JPH07165407A - Small spherical activated carbon made of ion exchanger - Google Patents
Small spherical activated carbon made of ion exchangerInfo
- Publication number
- JPH07165407A JPH07165407A JP6204536A JP20453694A JPH07165407A JP H07165407 A JPH07165407 A JP H07165407A JP 6204536 A JP6204536 A JP 6204536A JP 20453694 A JP20453694 A JP 20453694A JP H07165407 A JPH07165407 A JP H07165407A
- Authority
- JP
- Japan
- Prior art keywords
- ion exchanger
- activation
- carbonization
- exchanger
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/336—Preparation characterised by gaseous activating agents
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】活性炭は最も普通に使用される吸着剤であ
る。この事実は、それを吸着工程における“雑役婦(ma
id of all work )”にするその特異性のない吸着特
性によって見出すことができる。環境上の義務に対する
要求の増大と限定的な立法が、活性炭に対する要求増大
をもたらしている。活性炭は、炭素原子を含有する化合
物を炭化し、活性化することによって作られる。事実と
して、炭化工程中のある成分の揮発及び活性化中の燃焼
によりかなりの重量損失を生ぜしめるので、適切な収率
を可能にするこれらの化合物が好ましい。Activated carbon is the most commonly used adsorbent. This fact makes it a “major” (ma) in the adsorption process.
It can be found by its non-specific adsorption properties that make it an “id of all work).” Increased demands on environmental obligations and limited legislation have led to increased demands on activated carbons. It is made by carbonizing and activating a compound containing OH. In fact, volatilization of some components during the carbonization process and combustion during activation can result in significant weight loss, thus allowing adequate yields. These compounds are preferred.
【0002】更に活性炭の種類は、微細な又は粗い孔の
ものであることができ、固体又は断片の処理される基本
材料によって決まる。有用な原材料には、ココナッツの
殻、木片、泥炭、坑口炭(pit coal )、タールがあ
る、そればかりでなく、中でも活性炭素布帛の製造に主
役を果す特別の重合体がある。活性炭は種々な形、粉末
状炭素、粒状炭素、成形炭素で用いられ、1970年の
終りからは球状炭素も用いられている。一方ではその特
殊な形で、及び他方で極度に高い耐摩耗性のために、化
学毒物に対する保護衣服及び大なる空気量中の低い汚染
濃度に対するフィルターの製造の如き、特殊な分野での
かかる球状炭素の使用に対する大なる要求がある。Further, the type of activated carbon can be of fine or coarse pores, depending on the solid or fragment treated base material. Useful raw materials include coconut shell, wood chips, peat, pit coal, tar, as well as special polymers that play a key role in the production of activated carbon fabrics, among others. Activated carbon has been used in various forms, powdered carbon, granular carbon, shaped carbon, and spherical carbon since the end of 1970. Due to its special shape on the one hand and, on the other hand, its extremely high wear resistance, such spherical shapes in special fields, such as the production of protective clothing against chemical poisons and filters for low pollutant concentrations in large air volumes. There are great demands on the use of carbon.
【0003】現在でも、スチレンとジビニルベンゼンを
基本にしたポリスルホン化マクロ多孔質のイオン交換体
の炭化及び活性化によって高品質の球状炭素が既に作る
ことができているが、大部分の球状炭素はタール状蒸溜
残渣を用いる多段法によって作られ、従って複雑でかつ
費用のかかるものである。Even today, high quality spherical carbon has already been produced by carbonization and activation of polysulfonated macroporous ion exchangers based on styrene and divinylbenzene, but most of the spherical carbon is It is made by a multi-step process using tar-like distillate residues and is therefore complicated and expensive.
【0004】関連した特許では、マクロ多孔質樹脂が基
本材料を形成すべきこと、そしてゲルタイプの樹脂は適
していないことを述べている、何故ならそれらは“不活
性面”が形成されないので活性化できないからである。
殆どの場合において、マクロ多孔質イオン交換体樹脂
は、ゲルタイプのものよりも強力な架橋した構造を有
し、通常高価なジビニルベンゼンの高割合を必要として
いる。A related patent states that macroporous resins should form the base material, and that gel-type resins are not suitable because they are active because "inert surfaces" are not formed. Because it cannot be converted.
In most cases, macroporous ion exchanger resins have a more strongly cross-linked structure than gel type ones and usually require a high proportion of expensive divinylbenzene.
【0005】炭化及び活性化する間のかなりの重量損失
の結果として、基本材料の製造費用が本質的に重大なも
のである。これは、マクロ多孔質イオン交換体から作ら
れた活性炭小球体が小さい市場占有率を有しているのみ
であるという事実に理由ある根拠を与えている。従って
本発明の目的は、ゲルタイプの安価なイオン交換体から
活性炭小球体を作るための適切な方法を見出すことにあ
った。As a result of the considerable weight loss during carbonization and activation, the cost of manufacturing the base material is essentially significant. This provides a rationale for the fact that activated carbon microspheres made from macroporous ion exchangers only have a small market share. The object of the present invention was therefore to find a suitable process for the production of activated carbon globules from gel-type inexpensive ion exchangers.
【0006】驚いたことに、粒状有機ゲルタイプイオン
交換体を主として不活性雰囲気中で、600〜900℃
の温度で炭化し、その後それらを酸化雰囲気中で800
〜900℃の温度で活性化することにより粒状有機ゲル
タイプイオン交換体から作ることができることを見出し
た。炭化温度は750〜875℃であるのが好ましい。Surprisingly, the granular organic gel type ion exchanger is mainly used in an inert atmosphere at 600 to 900 ° C.
Carbonized at temperatures of
It has been found that it can be made from granular organic gel type ion exchangers by activation at temperatures up to 900 ° C. The carbonization temperature is preferably 750 to 875 ° C.
【0007】カチオン又はアニオン交換体の両者を使用
できる。カチオン交換体は特にスルホン化スチレン−ジ
ビニルベンゼン共重合体又はスチレン−アクリル酸共重
合体からなる。カチオン交換体はH+ 型で使用するのが
好ましい。Both cation or anion exchangers can be used. The cation exchanger comprises in particular a sulphonated styrene-divinylbenzene copolymer or a styrene-acrylic acid copolymer. The cation exchanger is preferably used in the H + form.
【0008】好適なアニオン交換体は、特に三級又は四
級アンモニウム基を有するポリアクリル樹脂又はポリス
チレン樹脂を基本にしている。Suitable anion exchangers are based in particular on polyacrylic or polystyrene resins having tertiary or quaternary ammonium groups.
【0009】炭化する前に、ゲルタイプイオン交換体
は、400℃までの温度で酸化性雰囲気中で酸化を受け
るのが好ましい。Prior to carbonization, the gel-type ion exchanger is preferably subjected to oxidation in an oxidizing atmosphere at temperatures up to 400 ° C.
【0010】一般に、酸化相は、55%以下の量の湿分
が追出されるよう乾燥工程を前もって行う。かかる乾燥
工程は空気中で行うことができる。しかしながら、酸化
工程で温度を上昇させるとき、酸素含有率を減少させな
ければならない。温度が300℃に達したとき、1〜5
%にそれは減少しているべきである。酸化相は、使用す
る凝集体(流動床/回転チューブ)によって20分ない
し6時間続ける。酸素は酸化工程中で、カチオン交換体
のスルホン酸基が果すのと同様の決定的役割を果す、そ
れは、揮発性成分の量を減じ、軟化温度を上昇させる酸
素架橋、反応性官能基位置を形成する。In general, the oxidation phase is preceded by a drying step so that an amount of moisture of less than 55% is expelled. Such a drying process can be performed in air. However, as the temperature is raised in the oxidation process, the oxygen content must be reduced. 1 ~ 5 when the temperature reaches 300 ℃
To% it should be decreasing. The oxidation phase lasts 20 minutes to 6 hours, depending on the agglomerates used (fluidized bed / rotating tube). Oxygen plays a crucial role during the oxidation process, similar to what the sulphonic acid groups of cation exchangers do, which reduces the amount of volatile constituents and reduces oxygen cross-linking, reactive functional group positions that increase the softening temperature. Form.
【0011】加熱中のイオン交換体の軟化又は凝集は、
スルホン化及び前酸化によって主として防止できる。し
かしながら、樹脂小球体の一部は、特に回転チューブ炉
中に望ましからぬ停止をする場合、凝集体をそれにも拘
らず形成することがある。かかる凝集は、イオン交換体
を、少量の非軟化性粉末例えば炭素粉末、好ましくは通
常0.5〜5重量%のピッチコール粉末又は活性炭粉末
で粉末化することによって避けることができる。The softening or agglomeration of the ion exchanger during heating is
It can be largely prevented by sulfonation and preoxidation. However, some of the resin globules may nevertheless form agglomerates, especially during undesired shut-downs in a rotary tube furnace. Such agglomeration can be avoided by pulverizing the ion exchanger with a small amount of non-softening powder such as carbon powder, preferably 0.5 to 5% by weight of pitch coal powder or activated carbon powder.
【0012】炭素粉末は回転チューブ炉を満たすときに
加える。それは非常に早く分布させ、イオン交換体の表
面に、それらが粘着するようになる場合乾燥被覆を与え
る。少なくともパイロットプラント規模で、流動床中で
も凝集は見られなかった。Carbon powder is added when filling the rotary tube furnace. It distributes very quickly and gives the surface of the ion exchanger a dry coating if they become sticky. No agglomeration was observed in the fluidized bed, at least on a pilot plant scale.
【0013】熱分解又はくすぶり工程としても考えるこ
とのできる続いての炭化において、最初にCO2 ,SO
2 ,H2 O及びCOのみならず炭化水素及び部分酸化さ
れた炭化水素が揮発する。ポリスルホン化イオン交換体
の場合(これが通常の場合である)、硫黄含有率は、無
水材料を基準にして15%以上の値に達することがあ
る。H+ 型から出発すると、スルホン酸はSO2 及びH
2 Oとして分離し、一方硫黄の或る百分率が、部分的に
チオエーテルの形で材料中に導入される。Na+型から
出発すると、硫酸塩が形成され、炭素がそれを還元する
前に先ず硫酸化物になる。かなりの不快な臭気を考慮に
入れぬとしても、それにも拘らず高灰分含有率が問題に
なる。従って酸洗することによってNa+ 型をH+ 型に
変えることを推奨する。更に続く活性化工程内での燃焼
に対する材料の受容性を増大させるため、若干の水蒸気
を加えて、熱分解(くすぶり)工程中に予め軽い活性化
を行うことが有利である。In the subsequent carbonization, which can also be considered as a pyrolysis or smoldering process, first of all CO 2 , SO
As well as 2 , H 2 O and CO, hydrocarbons and partially oxidized hydrocarbons are volatilized. In the case of polysulfonated ion exchangers, which is the usual case, the sulfur content can reach values of 15% or higher, based on anhydrous material. Starting from the H + form, the sulfonic acid is SO 2 and H
Separated as 2 O, while some percentage of sulfur is introduced into the material, partially in the form of thioethers. Starting from the Na + form, sulphate is formed, the carbon being first sulphated before reducing it. Even if the considerable unpleasant odor is not taken into consideration, high ash content is nevertheless a problem. Therefore, it is recommended to change the Na + type to the H + type by pickling. In order to increase the material's receptivity to combustion in the subsequent activation step, it is advantageous to add some steam to carry out a pre-light activation during the pyrolysis (smoldering) step.
【0014】このくすぶらせは乾燥物質を基準にして4
0〜60%の重量損失をもたらす。硫黄の10重量%以
上の追加の損失を与えると、炭素を基準にした重量損失
は約30〜50%になる。手でのそれぞれの技術的装置
によって、350〜900℃の温度でのくすぶらせ工程
は1時間未満から数時間までかかるであろう。This smoldering is based on a dry matter of 4
It results in a weight loss of 0-60%. Given an additional loss of 10% by weight or more of sulfur, the weight loss based on carbon is about 30-50%. Depending on the respective technical equipment by hand, the smoldering step at temperatures of 350-900 ° C. may take from less than one hour to several hours.
【0015】酸化工程コース中に導入された酸素は、く
すぶらせ中に再び最初にCO2 の形で、そして後で高温
に達したとき主としてCOとして揮発する。疑いなく、
この方法は、真の活性化工程を行ったとき実際に正の効
果を示す第一活性化に匹敵する。Oxygen introduced during the course of the oxidation process volatilizes again initially in the form of CO 2 during smoldering and subsequently as CO when high temperatures are reached. Without a doubt,
This method is comparable to the first activation, which actually has a positive effect when the true activation step is performed.
【0016】通常活性化は800〜900℃の温度で行
う、この工程は空の形又は不活性ガスで稀釈した形でC
O2 ,H2 O,O2 又はCOで燃焼して出すことを含
む。水蒸気活性化法は、主たる不活性雰囲気中に水蒸気
3〜50%、好ましくは3〜15%加えることによって
行う。小球体の内部中への酸化ガスの拡散は燃える反応
より速くなければならない、さもないと、燃えるのが小
球体の外側殻に主として集中してしまう。これは温度及
び濃度の適切な組合せによって達成できる、このことは
活性炭の製造の当業者には知られている。望ましい活性
化度によれば、硫黄含有率が1〜2%に減少する間に熱
分解後存在する炭素の30〜50%が追加的に気化す
る。乾燥物質を基準にして適切な収率は25〜30%で
あり、BET表面積は800m2 /gであり、ベンゼン
吸着は30〜35%(P/P0 =0.9)である。15
00m2 /gの内面積が得られるであろう、しかしなが
らこの場合、収率は乾燥出発材料を基準にして12〜1
5%に下がって行く。The activation is usually carried out at a temperature of 800 to 900 ° C. This step is carried out in the empty form or diluted with an inert gas to form C.
Includes combustion with O 2 , H 2 O, O 2 or CO. The steam activation method is carried out by adding 3 to 50%, preferably 3 to 15% of steam in a main inert atmosphere. The diffusion of oxidizing gas into the interior of the globules must be faster than the burning reaction, otherwise burning will be mainly concentrated in the outer shell of the globules. This can be achieved by a suitable combination of temperature and concentration, which is known to those skilled in the production of activated carbon. According to the desired degree of activation, 30-50% of the carbon present after pyrolysis is additionally vaporized while the sulfur content is reduced to 1-2%. Suitable yields, based on dry matter, are 25-30%, BET surface area is 800 m 2 / g and benzene adsorption is 30-35% (P / P 0 = 0.9). 15
An internal area of 00 m 2 / g will be obtained, however, in this case the yield is between 12 and 1 based on dry starting material.
Going down to 5%.
【0017】最初の熱処理は密度の増大をもたらす。後
で材料の収縮及び増大する多孔度が観察できる。粒度及
び粒度分布は出発材料によって決まる。しかしながら目
的生成物の直径は10〜20%小さくなると考えなけれ
ばならない。目的生成物の嵩重量は430〜650g/
lで変化する。The first heat treatment results in an increase in density. Later shrinkage of the material and increasing porosity can be observed. The particle size and particle size distribution depends on the starting material. However, the diameter of the desired product should be considered to be 10-20% smaller. The bulk weight of the desired product is 430-650 g /
It changes with l.
【0018】回転チューブ炉又は流動床で異なる熱処理
を行うことができる。それらは一つの同じ凝集物で又は
別の凝集物において行うことができる、それぞれ最良の
条件を可能にするようにする。これは、出発材料及び目
的生成物の間のかなりの質量差から見て有利である。炭
化及び活性化工程は流動床で行うことができるばかりで
なく、異なる段階で行うこともでき、炭化は回転チュー
ブ炉中で行い、一方活性化を流動床で行うこともでき
る。悪い熱伝達及びガス交換の結果として、回転チュー
ブ炉中で反応時間はかなり長くなる、これは特に活性化
工程に対してはその通りである。しかしながら、これは
最終生成物の品質に影響を有しない。差異は生成物の品
質よりも処理時間によって決まる。Different heat treatments can be carried out in a rotary tube furnace or a fluidized bed. They allow the respective best conditions, which can be carried out in one and the same agglomerate. This is advantageous in view of the considerable mass difference between the starting material and the desired product. The carbonization and activation steps can not only be carried out in a fluidized bed, but can also be carried out in different stages, the carbonization being carried out in a rotary tube furnace while the activation can be carried out in a fluidized bed. As a result of poor heat transfer and gas exchange, the reaction times are considerably longer in rotary tube furnaces, especially for the activation process. However, this does not affect the quality of the final product. The difference depends more on the processing time than on the product quality.
【0019】本発明は、前述した方法によって作った高
安定性の活性炭小球体を提供する。特徴として、この小
球体活性炭の孔分布構造は、100〜300オングスト
ロームの範囲内の小さいメソポアスペクトルと少しのマ
クロポアを示す。The present invention provides highly stable activated carbon microspheres made by the method described above. Characteristically, the pore distribution structure of this microsphere activated carbon shows a small mesopore spectrum in the range of 100-300 Å and a few macropores.
【0020】実施例 1 0.4〜0.8mmの直径を有するゲル型イオン交換体
(DOW HCRSEH+ )4300Kgを乾燥し(重
量損失は50%より少し大)、2:1の比の窒素/空気
混合物中で12時間、400℃で回転炉中で予備炭化し
た。次に炭化工程は、約900℃で6時間で窒素雰囲気
中で完了させた。Example 1 4300 Kg of a gel-type ion exchanger (DOW HCRSEH + ) having a diameter of 0.4 to 0.8 mm was dried (weight loss is slightly greater than 50%) and a ratio of nitrogen / nitrogen of 2: 1. Precarbonization in a rotary furnace at 400 ° C. for 12 hours in an air mixture. The carbonization step was then completed at about 900 ° C. for 6 hours in a nitrogen atmosphere.
【0021】予備炭化工程(400℃)後、収率は(湿
った)原材料を基準にして約22%であった、しかし9
00℃での処理後17%に落ちた。After the pre-carbonization step (400 ° C.), the yield was about 22% based on the (wet) raw material, but 9
After treatment at 00 ° C it fell to 17%.
【0022】炭化した材料は小さい内表面(約200m
2 /g)を示した。後に水蒸気を加えて、パイロットプ
ラント(回転炉)中で8時間900℃でそれを活性化し
た。結果として、1300m2 /gの内表面積が達成で
き、燃焼損失%は35であった。1時間の予備炭化(4
00℃)後、材料の見掛け密度は750g/lであっ
た。第二工程(900℃)後、それは約900g/lの
値に達した、しかし活性化工程後650g/lに落ち
た。同時に小球体の直径は20%まで低下した。The carbonized material has a small inner surface (approximately 200 m
2 / g). Afterwards steam was added to activate it in a pilot plant (rotary furnace) for 8 hours at 900 ° C. As a result, an internal surface area of 1300 m 2 / g could be achieved and the% combustion loss was 35. 1 hour pre-carbonization (4
After 00 ° C.) the apparent density of the material was 750 g / l. After the second step (900 ° C.) it reached a value of about 900 g / l, but fell to 650 g / l after the activation step. At the same time, the diameter of the microspheres dropped to 20%.
【0023】実施例 2 出発材料Example 2 Starting Material
【0024】水分含有率52%のDOW HCRSE
H+ として市販されている酸の形の10m3 (=7.8
t)のゲル型イオン交換体樹脂。DOW HCRSE with a water content of 52%
10 m 3 (= 7.8 in acid form commercially available as H +
Gel type ion exchanger resin of t).
【0025】I.くすぶらせ処理I. Smoldering process
【0026】1.工程(400℃まで)。窒素中に約5
%の酸素追加。回転炉中での滞留時間約1時間。 収量:1975Kg、乾燥物質を基準にして:52.7
%。1. Process (up to 400 ° C). About 5 in nitrogen
% Additional oxygen. Residence time in rotary furnace is about 1 hour. Yield: 1975 Kg, based on dry matter: 52.7.
%.
【0027】2.工程(850℃まで)。窒素中に20
%の水蒸気追加。滞留時間約1/2時間。 収量:1663Kg、乾燥物質に関して:44%。2. Process (up to 850 ° C). 20 in nitrogen
Add% steam. Residence time about 1/2 hour. Yield: 1663 Kg, on dry matter: 44%.
【0028】くすぶらせ処理した材料は938g/lの
嵩密度及び80m2 /gのBET表面積を有していた。The smoldered material had a bulk density of 938 g / l and a BET surface area of 80 m 2 / g.
【0029】II.活性化II. activation
【0030】活性化も、流動床が故障のため回転炉中で
行った。The activation was also carried out in a rotary furnace due to a fluidized bed failure.
【0031】温度:875℃ 窒素に水蒸気25%追加 滞留時間:8時間 収量:1104Kg、乾燥物質を基準にして:27%。 BET表面積は1250m2 /gで、見掛け密度634
g/lであった。灰分含有率は0.4%であった。Temperature: 875 ° C. Add 25% steam to nitrogen Residence time: 8 hours Yield: 1104 kg, based on dry substance: 27%. BET surface area is 1250 m 2 / g, apparent density 634
It was g / l. The ash content was 0.4%.
【0032】活性化を流動床で行ったとき非常に短い時
間で同様の結果が得られた。Similar results were obtained in a very short time when the activation was carried out in a fluidized bed.
【0033】本明細書及び特許請求の範囲は例示によっ
て説明したが、限定するものではなく、種々の改変を本
発明の範囲を逸脱することなくなしうることは認められ
るであろう。While the specification and claims have been set forth by way of illustration, it will be appreciated that they are not limiting and various modifications can be made without departing from the scope of the invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 エルネスト・デ・リュイター ドイツ連邦共和国デイ−51381 レフェル クーゼン、ヘーヘンシュトラーセ 57アー ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ernesto De Luiter, Federal Republic of Germany Day 51381 Lever Kusen, Hohenstraße 57
Claims (17)
活性な雰囲気中で600〜900℃の温度で炭化し、そ
の後それを酸化雰囲気中で800〜900℃の温度で活
性化することを特徴とする活性炭の製造方法。1. A method for carbonizing a granular organic gel ion exchanger at a temperature of 600 to 900 ° C. in a substantially inert atmosphere, and thereafter activating it at a temperature of 800 to 900 ° C. in an oxidizing atmosphere. And a method for producing activated carbon.
ジビニルベンゼン共重合体又はスチレン−アクリル酸共
重合体からなる群から選択したカチオン交換体であるこ
とを特徴とする請求項2の方法。2. The ion exchanger is sulfonated styrene-
3. The method of claim 2 which is a cation exchanger selected from the group consisting of divinylbenzene copolymer or styrene-acrylic acid copolymer.
徴とする請求項1の方法。3. The method of claim 1, wherein the cation exchanger is in the H + form.
ウム基を有するポリアクリル樹脂又はポリスチレン樹脂
からなる群から選択したアニオン交換体であることを特
徴とする請求項1の方法。4. The method according to claim 1, wherein the ion exchanger is an anion exchanger selected from the group consisting of polyacrylic resins or polystyrene resins having tertiary or quaternary ammonium groups.
することを特徴とする請求項1の方法。5. The method of claim 1, wherein the ion exchanger resin is dried prior to carbonization.
であることを特徴とする請求項1の方法。6. The method of claim 1 wherein the carbonization temperature is in the range of 750-875 ° C.
0℃までの温度で酸素含有雰囲気中で酸化を受けさせる
ことを特徴とする請求項1の方法。7. A gel ion exchanger, 40 times prior to carbonization
Process according to claim 1, characterized in that it is subjected to oxidation in an oxygen-containing atmosphere at temperatures up to 0 ° C.
少し、温度を漸進的に上昇させることを特徴とする請求
項7の方法。8. The method of claim 7, wherein the oxygen content in the atmosphere is progressively reduced and the temperature is progressively increased.
量%の水蒸気を加え、炭化された材料を活性化すること
を特徴とする請求項1の方法。9. The method of claim 1, wherein 3 to 50% by volume of water vapor is added to the substantially inert atmosphere to activate the carbonized material.
気中に活性化する間加えることを特徴とする請求項1の
方法。10. The method of claim 1 wherein carbon dioxide is added during activation in a substantially inert atmosphere.
活性化する間加えることを特徴とする請求項1の方法。11. The method of claim 1, wherein air is added during activation during the activation in a substantially inert atmosphere.
ことを特徴とする請求項1の方法。12. The method of claim 1 wherein both carbonization and activation are carried out in a fluidized bed.
を特徴とする請求項1の方法。13. The method of claim 1 wherein carbonization and activation are performed in separate steps.
で行うことを特徴とする請求項13の方法。14. Process according to claim 13, characterized in that the carbonization is carried out in a rotary furnace and the activation is carried out in a fluidized bed.
前に非軟化性粉末で粉末にすることを特徴とする請求項
1の方法。15. The method of claim 1 wherein the gel ion exchanger resin is powdered with a non-softening powder prior to thermal decomposition.
炭。16. Activated carbon produced by the method of claim 1.
ームの狭いメソポア分布及び少しだけのマクロポアを有
することを特徴とする球状活性炭。17. Spherical activated carbon characterized in that it has a narrow mesopore distribution of mainly 100 to 300 angstroms and only a few macropores.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10555693A | 1993-08-12 | 1993-08-12 | |
US105556 | 2002-03-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07165407A true JPH07165407A (en) | 1995-06-27 |
JP3611600B2 JP3611600B2 (en) | 2005-01-19 |
Family
ID=22306493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20453694A Expired - Lifetime JP3611600B2 (en) | 1993-08-12 | 1994-08-05 | Method for producing activated carbon |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP3611600B2 (en) |
KR (1) | KR950005742A (en) |
CA (1) | CA2128979A1 (en) |
FR (1) | FR2708922B1 (en) |
GB (1) | GB2280898B (en) |
IT (1) | IT1273678B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1304285C (en) * | 2004-05-26 | 2007-03-14 | 王浦林 | Process for preparing polyporous charcoal and device therefor |
JP2007169274A (en) * | 2005-12-19 | 2007-07-05 | Bluecher Gmbh | Use of activated carbon and medicinal preparation using activated carbon |
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
JP2011147895A (en) * | 2010-01-22 | 2011-08-04 | Tohoku Electric Power Co Inc | Method for manufacturing of adsorbent for nitrogen monoxide |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
KR20200092106A (en) * | 2019-01-24 | 2020-08-03 | 한국화학연구원 | Method of preparing resin-based activated carbon and the activated carbon thereby |
KR20230069355A (en) * | 2021-11-12 | 2023-05-19 | 한국화학연구원 | Method of preparing ultra-high specific surface area spherical activated carbon and the activated carbon thereby |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19752593C5 (en) | 1997-11-27 | 2005-02-17 | Helsa-Werke Helmut Sandler Gmbh & Co. Kg | Process for the preparation of activated carbon from polymers with aromatic nuclei |
US6277933B1 (en) | 1998-04-03 | 2001-08-21 | Solutia Inc. | Polyacrylonitrile particles by surfmer polymerization and sodium removal by chemical exchange |
US6143835A (en) * | 1998-04-03 | 2000-11-07 | Solutia Inc. | Polyacrylonitrile polymer treatment |
DE19912153B4 (en) * | 1999-03-18 | 2004-08-19 | Carbotex Produktions-Und Veredelungsbetriebe Gmbh | Process for the production of shaped high-performance adsorbents |
DE19912154C5 (en) * | 1999-03-17 | 2007-02-01 | Carbotex Produktions-Und Veredelungsbetriebe Gmbh | Process for the production of shaped activated carbon |
DE19930732A1 (en) * | 1999-07-05 | 2001-01-18 | Sandler Helmut Helsa Werke | Process for the controlled production of spherical activated carbon |
DE10191656B4 (en) | 2000-04-28 | 2008-08-14 | BLüCHER GMBH | Process for producing spherical activated carbon |
DE50012022D1 (en) * | 2000-05-24 | 2006-03-30 | Carbotex Produktions Und Vered | METHOD FOR PRODUCING MOLDED ACTIVE CARBON |
GB0019417D0 (en) | 2000-08-09 | 2000-09-27 | Mat & Separations Tech Int Ltd | Mesoporous carbons |
US8591855B2 (en) | 2000-08-09 | 2013-11-26 | British American Tobacco (Investments) Limited | Porous carbons |
EP1296892A4 (en) * | 2001-04-17 | 2006-08-09 | Lg Chemical Ltd | Spherical carbons and method for preparing the same |
DE10148286A1 (en) * | 2001-09-29 | 2003-04-17 | Sandler Helmut Helsa Werke | Activated charcoal production by sulfonating copolymer, pyrolysis and activation, uses catalytic additive regulating pore structure in educt mixture of copolymer and sulfuric acid |
GB0506278D0 (en) | 2005-03-29 | 2005-05-04 | British American Tobacco Co | Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials |
RU2466931C2 (en) | 2006-10-09 | 2012-11-20 | Бритиш Америкэн Тобэкко (Инвестментс) Лимитед | Manufacturing of separate solid particles from polymer material |
CN109896512A (en) * | 2017-12-08 | 2019-06-18 | 中国科学院大连化学物理研究所 | A kind of method that low cost prepares ion exchange resin base porous carbon material |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD63768A (en) * | ||||
JPS5350088A (en) * | 1976-10-19 | 1978-05-08 | Sumitomo Chem Co Ltd | Production of spherical activated carbon |
JPS565313A (en) * | 1979-06-26 | 1981-01-20 | Kureha Chem Ind Co Ltd | Detoxificating spherical active carbon and preparing the same |
JPS5489010A (en) * | 1977-12-27 | 1979-07-14 | Kureha Chem Ind Co Ltd | Spherical activated charcoal antidote |
JPS5510971A (en) * | 1978-07-12 | 1980-01-25 | Sumitomo Chemical Co | Blood purifying device |
JPS61187698A (en) * | 1985-02-15 | 1986-08-21 | 株式会社日立製作所 | Radioactive ion exchange resin treatment method and device |
US4839331A (en) * | 1988-01-29 | 1989-06-13 | Rohm And Haas Company | Carbonaceous adsorbents from pyrolyzed polysulfonated polymers |
DE4304026B4 (en) * | 1992-02-28 | 2005-02-17 | Mhb Filtration Gmbh & Co. Kg | Process for disposal of spent ion exchangers |
DE4328219A1 (en) * | 1993-08-21 | 1995-02-23 | Hasso Von Bluecher | Spheres of activated carbon from ion exchangers |
-
1994
- 1994-07-25 IT ITMI941575A patent/IT1273678B/en active IP Right Grant
- 1994-07-27 CA CA002128979A patent/CA2128979A1/en not_active Abandoned
- 1994-08-01 KR KR1019940019011A patent/KR950005742A/en not_active Application Discontinuation
- 1994-08-05 JP JP20453694A patent/JP3611600B2/en not_active Expired - Lifetime
- 1994-08-09 GB GB9416022A patent/GB2280898B/en not_active Expired - Fee Related
- 1994-08-10 FR FR9409914A patent/FR2708922B1/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7651974B2 (en) | 2002-11-01 | 2010-01-26 | Kureha Chemical Industry Co., Ltd. | Adsorbent for oral administration |
US8309130B2 (en) | 2002-11-01 | 2012-11-13 | Kureha Corporation | Adsorbent for oral administration |
US8920796B2 (en) | 2003-10-22 | 2014-12-30 | Kureha Corporation | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease |
US8357366B2 (en) | 2004-04-02 | 2013-01-22 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8440228B2 (en) | 2004-04-02 | 2013-05-14 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
US8518447B2 (en) | 2004-04-02 | 2013-08-27 | Kureha Corporation | Method for treating or preventing renal or liver disease |
US8865161B2 (en) | 2004-04-02 | 2014-10-21 | Kureha Corporation | Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease |
CN1304285C (en) * | 2004-05-26 | 2007-03-14 | 王浦林 | Process for preparing polyporous charcoal and device therefor |
JP2007169274A (en) * | 2005-12-19 | 2007-07-05 | Bluecher Gmbh | Use of activated carbon and medicinal preparation using activated carbon |
JP2011147895A (en) * | 2010-01-22 | 2011-08-04 | Tohoku Electric Power Co Inc | Method for manufacturing of adsorbent for nitrogen monoxide |
KR20200092106A (en) * | 2019-01-24 | 2020-08-03 | 한국화학연구원 | Method of preparing resin-based activated carbon and the activated carbon thereby |
KR20230069355A (en) * | 2021-11-12 | 2023-05-19 | 한국화학연구원 | Method of preparing ultra-high specific surface area spherical activated carbon and the activated carbon thereby |
Also Published As
Publication number | Publication date |
---|---|
FR2708922A1 (en) | 1995-02-17 |
FR2708922B1 (en) | 1996-09-06 |
GB2280898A (en) | 1995-02-15 |
CA2128979A1 (en) | 1995-02-13 |
GB2280898B (en) | 1997-07-16 |
ITMI941575A1 (en) | 1996-01-25 |
KR950005742A (en) | 1995-03-20 |
ITMI941575A0 (en) | 1994-07-25 |
IT1273678B (en) | 1997-07-09 |
JP3611600B2 (en) | 2005-01-19 |
GB9416022D0 (en) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07165407A (en) | Small spherical activated carbon made of ion exchanger | |
US8927457B2 (en) | Process for producing spherical activated carbon | |
JP2626956B2 (en) | Treatment of used ion exchanger | |
US5614459A (en) | Process for making activated charcoal | |
EP0802882B1 (en) | Process for producing granulated active carbon | |
DE4328219A1 (en) | Spheres of activated carbon from ion exchangers | |
US4040990A (en) | Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms | |
US4064043A (en) | Liquid phase adsorption using partially pyrolyzed polymer particles | |
US3864277A (en) | Hard granular activated carbon and preparation from a carbonaceous material a binder and an inorganic activating agent | |
US4014817A (en) | Manufacture of activated carbon from sized coal | |
US20100028245A1 (en) | Activated charcoal production | |
JPH0566886B2 (en) | ||
US4155878A (en) | Process for making activated carbon with control of metal ion concentration in phosphoric acid | |
JPS5945914A (en) | Preparation of carbonaceous molecular sieve | |
US4063912A (en) | Gaseous phase adsorption using partially pyrolyzed polymer particles | |
JP3573921B2 (en) | Method for producing granulated activated carbon | |
JPH0624725A (en) | Manufacturing process of activated carbon | |
IE42277B1 (en) | Pyrolyzed polymer particles | |
DE19625069A1 (en) | Preparing granular activated charcoal with very high bulk density | |
KR100797141B1 (en) | Manufacturing method of spherical granular activated carbon | |
JP3282238B2 (en) | Method for producing chemical activated carbon | |
JPS6252116A (en) | Production of formed activated carbon | |
US1848946A (en) | Ploitation s petboliferes | |
JPH02307818A (en) | Activated carbon manufacturing method | |
JPH0672066B2 (en) | Method for producing porous carbon particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041020 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |