のWおよび0.1〜1%のP
から選択される少なくとも2種の元素および0.1〜3
%のC,残部Feから成る第1相と,0.03〜3%の
P,残部Cuまたは0.03〜3%のP,5〜15%の
Sn,残部Cuから成る第2相とを有し、上記第1相と
第2相との界面の少なくとも一部にFe−C−Pから成
る第3相を有することを特徴とする。
That is, the first wear-resistant material according to the present invention comprises, by weight, 0.2 to 4% Ni and 0.1 to 6% M.
o, 0.2-8% Cr, 0.5-5% Cu, 0.5
~ 3% V, 0.3-7% W and 0.1-1% P
At least two elements selected from
% C, balance Fe, and a second phase consisting of 0.03 to 3% P, balance Cu or 0.03 to 3% P, 5 to 15% Sn, balance Cu. And having a third phase made of Fe-C-P on at least a part of the interface between the first phase and the second phase.

【0013】また本発明に係る第2の耐摩耗性材料は、
重量%で0.2〜4%のNi,0.1〜2%のMo,
0.1〜2%のC,残部鉄から成る第1相と、0.2〜
8%のCr,0.1〜2%のMo,0.1〜2%のC,
残部Feから成る第2相と、5〜15%のSn,残部C
uから成る第3相とを有することを特徴とする。
The second wear resistant material according to the present invention is
% By weight of 0.2-4% Ni, 0.1-2% Mo,
First phase consisting of 0.1 to 2% C, balance iron, 0.2 to
8% Cr, 0.1-2% Mo, 0.1-2% C,
Second phase consisting of balance Fe, 5 to 15% Sn, balance C
and a third phase consisting of u.

【0014】さらに本発明に係る第3の耐摩耗性材料
は、重量%で0.2〜4%のNi,0.2〜8%のC
r,0.5〜5%のCu,および0.1〜1%のPから
選択される少なくとも1種の元素および0.1〜3%の
C,残部Feから成る第1相と、5〜15%のSn,残
部Cuから成る第2相との界面部に、上記第1相および第
2相の複合金属から成る第3相を有することを特徴とす
る。
Further, the third wear resistant material according to the present invention comprises 0.2 to 4% by weight of Ni and 0.2 to 8% of C by weight.
a first phase consisting of at least one element selected from r, 0.5-5% Cu, and 0.1-1% P and 0.1-3% C, balance Fe; It is characterized by having a third phase composed of the composite metal of the first phase and the second phase at the interface with the second phase composed of 15% Sn and the balance Cu.

【0015】上記各耐摩耗性材料において、耐摩耗性材
料に対する潤滑相の容積比率、すなわちFe基焼結合金
の空孔部の容積比率は5〜25%に設定するとよい。
In each of the above wear resistant materials, the volume ratio of the lubricating phase to the wear resistant material, that is, the volume ratio of the pores of the Fe-based sintered alloy may be set to 5 to 25%.

【0016】また本発明に係る第1の圧縮機は、シリン
ダとこのシリンダ内面に摺接するローラとから成る圧縮
要素および軸受を介して回転自在に支持される回転軸を
ケーシングに内装し、回転軸の偏心部にローラを嵌合さ
せ、回転軸の回転に伴って上記ローラがシリンダ内を偏
心回転するように構成した圧縮機において、上記ローラ
を本発明の第1または第2の耐摩耗性材料で形成したこ
とを特徴とする。
In the first compressor according to the present invention, a rotary shaft that is rotatably supported via a compression element and a bearing, which includes a cylinder and a roller that is in sliding contact with the inner surface of the cylinder, is housed in the casing. In a compressor in which a roller is fitted in the eccentric part of the present invention and the roller is eccentrically rotated in the cylinder with the rotation of the rotary shaft, the roller is the first or second wear resistant material of the present invention. It is characterized by being formed in.

【0017】さらに本発明に係る第2の圧縮機は、シリ
ンダとこのシリンダ内面に摺接するローラとから成る圧
縮要素および軸受を介して回転自在に支持される回転軸
をケーシングに内装し、回転軸の偏心部にローラを嵌合
させ、回転軸の回転に伴って上記ローラがシリンダ内を
偏心回転するように構成した圧縮機において、上記軸受
および/またはシリンダを本発明の第3の耐摩耗性材料
で形成したことを特徴とする。
Further, in the second compressor according to the present invention, a rotary shaft rotatably supported via a compression element consisting of a cylinder and a roller in sliding contact with the inner surface of the cylinder and a bearing is internally provided in the casing, and the rotary shaft is provided. In a compressor configured such that a roller is fitted to the eccentric part of the bearing and the roller is eccentrically rotated in the cylinder in accordance with the rotation of the rotating shaft, the bearing and / or the cylinder have the third wear resistance of the present invention. It is characterized by being formed of a material.

【0018】本発明に係る耐摩耗性材料は、比較的に硬
度が高いFe基焼結合金によって材料全体の構造強度,
靭性および耐摩耗性を発現させるとともに、Cu基合金
から成る潤滑相によって摺動材料としてのなじみ性およ
び耐焼付き性を発現させている。特に上記Fe基焼結合
金組織とCu基合金組織との間に極めて硬度が高いステ
ダイト相を形成することによって耐摩耗特性を大幅に改
善している。
The wear resistant material according to the present invention is made of an Fe-based sintered alloy having a relatively high hardness, and
In addition to exhibiting toughness and wear resistance, the lubricating phase composed of a Cu-based alloy exhibits familiarity and seizure resistance as a sliding material. In particular, the wear resistance property is greatly improved by forming a steadite phase having extremely high hardness between the Fe-based sintered alloy structure and the Cu-based alloy structure.

【0019】以下本発明に係る耐摩耗性材料を構成する
Fe基焼結合金(耐摩耗相)の組織等の限定理由を以下
に述べる。
The reasons for limiting the structure and the like of the Fe-based sintered alloy (wear-resistant phase) constituting the wear-resistant material according to the present invention will be described below.

【0020】Niは基材の靭性を向上させるための元素
であり、0.2〜4wt%含有する。Ni含有量が0.
2wt%未満の場合では、靭性を改善する効果が少ない
一方、含有量が4wt%を超える場合には、焼結合金中
に残留するオーステナイト組織の割合が高まり、材料の
安定性や硬度が低下してしまう。
Ni is an element for improving the toughness of the base material and is contained in an amount of 0.2 to 4 wt%. The Ni content is 0.
When the content is less than 2 wt%, the effect of improving the toughness is small, while when the content exceeds 4 wt%, the ratio of the austenite structure remaining in the sintered alloy increases, and the stability and hardness of the material decrease. Will end up.

【0021】Crは、材料の耐摩耗性および耐食耐熱性
を向上させる元素であり、0.2〜8wt%含有する。
Crの含有量が0.2wt%未満の場合には、耐摩耗性
および耐食耐熱性を十分に向上させられず、一方、含有
量が8wt%を超える場合には、成形性を阻害して所定
の密度が得られない。
Cr is an element that improves the wear resistance and corrosion resistance of the material, and is contained in 0.2 to 8 wt%.
If the Cr content is less than 0.2 wt%, the wear resistance and corrosion heat resistance cannot be sufficiently improved, while if the Cr content exceeds 8 wt%, the formability is impaired and Can not get the density of.

【0022】Moは、材料の耐摩耗性,高温強度および
摺動特性を改善するために0.1〜6wt%の範囲で含
有する。Mo添加量が0.1wt%未満の場合には、十
分耐摩耗性および摺動特性を改善できず、一方、含有量
が6wt%を超えると、Crと同様に成形性を阻害して
しまう。
Mo is contained in the range of 0.1 to 6 wt% in order to improve the wear resistance, high temperature strength and sliding characteristics of the material. If the amount of Mo added is less than 0.1 wt%, the wear resistance and sliding properties cannot be sufficiently improved, while if the content exceeds 6 wt%, the formability is impaired as with Cr.

【0023】Cuは摺動部材として使用される材料の初
期摺動特性を改善する元素であり、0.5〜5wt%材
料中に含有される。Cu含有量が0.5wt%未満の場
合には、改善効果が充分ではなく、一方で焼付きを誘発
する元素でもあり、特に含有量が5wt%を超える場合
には焼付きが生じ易くなるため、その含有量は0.5〜
5wt%の範囲に設定される。
Cu is an element that improves the initial sliding characteristics of the material used as the sliding member, and is contained in the material in an amount of 0.5 to 5 wt%. When the Cu content is less than 0.5 wt%, the improvement effect is not sufficient, and on the other hand, it is an element that induces seizure, and especially when the content exceeds 5 wt%, seizure tends to occur. , Its content is 0.5 ~
It is set within the range of 5 wt%.

【0024】Wは、Cと化合して高硬度の複炭化物を生
成して材料の耐摩耗性を向上するために、0.3〜7w
t%含有する。W含有量が0.3wt%未満の場合は耐
摩耗特性の改善効果が十分でなく、含有量が7wt%を
超えると相手材を摩耗させる。
W is 0.3 to 7 w in order to combine with C to form a high hardness double carbide and improve the wear resistance of the material.
Contains t%. If the W content is less than 0.3 wt%, the effect of improving the wear resistance is not sufficient, and if the W content exceeds 7 wt%, the mating material is worn.

【0025】Vは、Wと同様に高硬度の炭化物を形成し
て材料の耐摩耗性を改善するために0.5〜3wt%の
範囲で含有する。V含有量が0.5wt%未満の場合に
は、耐摩耗効果が少なく、含有量が3wt%を超える場
合にはWと同様に相手材の摩耗を顕著にする。
Similar to W, V is contained in the range of 0.5 to 3 wt% in order to form a high hardness carbide and improve the wear resistance of the material. If the V content is less than 0.5 wt%, the wear resistance effect is small, and if the V content exceeds 3 wt%, the wear of the mating material becomes remarkable as in the case of W.

【0026】Pは、Cuと化合して高硬度のCu3 Pを
生成したり、Feと化合して高硬度のステダイト相(第
3相)を形成して材料全体の耐摩耗性を改善するのに有
効な元素であり、合金中に0.1〜1wt%含有され
る。ここで上記ステダイト相は、FeとPとCとの三元
共晶体であり、極めて高い硬度を有するため材料の耐摩
耗性を大幅に改善することができる。上記Pの含有量が
0.1wt%未満の場合には、ステダイト相の生成量が
少なく、耐摩耗性の改善効果が少ない一方、含有量が1
wt%を超えると、材料の強度が著しく低下する。
P combines with Cu to form high hardness Cu 3 P, and combines with Fe to form a high hardness steadite phase (third phase) to improve the wear resistance of the entire material. It is an effective element for the alloy and is contained in the alloy in an amount of 0.1 to 1 wt%. Here, the above-mentioned steadite phase is a ternary eutectic of Fe, P and C and has extremely high hardness, so that the wear resistance of the material can be greatly improved. When the content of P is less than 0.1 wt%, the amount of steadite formed is small and the effect of improving wear resistance is small, while the content of P is 1 or less.
If it exceeds wt%, the strength of the material is significantly reduced.

【0027】なお上記ステダイト相を形成するために必
要なP成分は、予めFe基焼結合金中に含有させておい
てもよいが、後述する溶浸操作で使用するCu基合金中
に含有させておいてもよい。ここでSnを含むCu基合
金中にPを添加することにより、Cu基地を硬化させ、
なじみ性の良いりん青銅を形成することができる。P成
分はりん青銅を形成するためにCu基合金中に残る割合
が高い。したがって、ステダイト相を形成するために必
要なP成分も含めてCu基合金中に予めP成分を含有さ
せる場合には、Fe基焼結合金中に予め含有させる場合
と比較して、その含有量を0.03〜3wt%と大きく
設定することが望ましい。
The P component necessary for forming the above-mentioned stedite phase may be contained in the Fe-based sintered alloy in advance, but it may be contained in the Cu-based alloy used in the infiltration operation described later. You may keep it. Here, by adding P to the Cu-based alloy containing Sn, the Cu base is hardened,
It is possible to form phosphor bronze with good compatibility. The P component has a high rate of remaining in the Cu-based alloy to form phosphor bronze. Therefore, in the case where the P-component is contained in the Cu-based alloy in advance, including the P-component necessary for forming the steadite phase, the content thereof is larger than that in the Fe-based sintered alloy. Is preferably set to a large value of 0.03 to 3 wt%.

【0028】Cは、基地を構成するFeおよび種々の添
加元素と化合して、高硬度の炭化物を生成すると共に、
ステダイト相を生成するために必要な元素であり、0.
1〜3wt%含有する。
C combines with Fe constituting the matrix and various additive elements to form a carbide of high hardness, and
It is an element necessary to generate a steadite phase, and is 0.
1 to 3 wt% is contained.

【0029】C含有量が0.1wt%未満の場合には、
炭化物およびステダイト相の生成量が少なく耐摩耗性の
改善効果が充分ではない。
When the C content is less than 0.1 wt%,
The amount of carbide and steadite phase produced is small and the effect of improving wear resistance is not sufficient.

【0030】一方、含有量が3wt%を超える場合に
は、炭化物およびステダイト相の生成量が多く、基材の
靭性が低下すると共に、摺動時の相手攻撃性が増大して
しまう。
On the other hand, if the content exceeds 3 wt%, the amount of carbide and steadite phase produced is large, the toughness of the base material is lowered, and the attacking property against the other side during sliding is increased.

【0031】上記組成を有するFe基焼結合金の空孔部
には、通常の溶浸法等によってCuまたはCu基合金が
含浸され、この含浸されたCu基合金によって潤滑相が
形成される。このCu基合金から成る潤滑相は、材料の
なじみ性を改善する上で極めて有効である。ここで前記
Fe基焼結合金またはCu基合金中にPが含有されてい
ると、溶浸操作時にFe基焼結合金の粒界に溶融したC
uが侵入し、PとFeとCとの共晶反応が進行して三元共
晶体から成る高硬度のステダイト相が粒界に分散して形
成される。このステダイト相が形成されることにより、
材料全体の耐摩耗性が大幅に改善される。
Cu or a Cu-based alloy is impregnated into the pores of the Fe-based sintered alloy having the above composition by a usual infiltration method or the like, and the impregnated Cu-based alloy forms a lubricating phase. The lubricating phase composed of this Cu-based alloy is extremely effective in improving the conformability of the material. When P is contained in the Fe-based sintered alloy or Cu-based alloy, C melted in the grain boundary of the Fe-based sintered alloy during the infiltration operation.
u penetrates, the eutectic reaction of P, Fe, and C proceeds, and a high hardness steadite phase composed of a ternary eutectic is dispersed and formed in the grain boundaries. By forming this steadite phase,
The wear resistance of the entire material is significantly improved.

【0032】また上記Cu基合金としてはSnを5〜1
5wt%含有した青銅を使用することが望ましい。Sn
はCuと合金化されてより硬い青銅となり、材料の初期
摺動特性を改善する効果を発揮する。含有量が5%未満
では改善効果が少なく、また含有量が15wt%を超え
ると、高硬度のδ相(デルタ青銅:Cu3 Sn2 )が析
出し、相手攻撃性が増大するため、Snの含有量は5〜
15wt%の範囲に設定される。
As the Cu-based alloy, Sn is 5 to 1
It is desirable to use bronze containing 5 wt%. Sn
Is alloyed with Cu to become harder bronze, and exhibits the effect of improving the initial sliding characteristics of the material. If the content is less than 5%, there is little improvement effect, and if the content exceeds 15 wt%, a high-hardness δ phase (delta bronze: Cu 3 Sn 2 ) precipitates, and the attacking property of Sn increases. Content is 5
It is set within the range of 15 wt%.

【0033】さらに耐摩耗性材料に対する上記潤滑相の
容積比率、すなわちFe基焼結合金の空孔部の容積比率
は5〜25vol%に設定する。容積比率が5vol%未満の場
合には、潤滑相の割合が相対的に低下し、材料のなじみ
性の改善効果が少なくなる一方、容積比率が25vol%を
超えると、軟質な潤滑相の割合が過大になり、材料全体
の耐摩耗性が低下してしまう。
Further, the volume ratio of the above-mentioned lubricating phase to the wear resistant material, that is, the volume ratio of the pores of the Fe-based sintered alloy is set to 5 to 25 vol%. When the volume ratio is less than 5 vol%, the ratio of the lubricating phase is relatively decreased, and the effect of improving the material compatibility is reduced, while when the volume ratio exceeds 25 vol%, the ratio of the soft lubricating phase is reduced. It becomes excessively large, and the wear resistance of the entire material decreases.

【0034】ところで、近年圧縮機も、インバータ制御
によってその回転数が大きく変動するような過酷な条件
で運転される場合が多く、回転数が急激に変化する瞬間
において、耐摩耗性材料で形成した摺動材の潤滑状態が
悪化して焼付きを生じる危険性も高くなっている。しか
るに本願材料のように潤滑相を形成した耐摩耗性材料で
摺動部材を形成することにより、上記焼付きの危険性を
大幅に低減することが可能になる。
By the way, in recent years, the compressor is also often operated under severe conditions such that the rotation speed greatly changes due to inverter control, and is formed of a wear resistant material at the moment when the rotation speed suddenly changes. There is also a high risk that the lubrication of the sliding material will deteriorate and seizure will occur. However, the risk of seizure can be greatly reduced by forming the sliding member with a wear-resistant material that forms a lubricating phase like the material of the present application.

【0035】上記諸特性を発揮する本発明の耐摩耗性材
料は、下記の手順によって製造される。すなわち、まず
鉄粉に前記各種元素粉末および潤滑材を所定量添加して
混合粉末とし、得られた混合粉末を成形圧500〜70
0MPaで圧縮して所定形状の成形体とした後に、得ら
れた成形体を水素等の還元ガス雰囲気、ないし非酸化性
ガス雰囲気において、温度500〜700℃で1〜2時
間脱脂処理する。さらに脱脂した成形体を、減圧雰囲気
ないし非酸化性ガス雰囲気において温度1000〜12
00℃で1.5〜3時間加熱してFe基焼結合金とす
る。さらにFe基焼結合金の空孔部に、CuまたはCu
基合金を含浸させる。この含浸(溶浸)操作は通常の溶
浸法に従ってなされる。すなわち上記Fe基焼結合金と
Cu基合金等とを接触させた状態でCuの融点またはC
u基合金の共晶温度以上に加熱することにより、Cu基
合金等を空孔部に溶浸せしめ、潤滑相を形成すると共
に、必要に応じて粒界部にステダイト相を形成する。
The wear resistant material of the present invention exhibiting the above-mentioned various properties is manufactured by the following procedure. That is, first, a predetermined amount of the various element powders and the lubricant are added to iron powder to obtain a mixed powder, and the obtained mixed powder is molded at a pressure of 500 to 70.
After being compressed at 0 MPa to form a molded body having a predetermined shape, the obtained molded body is subjected to a degreasing treatment at a temperature of 500 to 700 ° C. for 1 to 2 hours in a reducing gas atmosphere such as hydrogen or a non-oxidizing gas atmosphere. Further, the degreased molded body was heated at a temperature of 1000 to 12 in a reduced pressure atmosphere or a non-oxidizing gas atmosphere.
It heats at 00 degreeC for 1.5 to 3 hours, and makes it a Fe-based sintered alloy. Furthermore, Cu or Cu is added to the pores of the Fe-based sintered alloy.
Impregnate with base alloy. This impregnation (infiltration) operation is performed according to a normal infiltration method. That is, the melting point of Cu or C when the Fe-based sintered alloy and the Cu-based alloy are in contact with each other.
By heating above the eutectic temperature of the u-based alloy, the Cu-based alloy or the like is infiltrated into the pores to form a lubricating phase and, if necessary, a steadite phase at the grain boundary.

【0036】この溶浸処理によりFe基焼結合金の基地
組織の空孔にCu基合金から成る潤滑相が生成される。
この潤滑相の容積比率は耐摩耗性材料の全容積に対して
5〜25vol%に設定するとよい。この潤滑相は材料
のなじみ性を向上させるとともに、Fe基焼結合金の基
地組織の空孔を封じる役割(封孔作用)を果して耐圧性
(気密性)を与える。この溶浸処理を行うことにより、
圧縮機内の冷媒ガスが耐摩耗性材料中を通り抜けること
が防止できるため、圧縮機の体積効率を大幅に改善する
ことができる。
By this infiltration treatment, a lubricating phase composed of a Cu-based alloy is generated in the pores of the matrix structure of the Fe-based sintered alloy.
The volume ratio of the lubricating phase is preferably set to 5 to 25 vol% with respect to the total volume of the wear resistant material. This lubricating phase not only improves the conformability of the material, but also plays a role of sealing the pores of the matrix structure of the Fe-based sintered alloy (sealing function) and imparts pressure resistance (airtightness). By performing this infiltration treatment,
Since the refrigerant gas in the compressor can be prevented from passing through the wear resistant material, the volumetric efficiency of the compressor can be significantly improved.

【0037】本発明に係る第2の耐摩耗性材料において
は構成成分としてPを含まないため、ステダイト相は形
成されない。しかしながら、高靭性で耐摩耗性に優れた
Fe基焼結合金組織と、なじみ性に優れたCu基合金相
から成る潤滑相とを備えているため、摺動特性が優れて
おり、特に圧縮機のローラを構成する耐摩耗性材料とし
て好適である。
In the second wear resistant material according to the present invention, since P is not contained as a constituent component, the steadite phase is not formed. However, since it has a Fe-based sintered alloy structure that has high toughness and excellent wear resistance and a lubricating phase that is composed of a Cu-based alloy phase that has excellent compatibility, it has excellent sliding characteristics, and in particular, a compressor It is suitable as a wear resistant material for the roller.

【0038】また本発明に係る第3の耐摩耗性材料にお
いては、第1の材料と比較して、Mo,V,W成分を含有
しておらず、Mo,V,W等の硬い炭化物が形成されな
いため、材料全体の耐摩耗性は若干低下するが、摺動材
料として使用した場合に相手攻撃性が小さくなる。した
がって、圧縮機を構成するシリンダや軸受の材料として
好適である。
Further, the third wear resistant material according to the present invention does not contain Mo, V, W components and contains hard carbides such as Mo, V, W as compared with the first material. Since it is not formed, the wear resistance of the entire material is slightly reduced, but when used as a sliding material, the opponent attacking property is reduced. Therefore, it is suitable as a material for a cylinder or a bearing that constitutes a compressor.

【0039】[0039]

【実施例】次に本発明に係る耐摩耗性材料およびその材
料を摺動部に使用した圧縮機の一実施例について、摺動
部としてローラ,副軸受およびシリンダを有するロータ
リ式圧縮機を例にとり、従来例と比較して説明する。
Embodiments Next, one embodiment of a wear resistant material according to the present invention and a compressor using the material for a sliding portion will be described as an example of a rotary compressor having a roller, an auxiliary bearing and a cylinder as a sliding portion. First, the description will be made in comparison with the conventional example.

【0040】実施例1〜5および比較例1 実施例1〜5の圧縮機に使用するローラを下記のように
調製した。すなわち、平均粒径145μmのFe粉,S
US410L粉,SKD−11粉,Fe−1Cr−0.
3Mo粉,Fe−2Ni−1Mo粉,平均粒径20μm
のFe3 P粉および黒鉛粉末(グラファイト)を所定量
ずつ秤量し、最終的に表1の左欄に示す組成となるよう
に、各粉末を混合し、この混合粉末100重量部に対し
て潤滑剤を1重量部添加して混合し、5種類の均一な粉
末混合体を製造した。
Examples 1-5 and Comparative Example 1 The rollers used in the compressors of Examples 1-5 were prepared as follows. That is, Fe powder having an average particle size of 145 μm, S
US410L powder, SKD-11 powder, Fe-1Cr-0.
3Mo powder, Fe-2Ni-1Mo powder, average particle size 20 μm
Fe 3 P powder and graphite powder (graphite) of No. 3 were weighed in predetermined amounts, and each powder was mixed so that the composition finally shown in the left column of Table 1 was obtained, and 100 parts by weight of this mixed powder was lubricated. 1 part by weight of the agent was added and mixed to prepare 5 kinds of uniform powder mixture.

【0041】次に各混合体を成形圧600〜700MP
aで加圧して、外径33mm、内径23mm、高さ15mmの
寸法を有し、成形密度が6.8〜7.0g/cm3 の成形
体を得た。そして各成形体を水素ガス雰囲気において温
度600℃で2時間加熱することにより脱脂した。
Next, each mixture is molded at a molding pressure of 600 to 700 MP.
By pressurizing with a, a molded product having an outer diameter of 33 mm, an inner diameter of 23 mm, a height of 15 mm and a molding density of 6.8 to 7.0 g / cm 3 was obtained. Then, each molded body was degreased by heating in a hydrogen gas atmosphere at a temperature of 600 ° C. for 2 hours.

【0042】次に脱脂した各成形体を減圧した水素ガス
雰囲気において温度1100〜1190℃で2時間焼結
し徐冷した。そして温度850〜950℃で40〜90
分間保持した後にガス冷却を行って各焼結体の焼入処理
を実施した結果、密度が6.6〜7.0g/cm3 のFe
基焼結合金を得た。
Next, the degreased molded bodies were sintered at a temperature of 1100-1190 ° C. for 2 hours in a depressurized hydrogen gas atmosphere and gradually cooled. And 40-90 at a temperature of 850-950 ° C
After holding for a minute, gas cooling was performed to quench each sintered body. As a result, the density of Fe was 6.6 to 7.0 g / cm 3 .
A base sintered alloy was obtained.

【0043】次に焼入れ処理した各Fe基焼結合金を、
P−Cu合金粉末またはP−Sn−Cu合金粉末上に載
置した状態で上記Cu合金の融点温度以上に加熱してC
u合金を溶融せしめることにより、Fe基焼結合金の空
孔部にCu合金を溶浸せしめ、表1に示す組成を有する
潤滑相を形成した。そして最終的に表1に示すような組
成を有するFe基焼結合金相と潤滑相とを有する各種ロ
ーラを調製した。
Next, the respective quenched Fe-based sintered alloys were
While being placed on the P-Cu alloy powder or the P-Sn-Cu alloy powder, it is heated to a temperature not lower than the melting point of the Cu alloy to obtain C
By melting the u alloy, the Cu alloy was infiltrated into the pores of the Fe-based sintered alloy to form a lubricating phase having the composition shown in Table 1. Finally, various rollers having a Fe-based sintered alloy phase having a composition as shown in Table 1 and a lubricating phase were prepared.

【0044】各ローラより試験片を切り出し、その金属
組織を顕微鏡観察したところ、図3に示すように、Ni
−Mo−Fe,Cr−Mo−Fe等の高靭性粒子から成
るFe基焼結合金20の組織と、このFe基焼結合金20
の空孔部を埋めたCu基合金から成る潤滑相21と、F
e−P−Cの三元共晶体から成るステダイト相22とか
ら成る合金組織が観察された。
A test piece was cut out from each roller, and its metal structure was microscopically observed. As shown in FIG.
-Mo-Fe, Cr-Mo-Fe, etc. The structure of the Fe-based sintered alloy 20 composed of high toughness particles, and this Fe-based sintered alloy 20
And a lubricating phase 21 made of a Cu-based alloy filling the pores of
An alloy structure composed of a steudite phase 22 composed of an e-P-C ternary eutectic was observed.

【0045】なお、P成分を含まないFe基焼結合金ま
たはCu基合金を使用した場合には、ステダイト相は形
成されていなかった。
When a Fe-based sintered alloy or a Cu-based alloy containing no P component was used, the steadite phase was not formed.

【0046】一方、上記焼結合金性のローラと比較する
ため、比較例1として従来材であるモニクロ鋳鉄(Fe
−0.3Mo−1Ni−1.2Cr−3.2C)溶製品
を使用し、実施例1〜5と同一寸法のローラを製造し
た。
On the other hand, in order to compare with the above-mentioned sintered alloy roller, as comparative example 1, monichrome cast iron (Fe) which is a conventional material is used.
-0.3Mo-1Ni-1.2Cr-3.2C) melt was used to manufacture rollers having the same dimensions as in Examples 1-5.

【0047】次に上記各ローラと組み合せて使用するベ
ーンとして、従来材であるSUS440C(Fe−17
Cr−1.1C)溶製品をイオン窒化処理を施して所定
寸法のベーンを製造した。
Next, as a vane to be used in combination with the above rollers, SUS440C (Fe-17) which is a conventional material is used.
The Cr-1.1C) molten product was subjected to an ion nitriding treatment to manufacture a vane having a predetermined size.

【0048】またシリンダはFe−2.2Si−3.4
Cの組成を有するFC200材を使用した。
The cylinder is Fe-2.2Si-3.4.
FC200 material having a composition of C was used.

【0049】こうして製造した実施例1〜5および比較
例1の各ローラ、ベーンおよびシリンダを図1,2に示
すロータリ式圧縮機に実装し、インバータ制御により所
定間隔で高速運転および低速運転を繰り返すという最も
潤滑条件が悪化する条件を設定し、また冷凍機油温を1
30℃に設定して連続的に3000時間運転する耐久試
験を実施した。そして運転時間が3000時間に達した
時点における各ローラ外周部およびベーン先端部の摩耗
量を測定測定し、下記表1に示す結果を得た。
The rollers, vanes and cylinders of Examples 1 to 5 and Comparative Example 1 thus manufactured are mounted on the rotary compressor shown in FIGS. 1 and 2, and high speed operation and low speed operation are repeated at predetermined intervals by inverter control. The condition that the lubrication condition worsens is set, and the refrigerator oil temperature is set to 1
An endurance test was conducted by setting the temperature to 30 ° C. and continuously operating for 3000 hours. Then, the wear amount of each roller outer peripheral portion and the tip of the vane was measured and measured when the operation time reached 3000 hours, and the results shown in Table 1 below were obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】表1に示す結果から明らかなように、実施
例1〜5に係る圧縮機においては、耐摩耗性、潤滑性お
よび熱的安定性に優れた材料で摺動部としてのローラを
構成しているため、高温度で過酷な運動条件下で長時間
運転した後においても、摺動部の摩耗が、比較例1で示
す従来材で形成した圧縮機よりも小さくなり、優れた耐
久性を有している。特に摺動部におけるかじりの発生が
少なく、特にシリンダの内径摩耗量はいずれも1μm以
下であり、またシリンダ内面において焼付きなどの異常
摩耗の現象も発生せず、初期摺動特性も改善されること
が確認された。
As is clear from the results shown in Table 1, in the compressors according to Examples 1 to 5, the roller as the sliding portion is made of a material having excellent wear resistance, lubricity and thermal stability. Therefore, even after operating for a long time under high temperature and severe motion conditions, the wear of the sliding part is smaller than that of the compressor formed of the conventional material shown in Comparative Example 1, and the durability is excellent. have. In particular, galling is less likely to occur in the sliding portion, the inner diameter wear amount of each cylinder is 1 μm or less, and abnormal wear such as seizure does not occur on the inner surface of the cylinder, and the initial sliding characteristics are improved. It was confirmed.

【0052】実施例6〜10および比較例2〜3 実施例1〜5と同様な手順でFe基焼結合金にCu基合
金を溶浸せしめて、最終的に表2に示す組成を有する実
施例6〜10の圧縮機に使用する副軸受を調製した。
Examples 6 to 10 and Comparative Examples 2 to 3 The Fe-based sintered alloy was infiltrated with the Cu-based alloy in the same procedure as in Examples 1 to 5 to finally have the composition shown in Table 2. Secondary bearings for use in the compressors of Examples 6-10 were prepared.

【0053】一方、比較例としてFC200材(比較例
2),SMF−4材(比較例3)で同一寸法の副軸受を
調製した。また上記各種副軸受と摺動する圧縮機の回転
軸としては、FCD600材で形成したものを使用し
た。
On the other hand, as comparative examples, FC200 material (Comparative Example 2) and SMF-4 material (Comparative Example 3) were used to prepare auxiliary bearings having the same dimensions. The rotary shaft of the compressor that slides on the various auxiliary bearings was made of FCD600 material.

【0054】こうして製造した実施例6〜10および比
較例2〜3の各副軸受および回転軸を図1,2に示すロ
ータリ式圧縮機に実装し、実施例1〜5と同様に耐久試
験を実施し、各副軸受および回転軸の摩耗量等を測定し
て下記表2に示す結果を得た。
The sub-bearings and rotary shafts of Examples 6 to 10 and Comparative Examples 2 to 3 thus manufactured were mounted on the rotary compressor shown in FIGS. 1 and 2, and the durability test was conducted in the same manner as in Examples 1 to 5. The measurement was carried out to measure the amount of wear of each sub bearing and the rotating shaft, and the results shown in Table 2 below were obtained.

【0055】[0055]

【表2】 [Table 2]

【0056】表2に示す結果から明らかなように、実施
例6〜10に係る圧縮機においては、いずれも摺動部の
摩耗量が、比較例2,3で示す従来材で形成した圧縮機
よりも小さくなり、優れた耐久性を有していることが判
明した。
As is clear from the results shown in Table 2, in the compressors according to Examples 6 to 10, the amount of wear of the sliding portion is the compressor formed of the conventional material shown in Comparative Examples 2 and 3. It was smaller than the above and was found to have excellent durability.

【0057】実施例11〜15および比較例4 実施例1〜5と同様な手順でFe基焼結合金にCu基合
金を溶浸せしめて、最終的に表3に示す組成を有する実
施例11〜15の圧縮機に使用するシリンダを調製し
た。
Examples 11 to 15 and Comparative Example 4 An Example 11 having a composition shown in Table 3 was obtained by infiltrating a Cu-based alloy into a Fe-based sintered alloy in the same procedure as in Examples 1 to 5. The cylinders used for ~ 15 compressors were prepared.

【0058】一方、比較例4としてFC200材で同一
寸法のシリンダを調製した。また上記各種シリンダと摺
動する圧縮機のローラとしては、実施例1で形成したも
のを使用した。
On the other hand, as Comparative Example 4, a cylinder of FC200 material having the same size was prepared. The rollers formed in Example 1 were used as the rollers of the compressor sliding on the various cylinders.

【0059】こうして製造した実施例11〜15および
比較例4の各シリンダおよびベーンを図1,2に示すロ
ータリ式圧縮機に実装し、実施例1〜5と同様に耐久試
験を実施し、各シリンダおよびベーン側面の摩耗量を測
定して下記表3に示す結果を得た。
The cylinders and vanes of Examples 11 to 15 and Comparative Example 4 thus manufactured were mounted on the rotary compressor shown in FIGS. 1 and 2, and the durability test was carried out in the same manner as in Examples 1 to 5, respectively. The amounts of wear on the side surfaces of the cylinder and the vane were measured, and the results shown in Table 3 below were obtained.

【0060】[0060]

【表3】 [Table 3]

【0061】表3に示す結果から明らかなように、実施
例11〜15に係る圧縮機においては、いずれも摺動部
の摩耗量が、比較例4で示す従来材で形成した圧縮機よ
りも小さくなり、優れた耐久性を有していることが判明
した。
As is clear from the results shown in Table 3, in all the compressors according to Examples 11 to 15, the amount of wear of the sliding portion was higher than that of the compressor formed of the conventional material shown in Comparative Example 4. It became smaller and was found to have excellent durability.

【0062】上記各実施例においては、ロータリ圧縮機
に本発明の耐摩耗性材料を適用した例で示しているが、
適用対象はロータリ圧縮機に限定されず、例えば、スク
ロール圧縮機、レシプロ圧縮機等の種々の形式の圧縮機
についても同様に適用することができる。
In each of the above-mentioned embodiments, an example in which the wear resistant material of the present invention is applied to the rotary compressor is shown.
The object to be applied is not limited to the rotary compressor, but can be similarly applied to various types of compressors such as a scroll compressor and a reciprocating compressor.

【0063】[0063]

【発明の効果】以上説明の通り、本発明に係る耐摩耗性
材料,その製造方法およびその材料を使用した圧縮機に
よれば、従来材と比較して高温度条件下においても安定
であり、かつ優れた耐摩耗性、潤滑性および耐焼付性を
有する材料で摺動部を形成しているため、長期間に亘っ
て過酷な条件で運転した場合においても、優れた耐久性
を発揮する圧縮機を提供することができる。
As described above, the wear resistant material according to the present invention, the method for producing the same, and the compressor using the material are stable under high temperature conditions as compared with conventional materials. In addition, since the sliding part is made of a material that has excellent wear resistance, lubricity and seizure resistance, it exhibits excellent durability even when operated under severe conditions for a long period of time. Machine can be provided.

【0064】特に摺動部の材料組織において、なじみ性
に優れたCu基合金から成る潤滑相が形成されているた
め、摺動材としての相手攻撃性も小さく、初期摺動特性
も優れた長寿命の圧縮機を提供することができる。
In particular, in the material structure of the sliding portion, since the lubricating phase made of the Cu-based alloy having excellent conformability is formed, the opponent attacking property as a sliding material is small and the initial sliding property is excellent. A lifetime compressor can be provided.

【0065】特にFe基焼結合金組織(第1相)とCu
基合金(第2相)との間に極めて硬度が高いステダイト
相(第3相)を形成することによって耐摩耗特性を大幅
に改善することができ、耐久性に優れた圧縮機を提供す
ることができる。
In particular, the Fe-based sintered alloy structure (first phase) and Cu
By providing a steadite phase (third phase) having extremely high hardness with a base alloy (second phase), wear resistance characteristics can be significantly improved and a compressor having excellent durability is provided. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】密閉型ロータリ圧縮機の構造を示す縦断面図。FIG. 1 is a vertical cross-sectional view showing the structure of a hermetic rotary compressor.

【図2】図1に示す圧縮機のロータ部を示す平断面図。FIG. 2 is a plan sectional view showing a rotor portion of the compressor shown in FIG.

【図3】本発明に係る耐摩耗性材料の金属組織を模式的
に示す断面図。
FIG. 3 is a cross-sectional view schematically showing the metallographic structure of the wear resistant material according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 ケ―シング 3a モータ 3b 圧縮要素 4 回転軸 5 主軸受 6 副軸受 7 仕切板 8,8a,8b シリンダ 9,9a,9b 偏心部 10,10a,10b ローラ 11,11a,11b ベーン 12 吸込み口 13a,13b 吸込みチャンバ 14a,14b 圧縮チャンバ 15 吐出口 20 Fe基焼結合金 21 潤滑相 22 ステダイト相 DESCRIPTION OF SYMBOLS 1 compressor 2 casing 3a motor 3b compression element 4 rotating shaft 5 main bearing 6 auxiliary bearing 7 partition plate 8,8a, 8b cylinder 9,9a, 9b eccentric part 10,10a, 10b roller 11,11a, 11b vane 12 Suction port 13a, 13b Suction chamber 14a, 14b Compression chamber 15 Discharge port 20 Fe-based sintered alloy 21 Lubrication phase 22 Steadite phase

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/46 F16C 33/12 B 6814−3J Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/46 F16C 33/12 B 6814-3J

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で0.2〜4%のNi,0.1〜
6%のMo,0.2〜8%のCr,0.5〜5%のC
u,0.5〜3%のV,0.3〜7%のWおよび0.1
〜1%のPから選択される少なくとも2種の元素および
0.1〜3%のC,残部Feから成る第1相と,0.0
3〜3%のP,残部Cuまたは0.03〜3%のP,5
〜15%のSn,残部Cuから成る第2相とを有し、上
記第1相と第2相との界面の少なくとも一部にFe−C
−Pから成る第3相を有することを特徴とする耐摩耗性
材料。
1. A weight percentage of 0.2 to 4% Ni, 0.1 to
6% Mo, 0.2-8% Cr, 0.5-5% C
u, 0.5-3% V, 0.3-7% W and 0.1
A first phase consisting of at least two elements selected from ~ 1% P and 0.1 to 3% C, balance Fe;
3 to 3% P, balance Cu or 0.03 to 3% P, 5
A second phase consisting of ˜15% Sn and the balance Cu, and Fe—C on at least a part of the interface between the first phase and the second phase.
A wear resistant material, characterized in that it has a third phase consisting of P.
【請求項2】 重量%で0.2〜4%のNi,0.1〜
6%のMo,0.2〜8%のCr,0.5〜5%のC
u,0.5〜3%のV,0.3〜7%のWおよび0.1
〜1%のPから選択される少なくとも2種の元素および
0.1〜3%のC,残部Feから成る混合粉末を成形後
焼結して焼結合金とし、この焼結合金に0.03〜3%
のP,残部Cuから成る合金または0.03〜3%の
P,5〜15%のSn,残部Cuから成る合金を溶浸す
ることを特徴とする耐摩耗性材料の製造方法。
2. A weight percentage of 0.2 to 4% Ni, 0.1 to
6% Mo, 0.2-8% Cr, 0.5-5% C
u, 0.5-3% V, 0.3-7% W and 0.1
A powder mixture of at least two elements selected from ˜1% P, 0.1 to 3% C, and the balance Fe is compacted and sintered to obtain a sintered alloy. ~ 3%
Of P, balance Cu or 0.03 to 3% P, alloy of 5 to 15% Sn and balance Cu is infiltrated.
【請求項3】 重量%で0.2〜4%のNi,0.1〜
2%のMo,0.1〜2%のC,残部鉄から成る第1相
と、0.2〜8%のCr,0.1〜2%のMo,0.1
〜2%のC,残部Feから成る第2相と、5〜15%の
Sn,残部Cuから成る第3相とを有することを特徴と
する耐摩耗性材料。
3. 0.2-4% by weight of Ni, 0.1-0.4%
1% phase consisting of 2% Mo, 0.1-2% C, balance iron, 0.2-8% Cr, 0.1-2% Mo, 0.1
A wear-resistant material, characterized in that it has a second phase consisting of ˜2% C and the balance Fe, and a third phase consisting of 5 to 15% Sn and the balance Cu.
【請求項4】 重量%で0.2〜4%のNi,0.1〜
2%のMo,0.2〜8%のCr,0.1〜2%のC,
残部Feから成る混合粉末を成形後焼結して焼結合金と
し、この焼結合金に5〜15%のSn,残部Cuから成
る合金を溶浸することを特徴とする耐摩耗性材料の製造
方法。
4. A weight percentage of 0.2 to 4% Ni, 0.1 to 4.
2% Mo, 0.2-8% Cr, 0.1-2% C,
Manufacture of a wear-resistant material characterized in that a mixed powder consisting of the balance Fe is molded and then sintered to form a sintered alloy, and an alloy consisting of 5 to 15% Sn and the balance Cu is infiltrated into the sintered alloy. Method.
【請求項5】 重量%で0.2〜4%のNi,0.2〜
8%のCr,0.5〜5%のCu,および0.1〜1%
のPから選択される少なくとも1種の元素および0.1
〜3%のC,残部Feから成る第1相と、5〜15%の
Sn,残部Cuから成る第2相との界面部に、上記第1相
および第2相の複合金属から成る第3相を有することを
特徴とする耐摩耗性材料。
5. A weight percentage of 0.2 to 4% Ni, 0.2 to
8% Cr, 0.5-5% Cu, and 0.1-1%
At least one element selected from P and 0.1
At the interface between the first phase consisting of ~ 3% C and the balance Fe and the second phase consisting of 5 to 15% Sn and the balance Cu, the third phase consisting of the composite metal of the first phase and the second phase is formed. A wear resistant material characterized by having a phase.
【請求項6】 重量%で0.2〜4%のNi,0.2〜
8%のCr,0.5〜5%のCu,および0.1〜1%
のPから選択される少なくとも1種の元素および0.1
〜3%のC,残部Feから成る混合粉末を成形後焼結し
て焼結合金とし、この焼結合金に、5〜15%のSn,
残部Cuから成る合金を溶浸することを特徴とする耐摩
耗性材料の製造方法。
6. Ni to 0.2 to 4% by weight, 0.2 to
8% Cr, 0.5-5% Cu, and 0.1-1%
At least one element selected from P and 0.1
A mixed powder consisting of ˜3% C and the balance Fe is compacted and sintered to form a sintered alloy.
A method for producing a wear-resistant material, which comprises infiltrating an alloy consisting of the balance Cu.
【請求項7】 シリンダとこのシリンダ内面に摺接する
ローラとから成る圧縮要素および軸受を介して回転自在
に支持される回転軸をケーシングに内装し、回転軸の偏
心部にローラを嵌合させ、回転軸の回転に伴って上記ロ
ーラがシリンダ内を偏心回転するように構成した圧縮機
において、上記ローラを請求項1または3記載の耐摩耗
性材料で形成したことを特徴とする圧縮機。
7. A rotary shaft rotatably supported via a compression element and a bearing, which comprises a cylinder and a roller slidingly contacting the inner surface of the cylinder, is housed in a casing, and the roller is fitted to an eccentric part of the rotary shaft. A compressor configured such that the roller eccentrically rotates in the cylinder as the rotary shaft rotates, wherein the roller is formed of the wear-resistant material according to claim 1.
【請求項8】 シリンダとこのシリンダ内面に摺接する
ローラとから成る圧縮要素および軸受を介して回転自在
に支持される回転軸をケーシングに内装し、回転軸の偏
心部にローラを嵌合させ、回転軸の回転に伴って上記ロ
ーラがシリンダ内を偏心回転するように構成した圧縮機
において、上記軸受および/またはシリンダを請求項5
記載の耐摩耗性材料で形成したことを特徴とする圧縮
機。
8. A rotary shaft rotatably supported via a compression element and a bearing, which comprises a cylinder and a roller slidingly contacting the inner surface of the cylinder, is housed in a casing, and the roller is fitted to an eccentric part of the rotary shaft. A compressor configured such that the roller rotates eccentrically in the cylinder as the rotary shaft rotates, wherein the bearing and / or the cylinder are provided.
A compressor formed of the wear-resistant material as described above.
JP5320428A 1993-12-20 1993-12-20 Wear resistant material, production thereof and compressor using the same material Pending JPH07173509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5320428A JPH07173509A (en) 1993-12-20 1993-12-20 Wear resistant material, production thereof and compressor using the same material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5320428A JPH07173509A (en) 1993-12-20 1993-12-20 Wear resistant material, production thereof and compressor using the same material

Publications (1)

Publication Number Publication Date
JPH07173509A true JPH07173509A (en) 1995-07-11

Family

ID=18121346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5320428A Pending JPH07173509A (en) 1993-12-20 1993-12-20 Wear resistant material, production thereof and compressor using the same material

Country Status (1)

Country Link
JP (1) JPH07173509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029386A (en) * 2010-12-06 2011-04-27 中南大学 High-hardness powder metallurgy low-alloy steel
DE102014013478A1 (en) 2014-09-11 2016-03-17 Wieland-Werke Ag Composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029386A (en) * 2010-12-06 2011-04-27 中南大学 High-hardness powder metallurgy low-alloy steel
DE102014013478A1 (en) 2014-09-11 2016-03-17 Wieland-Werke Ag Composite material

Similar Documents

Publication Publication Date Title
JP3876756B2 (en) CO2 refrigerant compressor bearing, compressor using the same, and use thereof
US4904302A (en) Roller in rotary compressor and method for producing the same
JP2514053B2 (en) Roller for compressor
JP2825334B2 (en) Compressor
JP3878835B2 (en) Refrigerant compressor, air conditioner and refrigerator using the same, and bearing thereof
JPH0551708A (en) Wear resistant material for compressor and compressor using the same
JPH07173509A (en) Wear resistant material, production thereof and compressor using the same material
CN103032332B (en) Close-type refrigerant compressor and bearing part used by same
KR0125768B1 (en) Vane material and manufacturing method thereof
JPH0551707A (en) Wear resistant material for compressor
JPH06207253A (en) Iron base sliding part material
JPH05340364A (en) Scroll compressor
JPH06192784A (en) Wear resistant sintered sliding member
JPH07179981A (en) Wear resistant material, its production and compressor using the same
JPH0551709A (en) Sliding parts material for compressor
JPH06193575A (en) Compressor
CN101397995A (en) Refrigerant compressor
JPH06192710A (en) Sliding member for compressor and its production
JPH0544674A (en) Compressor
JPH06207252A (en) Iron base sliding part material
JP2001342981A (en) Rotary compressor
JPH02133549A (en) Wear-resistant composite sintered material and its manufacturing method
JPH1088203A (en) Material of sliding parts for compressor and its manufacture
JP4528542B2 (en) Compressor bearing
JP2517675B2 (en) Sintered copper alloy for high load sliding