[go: up one dir, main page]

JPH07158411A - Power plant - Google Patents

Power plant

Info

Publication number
JPH07158411A
JPH07158411A JP5304987A JP30498793A JPH07158411A JP H07158411 A JPH07158411 A JP H07158411A JP 5304987 A JP5304987 A JP 5304987A JP 30498793 A JP30498793 A JP 30498793A JP H07158411 A JPH07158411 A JP H07158411A
Authority
JP
Japan
Prior art keywords
turbine
water
steam
condenser
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5304987A
Other languages
Japanese (ja)
Inventor
Shigeo Hatamiya
重雄 幡宮
Koichi Chino
耕一 千野
Yasuko Ajiro
泰子 網代
Harumi Wakana
晴美 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5304987A priority Critical patent/JPH07158411A/en
Publication of JPH07158411A publication Critical patent/JPH07158411A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】 【構成】水素と酸素を燃焼させ、水蒸気が混入される燃
焼器と、水蒸気によって駆動されるタービンと、排出さ
れた水蒸気を導き、冷却水との直接接触により凝縮させ
る凝縮器と、凝縮水を昇圧するポンプと、タービンによ
り駆動される発電機とから構成される発電プラント。 【効果】タービンの圧力比を現状のガスタービンとそれ
ほど違わない値にすることができ、翼設計の困難さを緩
和できる。また、液体で昇圧を行うため、昇圧に要する
仕事が小さくて済み、温排水として、利用価値の大きい
比較的高温の100℃程度の温排水を得ることができ
る。
(57) [Summary] [Structure] Condensation that combusts hydrogen and oxygen and mixes water vapor, a turbine driven by the water vapor, and exhausted water vapor that is condensed by direct contact with cooling water. Power plant consisting of a reactor, a pump that boosts the pressure of condensed water, and a generator driven by a turbine. [Effect] The pressure ratio of the turbine can be set to a value not so different from that of the current gas turbine, and the difficulty of blade design can be alleviated. Further, since the pressurization is performed with the liquid, the work required for the pressurization is small, and it is possible to obtain the comparatively high-temperature warm wastewater of about 100 ° C. that has a high utility value as the hot wastewater.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を燃料とし、酸素
を酸化材として燃焼させ、これにより発生した水蒸気を
作動流体としてタービンを駆動して発電する発電プラン
トに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power plant that uses hydrogen as a fuel and oxygen as an oxidant to combust, and uses steam generated thereby as a working fluid to drive a turbine to generate electricity.

【0002】[0002]

【従来の技術】水素を酸素と完全燃焼させた場合には水
蒸気が発生するだけであり、近年地球環境問題として話
題にのぼる事の多い二酸化炭素や他の有害物質を発生し
ない。水素は燃焼させたときの単位重量あたりの発生熱
量が大きいため、容易に高温を発生できるという特徴が
あり、発電プラントにおいてプラントの効率向上という
観点からも注目すべき燃料である。この水素を利用した
タービンに関する技術は、例えば、特開昭63−32110 号
及び特開平4−66703号公報に記載のものがある。図2は
特開昭63−32110 号公報による、水素を利用した発電プ
ラントの一例で、燃焼器1に水素と酸素が供給されて燃
焼し、これに蒸気が混入され、これにより所定の温度と
圧力に調整された水蒸気がタービン2に流入し、発電機
3が駆動される。そしてタービンから排出された蒸気は
復水器8に流入して凝縮し、その水の一部が給水ポンプ
5を介して昇圧され、給水注入装置9により前述の燃焼
器1に供給されるようになっている。このような発電プ
ラントは、通常の火力発電プラントで行われているボイ
ラの伝熱管を介して水蒸気を発生させる方式とは異な
り、燃焼により直接水蒸気を発生できることから、高温
の蒸気を得ることが容易であり、プラントの熱効率を著
しく向上できる可能性がある。
2. Description of the Related Art When hydrogen is completely combusted with oxygen, only steam is generated, and it does not generate carbon dioxide or other harmful substances, which are often talked about as a global environmental problem in recent years. Since hydrogen has a large amount of heat generated per unit weight when burned, it has the characteristic that it can easily generate a high temperature, and is a fuel that should be noted from the viewpoint of improving plant efficiency in a power plant. Techniques relating to turbines using this hydrogen are described in, for example, JP-A-63-32110 and JP-A-4-66703. FIG. 2 is an example of a power plant using hydrogen according to Japanese Patent Laid-Open No. 63-32110, in which hydrogen and oxygen are supplied to a combustor 1 and burned, and steam is mixed into the combustor 1 to keep a predetermined temperature. The steam whose pressure has been adjusted flows into the turbine 2, and the generator 3 is driven. Then, the steam discharged from the turbine flows into the condenser 8 and is condensed, and a part of the water is pressurized through the water supply pump 5 and supplied to the above-described combustor 1 by the water supply injection device 9. Has become. Such a power plant is different from the method of generating steam through a heat transfer tube of a boiler, which is used in a normal thermal power plant, because steam can be directly generated by combustion, so it is easy to obtain high-temperature steam. Therefore, there is a possibility that the thermal efficiency of the plant can be significantly improved.

【0003】また、特開平4−66703号公報に示されるよ
うに、水素と酸素が燃焼して生成した水蒸気を蒸気のま
ま利用し、凝縮することにより復水器の冷却水に持ち去
られる熱エネルギ損失を無くし、高いプラント効率を達
成させようという方式がある。
Further, as disclosed in Japanese Patent Application Laid-Open No. 4-66703, the steam generated by the combustion of hydrogen and oxygen is used as steam and condensed to carry away the heat energy to the cooling water of the condenser. There is a system to eliminate loss and achieve high plant efficiency.

【0004】[0004]

【発明が解決しようとする課題】特開昭63−32110 号公
報による水素燃焼によるタービンでは、タービンを経由
した水蒸気は、最終的には復水器で凝縮させて水とする
ため、タービン出口の圧力は大気圧以下の真空となり、
タービン入口と出口の圧力比が極めて大きくなる。ま
た、水蒸気は比熱が大きいため、他の作動流体に比べ同
じ圧力比でも、タービンを設計する際の翼段数が多くな
る。従って、タービン翼の設計は極めて複雑なものとな
ってしまう。
In the turbine by hydrogen combustion according to Japanese Patent Laid-Open No. 63-32110, the steam passing through the turbine is finally condensed in the condenser to be water, and therefore the turbine outlet The pressure becomes a vacuum below atmospheric pressure,
The pressure ratio between the turbine inlet and outlet becomes extremely large. Further, since steam has a large specific heat, the number of blade stages when designing a turbine increases even if the pressure ratio is the same as that of other working fluids. Therefore, the turbine blade design becomes extremely complicated.

【0005】一方、特開平4−66703号公報による発電プ
ラントでは、タービンを出た水蒸気は凝縮させずに、蒸
気のままでコンプレッサにより加圧し燃焼器に送るが、
加圧を水の状態で行う方式に比べ、加圧を水蒸気の状態
で行う方式は加圧の際の仕事量が大きくなり、効率的に
不利であるという問題点がある。
On the other hand, in the power plant according to Japanese Unexamined Patent Publication No. 4-66703, the steam leaving the turbine is not condensed but is pressurized as it is by the compressor and sent to the combustor.
Compared with the method of applying pressure in the state of water, the method of applying pressure in the state of water vapor has a problem in that the work amount in the case of pressurization is large and it is disadvantageous efficiently.

【0006】本発明の目的は、このような従来技術の課
題を解決するためになされたもので、タービンの圧力比
が小さいままでも高い効率を達成できる水素燃焼の発電
プラントを提供することにある。
An object of the present invention is to solve the above problems of the prior art, and it is an object of the present invention to provide a hydrogen combustion power generation plant capable of achieving high efficiency even when the pressure ratio of the turbine is small. .

【0007】[0007]

【課題を解決するための手段】前述の目的を解決するた
めに本発明による発電プラントは、水素と酸素を燃焼さ
せ、水蒸気が混入される燃焼器と、この燃焼器からの水
蒸気によって駆動されるタービンと、このタービンから
排気される水蒸気を水中に導いて凝縮させる凝縮器と、
凝縮水を昇圧するポンプと、前記タービンにより駆動さ
れる発電機とを含んでいる。また、タービンの後流に凝
縮水を昇温する少なくとも一段の熱回収装置を備えても
よく、更に、燃焼器に供給される酸素および水素を熱回
収装置により加熱してもよい。
To solve the above-mentioned problems, a power plant according to the present invention is driven by a combustor in which hydrogen and oxygen are burned and steam is mixed, and steam from the combustor. A turbine and a condenser that guides water vapor exhausted from this turbine into water to condense it,
The pump includes a pump that boosts the pressure of the condensed water and a generator that is driven by the turbine. Further, at least one stage heat recovery device for raising the temperature of the condensed water may be provided in the downstream of the turbine, and further oxygen and hydrogen supplied to the combustor may be heated by the heat recovery device.

【0008】[0008]

【作用】本発明の作用を以下に説明する。通常の復水器
では常温の冷却水を使用した場合、復水器内は冷却水温
度に対応した水蒸気の飽和圧力、例えば5kPaから1
0kPa程度の真空になってしまうのに対し、上記の手
段による凝縮器を使用すれば、凝縮器内の圧力を大気圧
(100kPa)前後の値に設定することは容易であ
る。タービンの排気圧は、復水器あるいは凝縮器内の圧
力とほぼ等しくなるため、例えば燃焼器における圧力が
2MPaの場合を考えれば、凝縮器を使用した場合はタ
ービンの入口と出口の圧力比は20であり、通常のガス
タービンとそう違いはない。しかし、通常の復水器を使
用した場合には、この圧力比はタービンの排気圧が10
kPaの場合は200、5kPaの場合は400にな
り、タービン翼の設計は通常のガスタービンとはかなり
異なったものとなる。なお、蒸気タービンの場合は圧力
比は4000をこえる大きな値の場合もあるが、蒸気の
温度は600℃に満たない程度であり、水素を燃焼させ
て得られる水蒸気の温度として、例えば、1300℃以
上を考慮するとなれば、蒸気タービンよりも高温で使用
される、ガスタービンを基準に考えるのが妥当である。
The operation of the present invention will be described below. When normal temperature cooling water is used in a normal condenser, the saturated pressure of steam corresponding to the cooling water temperature in the condenser, for example, from 5 kPa to 1
In contrast to the vacuum of about 0 kPa, it is easy to set the pressure inside the condenser to a value around atmospheric pressure (100 kPa) by using the condenser according to the above means. Since the exhaust pressure of the turbine is almost equal to the pressure in the condenser or the condenser, for example, considering the case where the pressure in the combustor is 2 MPa, the pressure ratio between the inlet and the outlet of the turbine when the condenser is used is 20 which is not so different from a normal gas turbine. However, when a normal condenser is used, this pressure ratio is such that the turbine exhaust pressure is 10
In the case of kPa, it becomes 200, and in the case of 5 kPa, it becomes 400, and the design of the turbine blade is considerably different from that of a normal gas turbine. In the case of a steam turbine, the pressure ratio may be a large value exceeding 4000, but the temperature of steam is less than 600 ° C, and the temperature of steam obtained by burning hydrogen is, for example, 1300 ° C. Considering the above, it is appropriate to consider the gas turbine, which is used at a higher temperature than the steam turbine, as a reference.

【0009】本発明で考えている凝縮器は、水蒸気を水
中に導いて直接凝縮させる形式のもので、凝縮の際の熱
抵抗は小さく、凝縮器内で凝縮に伴う潜熱の放出がある
ため、凝縮器内の水温を100℃を超える値に維持する
ことは、そう困難ではない。凝縮器内の大きな容積全体
がほぼ一様な温度になっているため、この凝縮器に常温
の冷却水を流入させても、すぐに平均化されてしまい、
例えば、100℃といった所定の温度に維持することが
できる。凝縮器内の温度は冷却水と蒸気の流入流出流量
の熱バランスから決まり、冷却水流量を調整することに
より、凝縮器内の水温を任意に設定できる。タービンの
圧力比を通常のガスタービンとそう違いはない値に設定
するには、凝縮器内の温度を100℃を超える値に設定
できることが重要であり、本発明で考えている凝縮器は
それが可能である。
The condenser considered in the present invention is of a type in which water vapor is introduced into water to be directly condensed, the thermal resistance at the time of condensation is small, and latent heat associated with the condensation is released in the condenser. Maintaining the water temperature in the condenser above 100 ° C. is not so difficult. Since the entire large volume in the condenser has a substantially uniform temperature, even if cooling water at room temperature is flowed into this condenser, it is immediately averaged,
For example, it can be maintained at a predetermined temperature such as 100 ° C. The temperature in the condenser is determined by the heat balance between the inflow and outflow flow rates of cooling water and steam, and the water temperature in the condenser can be set arbitrarily by adjusting the cooling water flow rate. In order to set the pressure ratio of the turbine to a value that is not so different from that of a normal gas turbine, it is important that the temperature inside the condenser can be set to a value exceeding 100 ° C., and the condenser considered in the present invention is Is possible.

【0010】タービンを使用したクローズドサイクルを
考える場合、タービンで膨張した流体はどこかで昇圧す
る必要がある。本発明では、この昇圧を水の状態で行っ
ている。水は水蒸気のような気体に比べると、ほとんど
非圧縮性流体とみなせるほどであり、圧力と体積変化の
積として表される加圧仕事は小さく、水の状態で行う加
圧はエネルギ効率の面からは原理的にすぐれている。た
だしその反面、液体で扱うために蒸気を一度凝縮させる
必要があり、その凝縮の際に凝縮潜熱を冷却水側に捨て
ることになり熱損失になるため、このことが、水の状態
で加圧を行う際の短所である。本発明では、水の状態で
加圧を行うこととし、加圧仕事を少なくしてプラント効
率の向上に努めた。なお、凝縮の際冷却水に持ち去られ
る熱エネルギは、大気圧における水の飽和温度(100
℃)前後の値とし、この冷却水を熱のまま利用する際に
利用しやすい温度に設定した。あるいはこの冷却水を高
温側の熱源として発電に利用することもできる。
When considering a closed cycle using a turbine, the fluid expanded in the turbine needs to be boosted somewhere. In the present invention, this pressurization is performed in the state of water. Compared to gas such as water vapor, water can be regarded as almost incompressible fluid, the pressurizing work expressed as the product of pressure and volume change is small, and pressurizing in the state of water is energy efficient. Is excellent in principle. However, on the other hand, it is necessary to condense the vapor once in order to handle it as a liquid, and the condensation latent heat is discarded to the cooling water side during the condensation, resulting in heat loss. Is the disadvantage of doing. In the present invention, pressurization is performed in the state of water, and the press work is reduced to improve the plant efficiency. Note that the thermal energy carried away by the cooling water during condensation is the saturation temperature of water at atmospheric pressure (100
The temperature is set to a value around ℃) and set to a temperature that is easy to use when using this cooling water as heat. Alternatively, this cooling water can be used for power generation as a heat source on the high temperature side.

【0011】[0011]

【実施例】以下に本発明の一実施例を図1を例にして説
明する。燃焼器1に水素供給装置11から供給された水
素と、酸素および水蒸気の混合物が供給されて燃焼し、
この水蒸気の混入量により温度と圧力が調整される。燃
焼器1で発生した水蒸気はタービン2に導入され、発電
機3を駆動して発電する。そしてタービン2から排出さ
れた蒸気は凝縮器4に導かれ、凝縮器の水中で凝縮す
る。この時の凝縮器内の温度は、例えば、100℃ない
しは110℃という温度に設定することができ、タービ
ンの排気圧力はこの温度における飽和蒸気圧にほぼ等し
くなる。凝縮器を経由して水はポンプ5に行き、ここで
昇圧される。ポンプ5で昇圧された水は熱交換器7で加
熱され蒸気の状態になる。この蒸気に、酸素−水蒸気混
合装置12から供給された酸素が混入され、水蒸気と酸
素の混合気体が過熱器6を通過する間に過熱されて高温
になり、燃焼器1に供給される。なお、凝縮器4では、
燃焼に伴って発生する水蒸気を凝縮させるのに必要な流
量の冷却水が冷却水流入口41から注入され、流入冷却
水量と凝縮した蒸気量の合計が冷却水流出口42から流
出する。このときの温度は、例えば、100℃ないしは
110℃という比較的高い値とすることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. The combustor 1 is supplied with hydrogen supplied from the hydrogen supply device 11 and a mixture of oxygen and water vapor and burns,
The temperature and pressure are adjusted by the mixing amount of this steam. The steam generated in the combustor 1 is introduced into the turbine 2 and drives the generator 3 to generate electricity. Then, the steam discharged from the turbine 2 is guided to the condenser 4 and condensed in the water in the condenser. The temperature in the condenser at this time can be set to a temperature of 100 ° C. to 110 ° C., for example, and the exhaust pressure of the turbine becomes substantially equal to the saturated vapor pressure at this temperature. The water goes via the condenser to the pump 5, where it is pressurized. The water whose pressure has been increased by the pump 5 is heated by the heat exchanger 7 and becomes steam. Oxygen supplied from the oxygen-steam mixing device 12 is mixed with this steam, and the mixed gas of steam and oxygen is superheated while passing through the superheater 6 to reach a high temperature and supplied to the combustor 1. In the condenser 4,
Cooling water at a flow rate necessary to condense the steam generated by combustion is injected from the cooling water inlet 41, and the sum of the inflowing cooling water amount and the condensed vapor amount flows out from the cooling water outlet 42. The temperature at this time can be set to a relatively high value of 100 ° C. to 110 ° C., for example.

【0012】本発明の第二の実施例を図3に示す。図1
の実施例との違いは、酸素は水蒸気と混合されずに、直
接燃焼器に供給され、水蒸気がそれらとは別に燃焼器に
供給されている点である。
A second embodiment of the present invention is shown in FIG. Figure 1
The difference from the above embodiment is that oxygen is directly supplied to the combustor without being mixed with steam, and steam is supplied to the combustor separately from them.

【0013】本発明の第三の実施例を図4に示す。図1
の実施例との違いは、凝縮器4の冷却水流出口42から
流出した高温の冷却水を、熱のまま利用するのではな
く、この熱エネルギを発電に利用するため、熱交換器7
を介して、タービン2,発電機3,復水器8,ポンプ5
からなるループを構成している点である。
A third embodiment of the present invention is shown in FIG. Figure 1
The difference from the embodiment described above is that the high-temperature cooling water flowing out from the cooling-water outlet 42 of the condenser 4 is not used as heat but is used as heat energy for power generation.
Via turbine 2, generator 3, condenser 8, pump 5
This is the point that constitutes a loop consisting of.

【0014】[0014]

【発明の効果】本発明によれば、水素と酸素を燃焼させ
るタービンプラントにおいて、タービンから排出された
蒸気の圧力を大気圧の前後で自由に設定でき、タービン
の圧力比を現状のガスタービンとそれほど違わない値に
することができ、タービン翼設計の困難さを緩和でき
る。また、液体の状態で昇圧を行うため、昇圧に要する
仕事が小さくて済み、温排水として、利用価値の大きい
比較的高温の100℃程度の温排水を得ることができ
る。
According to the present invention, in a turbine plant that burns hydrogen and oxygen, the pressure of steam discharged from the turbine can be freely set before and after the atmospheric pressure, and the pressure ratio of the turbine is the same as that of the current gas turbine. The values can be set to be not so different, and the difficulty of turbine blade design can be alleviated. Further, since the pressurization is performed in the liquid state, the work required for the pressurization is small, and it is possible to obtain the comparatively high-temperature hot wastewater of about 100 ° C. that has a high utility value as the hot wastewater.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】水素燃焼型タービン発電プラントの従来例の系
統図。
FIG. 2 is a system diagram of a conventional example of a hydrogen combustion type turbine power plant.

【図3】本発明の第二の実施例の系統図。FIG. 3 is a system diagram of a second embodiment of the present invention.

【図4】本発明の第三の実施例の系統図。FIG. 4 is a system diagram of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…燃焼器、2…タービン、3…発電機、4…凝縮器、
5…昇圧ポンプ、11…水素供給装置、12…酸素−水
蒸気混合装置、41…冷却水流入口、42…冷却水流出
口。
1 ... Combustor, 2 ... Turbine, 3 ... Generator, 4 ... Condenser,
5 ... Booster pump, 11 ... Hydrogen supply device, 12 ... Oxygen-steam mixing device, 41 ... Cooling water inlet, 42 ... Cooling water outlet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若菜 晴美 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Harumi Wakana 7-2-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Energy Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素と酸素を燃焼させ、水蒸気が混入され
る燃焼器と、前記燃焼器からの水蒸気によって駆動され
るタービンと、前記タービンから排気される水蒸気を水
中に導いて凝縮させる凝縮器と、凝縮水を昇圧するポン
プと、前記タービンにより駆動される発電機とを含むこ
とを特徴とする発電プラント。
1. A combustor in which hydrogen and oxygen are burned to mix water vapor, a turbine driven by the water vapor from the combustor, and a condenser for guiding the water vapor exhausted from the turbine into water to condense it. And a pump for increasing the pressure of condensed water, and a generator driven by the turbine.
【請求項2】請求項1において、前記タービンの後流に
凝縮水,酸素,水素のうちの少なくとも一種類の流体を
昇温する、少なくとも一段の熱回収装置を備えた発電プ
ラント。
2. A power generation plant according to claim 1, comprising at least one stage heat recovery device for raising the temperature of at least one kind of fluid of condensed water, oxygen and hydrogen in the wake of the turbine.
【請求項3】請求項1または請求項2において、酸素が
水蒸気と混合された状態で前記燃焼器に供給される発電
プラント。
3. The power plant according to claim 1 or 2, wherein oxygen is mixed with steam and supplied to the combustor.
JP5304987A 1993-12-06 1993-12-06 Power plant Pending JPH07158411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5304987A JPH07158411A (en) 1993-12-06 1993-12-06 Power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5304987A JPH07158411A (en) 1993-12-06 1993-12-06 Power plant

Publications (1)

Publication Number Publication Date
JPH07158411A true JPH07158411A (en) 1995-06-20

Family

ID=17939712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5304987A Pending JPH07158411A (en) 1993-12-06 1993-12-06 Power plant

Country Status (1)

Country Link
JP (1) JPH07158411A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217447A (en) * 1994-02-04 1995-08-15 Ishikawajima Harima Heavy Ind Co Ltd Combustion method and apparatus for closed cycle gas turbine
JPH102205A (en) * 1996-06-18 1998-01-06 Toshiba Corp Hydrogen combustion turbine plant
JPH10213308A (en) * 1997-01-29 1998-08-11 Mitsubishi Heavy Ind Ltd Hydrogen/oxygen burner
JPH1136820A (en) * 1997-07-22 1999-02-09 Toshiba Corp Hydrogen combustion turbine plant
WO2010011799A3 (en) * 2008-07-25 2010-04-01 Thomas Kakovitch Method and apparatus for incorporating a low pressure fluid into a high pressure fluid, and increasing the efficiency of the rankine cycle in a power plant
KR20170105625A (en) 2015-03-06 2017-09-19 얀마 가부시키가이샤 Power generator
JP2020024068A (en) * 2018-08-08 2020-02-13 株式会社ヒラカワ Steam generation method and steam generation device
JP2020097941A (en) * 2013-03-15 2020-06-25 パルマー ラボ,エルエルシー High efficiency power generation system and method using carbon dioxide circulating working fluid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217447A (en) * 1994-02-04 1995-08-15 Ishikawajima Harima Heavy Ind Co Ltd Combustion method and apparatus for closed cycle gas turbine
JPH102205A (en) * 1996-06-18 1998-01-06 Toshiba Corp Hydrogen combustion turbine plant
JPH10213308A (en) * 1997-01-29 1998-08-11 Mitsubishi Heavy Ind Ltd Hydrogen/oxygen burner
JPH1136820A (en) * 1997-07-22 1999-02-09 Toshiba Corp Hydrogen combustion turbine plant
WO2010011799A3 (en) * 2008-07-25 2010-04-01 Thomas Kakovitch Method and apparatus for incorporating a low pressure fluid into a high pressure fluid, and increasing the efficiency of the rankine cycle in a power plant
JP2020097941A (en) * 2013-03-15 2020-06-25 パルマー ラボ,エルエルシー High efficiency power generation system and method using carbon dioxide circulating working fluid
KR20170105625A (en) 2015-03-06 2017-09-19 얀마 가부시키가이샤 Power generator
US10519813B2 (en) 2015-03-06 2019-12-31 Yanmar Co., Ltd. Power generation apparatus
JP2020024068A (en) * 2018-08-08 2020-02-13 株式会社ヒラカワ Steam generation method and steam generation device

Similar Documents

Publication Publication Date Title
JP2581825B2 (en) Power plant
JP2880925B2 (en) Hydrogen combustion gas turbine plant
JPH0826780B2 (en) Partially regenerative two-fluid gas turbine
CN104533623B (en) A kind of partial oxidation steam injection forward and reverse Gas Turbine Combined-cycle
GB1568492A (en) Converting solar energy into electric power
CN109252959B (en) Combined power generation system and method of marine solid oxide fuel cell and steam injection gas turbine
CN105240061B (en) A kind of superhigh temperature Steam Power Circulation system using note hydrogen burning mixed heating
JP2001027131A (en) Double-pressure steam injection partial regeneration cycle gas turbine
JP2003533624A (en) Gas turbine plant and method for increasing the power of the plant
CA2319663C (en) Gas turbine system and combined plant comprising the same
JPH07158411A (en) Power plant
JPH09203304A (en) Compound power generating system using waste as fuel
JP2001515556A (en) Hydrogen fuel power plant using heat transfer heat exchanger
JP2013117209A (en) Gas turbine and gas turbine plant
CN117948629A (en) A combined heat and power peak-shaving system using gas turbine flue gas bypass to heat molten salt
JP2880938B2 (en) Hydrogen combustion gas turbine plant
RU2197628C2 (en) Method of operation of liquid-propellant rocket engine with turbopump delivery of cryogenic propellant on basis of oxygen oxidizer and hydrocarbon fuel and liquid- propellant rocket engine implementing said method
JPH11270347A (en) Gas turbine combined generating set using lng
JPH10325336A (en) Gas turbine power generating system
JP2004019484A (en) Turbine system
JP4467758B2 (en) CO2 gas recovery type gas turbine power plant and operation method thereof
JP4399686B2 (en) Partially regenerative two-fluid gas turbine with reduced pressure loss
JP2000291445A (en) Gas turbine plant and operation method thereof
RU2027867C1 (en) Geothermal power plant
JP3221123B2 (en) Gas turbine device equipped with evaporator for LPG mixed water