JPH07157820A - Method for promoting decarburization of molten steel - Google Patents
Method for promoting decarburization of molten steelInfo
- Publication number
- JPH07157820A JPH07157820A JP30629493A JP30629493A JPH07157820A JP H07157820 A JPH07157820 A JP H07157820A JP 30629493 A JP30629493 A JP 30629493A JP 30629493 A JP30629493 A JP 30629493A JP H07157820 A JPH07157820 A JP H07157820A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- decarburization
- powder
- gas
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
(57)【要約】
【目的】減圧下溶鋼の極低炭素領域での脱炭促進方法を
提供する。
【構成】(1) 減圧下での鋼の精錬において、Fe、Mn、Cr
及びNiの各酸化物の1種又は2種以上からなる粉体をキ
ャリアガスと共に溶鋼表面に吹付ける溶鋼の脱炭処理方
法であって、前記粉体にアルカリ土類金属酸化物(MgO、
CaO 、SrO 、BaO)、Al2O3 及びSiO2の1種又は2種以上
からなる粉体を5〜20重量%混合して吹付ける溶鋼の脱
炭促進方法。
(2)〔C〕が 0.005%以下の領域において粉体を吹付け
る上記(1) の脱炭促進方法。
(3)キャリアガスとして、Arガス、N2ガス、O2ガス又はO
2ガスを含有する精錬用ガスを使用する上記(1) 又は上
記(2) の脱炭促進方法。
【効果】低炭素領域から脱炭速度の向上、到達炭素濃度
の低下及び処理時間の短縮が可能であり、極低炭素鋼を
安定して得ることができる。
(57) [Summary] [Objective] To provide a method for promoting decarburization of molten steel under reduced pressure in an extremely low carbon region. [Composition] (1) In refining steel under reduced pressure, Fe, Mn, Cr
And a method of decarburizing molten steel, in which a powder consisting of one or more of Ni oxides is sprayed onto a molten steel surface together with a carrier gas, the alkaline earth metal oxide (MgO,
A method for promoting decarburization of molten steel, in which 5 to 20% by weight of powder comprising one or more of CaO, SrO 2 , BaO), Al 2 O 3 and SiO 2 is mixed and sprayed. (2) The method for promoting decarburization according to the above (1), in which powder is sprayed in a region where [C] is 0.005% or less. (3) As a carrier gas, Ar gas, N 2 gas, O 2 gas or O
The method for promoting decarburization according to (1) or (2) above, which uses a refining gas containing 2 gases. [Effect] It is possible to improve the decarburization rate from the low carbon region, reduce the reached carbon concentration and shorten the treatment time, and it is possible to stably obtain an ultra low carbon steel.
Description
【0001】[0001]
【産業上の利用分野】本発明は減圧下における溶鋼の脱
炭、特に低炭素濃度領域 (20〜50重量ppm)からの脱炭の
促進方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for promoting decarburization of molten steel under a reduced pressure, particularly, decarburization from a low carbon concentration region (20 to 50 ppm by weight).
【0002】[0002]
【従来の技術】通常、鋼の低炭素化は真空処理を利用し
て、減圧下でC−O反応 (溶鋼中の炭素〔C〕と酸素の
反応) を促進させる方法で行われている。しかし、この
ような通常の処理の場合、〔C〕が20〜50重量ppm (以
下、単にppm と記す)の低炭素濃度領域では、反応界面
での炭素の移動が十分であっても脱炭反応が停滞し、速
やかな極低炭素化(〔C〕<20ppm )は困難である。こ
の理由は、上記の脱炭反応は溶鋼中の反応界面での化学
反応律速であるにもかかわらず、低炭素濃度領域の溶鋼
中では反応を促進させるのに必要な反応核が不足し、反
応界面積が減少しているからである。2. Description of the Related Art Generally, reduction of carbon in steel is carried out by utilizing a vacuum treatment to accelerate a CO reaction (reaction between carbon [C] and oxygen in molten steel) under reduced pressure. However, in the case of such an ordinary treatment, in the low carbon concentration range where [C] is 20 to 50 ppm by weight (hereinafter, simply referred to as ppm), even if the transfer of carbon at the reaction interface is sufficient, decarburization is performed. The reaction is stagnant and it is difficult to achieve extremely low carbonization ([C] <20ppm). The reason for this is that, although the above decarburization reaction is the rate-limiting chemical reaction at the reaction interface in molten steel, the reaction nuclei necessary for promoting the reaction are insufficient in molten steel in the low carbon concentration region, This is because the interfacial area is decreasing.
【0003】現在、量産鋼ではVOD装置やRH真空処
理装置で脱炭処理されることが一般的であるが、近年、
鋼の更なる極低炭素化が望まれ、溶鋼中の炭素濃度が20
ppm未満という要求に応えるためには、処理時間の延長
やそれに伴う処理コストの増大、溶鋼温度の低下とそれ
に伴うプロセスの複雑化などの問題が生じている。Currently, mass-produced steel is generally decarburized by a VOD device or an RH vacuum processing device.
Further ultra low carbonization of steel is desired, and carbon concentration in molten steel is 20
In order to meet the requirement of less than ppm, there are problems such as extension of treatment time, increase of treatment cost, lowering of molten steel temperature and complication of process.
【0004】従来、これらの問題を解決するためにさま
ざまな方法が開発されてきた。反応界面積を増大させる
ことで脱炭反応を促進させる方法としては、真空槽内で
溶鋼中にガスを吹き込み攪拌力を増大させる方法や、酸
化剤として酸素の供給源となる金属酸化物粉体を溶鋼表
面に吹き付ける方法( 特公平1−25370 号公報参照 )な
どがある。In the past, various methods have been developed to solve these problems. As a method of promoting the decarburization reaction by increasing the reaction boundary area, a method of injecting gas into molten steel in a vacuum chamber to increase stirring power, or a metal oxide powder serving as an oxygen supply source as an oxidizing agent There is a method of spraying molten steel onto the surface of molten steel (see Japanese Patent Publication No. 1-25370).
【0005】しかしながらガス攪拌を利用する方法で
は、攪拌力を必要としない高炭素濃度領域での脱炭時に
おいても、ガス吹込羽口への溶鋼の進入を防ぐためにガ
スを流しておく必要があることから、真空度維持および
ガス原単位などに係わる処理コストの点で不利であり、
またこのような方法であっても、前記の範囲のような低
炭素濃度領域から脱炭反応の停滞が起こる。However, in the method utilizing gas agitation, it is necessary to flow gas in order to prevent molten steel from entering the gas blowing tuyere even during decarburization in a high carbon concentration region where stirring power is not required. Therefore, it is disadvantageous in terms of the processing cost related to maintaining the degree of vacuum and the gas intensity,
Even with such a method, the decarburization reaction is delayed from the low carbon concentration region within the above range.
【0006】一方、酸化剤を吹き付ける方法では、酸化
剤として作用する金属酸化物粉体を溶鋼中に侵入させて
酸素源を溶鋼内に供給するとともに、粉体を溶鋼内で反
応核として作用させることができるため、脱炭には効果
的である。On the other hand, in the method of spraying an oxidizing agent, a metal oxide powder acting as an oxidizing agent is introduced into molten steel to supply an oxygen source into the molten steel, and the powder acts as a reaction nucleus in the molten steel. Therefore, it is effective for decarburization.
【0007】しかし、酸化剤粉体は全て反応に用いられ
るため、反応核として作用する持続性がなくなること、
およびこのような酸化剤粉体はその融点も溶鋼温度に近
く、溶鋼に溶解すると、もはや反応核とならないことか
ら、近年要求されるような炭素濃度が20ppm 未満の極低
炭素濃度領域までの脱炭を効率よく行うには、この方法
でもなお不十分である。However, since all the oxidizer powder is used for the reaction, it loses its sustainability to act as a reaction nucleus.
The melting point of such an oxidizer powder is also close to the temperature of molten steel, and once dissolved in molten steel, it no longer forms a reaction nucleus.Therefore, deoxidization to the extremely low carbon concentration region where the carbon concentration is less than 20 ppm, which is required in recent years, is achieved. This method is still insufficient for efficient charcoal.
【0008】[0008]
【発明が解決しようとする課題】このように真空精錬を
使用する場合の溶鋼の脱炭処理には、脱炭末期の低炭素
濃度領域から起こる脱炭反応の停滞のため事実上の脱炭
限界があるとともに、処理の長時間化にともなう処理コ
ストの増大、溶鋼温度の低下を防止するためのプロセス
の複雑化などの問題がある。Thus, in the decarburization treatment of molten steel in the case of using vacuum refining, the decarburization limit practically occurs due to the stagnation of the decarburization reaction occurring from the low carbon concentration region at the final stage of decarburization. In addition, there are problems such as an increase in treatment cost due to a longer treatment time and a complicated process for preventing a decrease in molten steel temperature.
【0009】本発明の目的は、減圧下での溶鋼の精錬に
おいて、極低炭素濃度領域での脱炭限界の向上と処理時
間の短縮を達成することができる脱炭促進方法を提供す
ることにある。An object of the present invention is to provide a decarburization accelerating method capable of improving the decarburization limit and shortening the treatment time in an extremely low carbon concentration region in refining molten steel under reduced pressure. is there.
【0010】[0010]
【課題を解決するための手段】本発明の要旨は次の (1)
〜(3) の脱炭促進方法にある。Means for Solving the Problems The gist of the present invention is as follows (1)
It is in the decarburization acceleration method of (3).
【0011】(1)減圧下における鋼の精錬において、鉄
酸化物、マンガン酸化物、クロム酸化物およびニッケル
酸化物の1種または2種以上からなる粉体をキャリアガ
スと共に溶鋼表面に吹き付ける溶鋼の脱炭処理方法であ
って、前記粉体にアルカリ土類金属酸化物(MgO、CaO 、
SrO 、BaO)、Al2O3 およびSiO2の1種または2種以上か
らなる粉体を5〜20重量%混合して吹き付けることを特
徴とする溶鋼の脱炭促進方法。(1) In refining steel under reduced pressure, powder of one or more of iron oxide, manganese oxide, chromium oxide and nickel oxide is sprayed on the surface of molten steel together with carrier gas. A decarburizing method, wherein the powder contains an alkaline earth metal oxide (MgO, CaO,
A method for promoting decarburization of molten steel, characterized by mixing 5 to 20% by weight of powder comprising one or more of SrO 2 , BaO), Al 2 O 3 and SiO 2 and spraying.
【0012】(2)溶鋼中の〔C〕が 0.005重量%以下の
領域において粉体を吹き付けることを特徴とする上記
(1) 記載の溶鋼の脱炭促進方法。(2) The above-mentioned is characterized in that powder is sprayed in a region where [C] in molten steel is 0.005% by weight or less.
(1) The method for promoting decarburization of molten steel as described above.
【0013】(3)粉体を吹き付けるキャリアガスとし
て、アルゴンガス、窒素ガス、酸素ガスまたは酸素ガス
を含有する精錬用ガスを使用することを特徴とする上記
(1) または上記(2) に記載の溶鋼の脱炭促進方法。(3) Argon gas, nitrogen gas, oxygen gas or a refining gas containing oxygen gas is used as a carrier gas for spraying the powder.
(1) or the method for promoting decarburization of molten steel according to (2) above.
【0014】[0014]
【作用】本発明の方法では、Fe、Mn、CrおよびNiの各酸
化物の中の1種または2種以上の粉体に加えて、アルカ
リ土類金属酸化物(MgO、CaO 、SrO 、BaO)、Al2O3 およ
びSiO2の中から選んだ1種または2種以上の粉体を混合
して、キャリアガスにより減圧下の溶鋼表面に吹き付け
る。In the method of the present invention, in addition to the powder of one or more of the oxides of Fe, Mn, Cr, and Ni, alkaline earth metal oxides (MgO, CaO 2, SrO 2, BaO) are added. ), Al 2 O 3 and SiO 2 and one or more kinds of powder selected from them are mixed and sprayed onto the surface of the molten steel under reduced pressure by a carrier gas.
【0015】上記の混合粉体をキャリアガスと共に溶鋼
表面に吹き付ける際には、粉体は実際には溶鋼内部に侵
入するので、粉体を溶鋼表面下に吹き込む場合と同様の
効果を得ることができる。When the mixed powder is sprayed onto the surface of the molten steel together with the carrier gas, the powder actually penetrates into the molten steel, so that the same effect as when the powder is blown below the surface of the molten steel can be obtained. it can.
【0016】Fe、Mn、CrおよびNiの各酸化物粉体は、酸
素の供給源であるとともに、脱炭反応の核となり得る酸
化剤である。酸化剤は、Fe酸化物、Mn酸化物、Cr酸化物
およびNi酸化物の1種または2種以上の組み合わせから
なるものである。これらはいずれも、溶鋼中で解離して
脱炭反応に作用する酸素を供給することができる酸化物
であって、また、還元された金属元素が溶鋼に速やかに
溶解し、鋼種に応じて有用な元素として活用することが
できる元素を含み、しかも比較的安価で入手しやすい酸
化物のうちから選択したものである。The oxide powders of Fe, Mn, Cr and Ni are not only a source of oxygen but also an oxidant which can be a nucleus of the decarburization reaction. The oxidant is composed of one kind or a combination of two or more kinds of Fe oxide, Mn oxide, Cr oxide and Ni oxide. All of these are oxides that can supply oxygen that dissociates in molten steel and acts on the decarburization reaction, and the reduced metal element dissolves quickly in molten steel and is useful depending on the steel type. It is selected from oxides that include elements that can be utilized as various elements and that are relatively inexpensive and easily available.
【0017】これらの酸化物はいずれも溶鋼温度で容易
に分解するので、単独または2種以上で用いてもその酸
素供給作用は同じであり、組み合わせは溶製鋼種の成分
に応じて選択すればよい。Since all of these oxides are easily decomposed at the molten steel temperature, the oxygen supply action is the same even if they are used alone or in combination of two or more kinds, and the combination is selected depending on the composition of the molten steel type. Good.
【0018】ところで、真空脱炭プロセス (例えばRH
真空脱ガス装置を用いるプロセス)では、例えば普通鋼
においは、低炭素領域(〔C〕:20〜50ppm)において溶
鋼中の酸素濃度は 300〜500ppm程度であり、この値は脱
炭反応を緩やかに継続させるのには十分であるが、脱炭
反応をさらに促進させるには、何らかの方法で反応界面
積を増大させることが必要である。By the way, a vacuum decarburization process (for example, RH
In a process using a vacuum degasser, for example, in the case of ordinary steel, the oxygen concentration in the molten steel is about 300 to 500 ppm in the low carbon region ([C]: 20 to 50 ppm), and this value slows the decarburization reaction. However, in order to further accelerate the decarburization reaction, it is necessary to increase the reaction interface area in some way.
【0019】前述の酸化剤では、溶鋼温度で酸化剤自身
の溶解や脱炭反応による分解が起こることから、酸化剤
のみの吹き付けでは、このような低炭素濃度領域で反応
核となる酸化物粉体の状態を維持して反応界面積を増加
させることができず、脱炭を大幅に促進させる効果が乏
しいのである。The above-mentioned oxidizing agent causes dissolution of the oxidizing agent itself or decomposition due to decarburization reaction at the molten steel temperature. Therefore, when only the oxidizing agent is sprayed, the oxide powder which becomes a reaction nucleus in such a low carbon concentration region is generated. It is not possible to maintain the state of the body and increase the reaction interface area, and the effect of greatly promoting decarburization is poor.
【0020】そこで、前記酸化剤に、これより溶鋼中で
熱力学的に安定な、弱酸化性のアルカリ土類金属の酸化
物、Al2O3 およびSiO2の1種または2種以上を混合し
て、反応核を増加させることで、反応界面積を増加さ
せ、反応を促進させる。ここでいう熱力学的に安定な酸
化物とは、溶鋼と容易に反応せず、脱炭のための反応核
として溶鋼内に侵入して存在し得るものを指しており、
以下、これらを反応促進剤という。Therefore, the oxidizer is mixed with one or more of the weakly oxidizable alkaline earth metal oxides, Al 2 O 3 and SiO 2 , which are thermodynamically stable in molten steel. Then, by increasing the reaction nuclei, the reaction boundary area is increased and the reaction is promoted. The thermodynamically stable oxide referred to here refers to those that do not easily react with molten steel and may exist by invading molten steel as reaction nuclei for decarburization,
Hereinafter, these are referred to as reaction accelerators.
【0021】反応促進剤として作用する酸化物は、脱炭
を行う精錬温度で溶鋼に対して熱力学的に安定なもので
あると同時に、金属元素の蒸気圧が高く、減圧下の溶鋼
中で分解しにくいものが適している。The oxide acting as a reaction accelerator is thermodynamically stable with respect to the molten steel at the refining temperature for decarburization, and at the same time, the vapor pressure of the metal element is high and the molten steel is reduced in pressure. Those that are difficult to disassemble are suitable.
【0022】このような性状を有する酸化物として、ア
ルカリ土類金属酸化物では、MgO 、CaO 、SrO およびBa
O が適している。Alkaline earth metal oxides having such properties include MgO, CaO, SrO and Ba.
O is suitable.
【0023】その他の反応促進剤としては、同様の理由
でAl2O3 またはSiO2を用いる。As the other reaction accelerator, Al 2 O 3 or SiO 2 is used for the same reason.
【0024】上記の酸化物はいずれも反応促進剤として
の作用は同じであり、1種または2種以上の組み合わせ
としても同様の効果を得ることができる。The above-mentioned oxides all have the same action as a reaction accelerator, and the same effect can be obtained by using one kind or a combination of two or more kinds.
【0025】これらを酸化剤に対して5〜20重量%(以
下、単に%と記す)混合することにより、脱炭反応によ
り消滅しない反応核を供給して反応界面積を増大させ、
それによって低炭素濃度領域でも有効に溶鋼の脱炭を促
進させることができる。By mixing these in an amount of 5 to 20% by weight (hereinafter simply referred to as "%") with respect to the oxidizing agent, reaction nuclei that are not extinguished by the decarburization reaction are supplied to increase the reaction interface area,
Thereby, decarburization of molten steel can be effectively promoted even in a low carbon concentration region.
【0026】反応核への酸素の供給などを考慮すると、
実用的な反応促進剤の混合比率は5〜20%が適当であ
る。5%未満では、通常の酸化物粉体のみの吹き込みと
同様の低炭素濃度領域での脱炭反応促進効果しか得られ
ない。一方、20%を超えると酸化剤の比率が小さくな
り、脱炭に必要な酸素量が十分供給できなくなるととも
に、溶鋼温度の低下を招き、脱炭反応を促進させる上で
不利な条件となる。Considering the supply of oxygen to the reaction nuclei,
The practical mixing ratio of the reaction accelerator is preferably 5 to 20%. If it is less than 5%, only the decarburization reaction promoting effect in the low carbon concentration region, which is similar to the usual blowing of only oxide powder, can be obtained. On the other hand, if it exceeds 20%, the ratio of the oxidizing agent becomes small, the amount of oxygen required for decarburization cannot be sufficiently supplied, and the molten steel temperature is lowered, which is a disadvantageous condition for promoting the decarburization reaction.
【0027】上記の各酸化剤または反応促進剤の粉体粒
径は、平均で 0.002〜1mmの範囲とするのが望ましい。
粉体は反応核を供給する意味で細かい方がよいが、0.00
2 mm未満では溶鋼表面へ吹き付けても事実上溶鋼内へ侵
入させるのは困難である。一方、1mmを超えると反応速
度が低下する。実用的にさらに望ましいのは、0.05〜0.
3mm の範囲である。The powder particle size of each of the above oxidizing agents or reaction accelerators is preferably in the range of 0.002 to 1 mm on average.
The finer the powder, the better in terms of supplying reaction nuclei, but 0.00
If it is less than 2 mm, it is practically difficult to penetrate into the molten steel even if it is sprayed on the surface of the molten steel. On the other hand, if it exceeds 1 mm, the reaction rate will decrease. More practically desirable is 0.05-0.
The range is 3 mm.
【0028】各粉体は予め混合しておいてもよいし、吹
き付けラインの途中または出口で混合してもよい。以
下、本発明の方法で用いる混合粉体を脱炭剤という。The powders may be mixed in advance, or may be mixed in the middle of the spraying line or at the outlet. Hereinafter, the mixed powder used in the method of the present invention is referred to as a decarburizing agent.
【0029】脱炭反応は、前記のように反応界面での化
学反応律速であるため、たとえ減圧下で酸素が十分に供
給され、かつ反応界面での炭素の移動が十分であって
も、低炭素濃度領域から停滞する。したがって、上記の
酸化剤および反応促進剤として作用する脱炭剤を吹き込
めば、反応核を増加させ、反応界面積を増大させること
ができるので、〔C〕が50ppm 以下の低炭素濃度領域で
も脱炭反応を促進させ、極低炭素鋼を効率的に得ること
が可能となるのである。Since the decarburization reaction is rate-determined by the chemical reaction at the reaction interface as described above, even if oxygen is sufficiently supplied under reduced pressure and carbon migration at the reaction interface is sufficient, the decarburization reaction is low. Stagnation from the carbon concentration range. Therefore, if the above-mentioned deoxidizing agent and decarburizing agent acting as a reaction accelerator are blown in, the reaction nuclei can be increased and the reaction interfacial area can be increased. It is possible to accelerate the carbon reaction and efficiently obtain ultra-low carbon steel.
【0030】酸化剤は最終的には、溶鋼と何らかの形で
反応、分解し、金属成分元素は溶鋼中に残るが、反応促
進剤は溶鋼への懸濁と対流を経て浮上、凝集し、最終的
には系外に除かれることになる。The oxidizer finally reacts and decomposes in some form with the molten steel, and the metal component elements remain in the molten steel, but the reaction accelerator floats and agglomerates through suspension and convection in the molten steel, and finally Will be excluded from the system.
【0031】上記の脱炭剤の効果を得るには、減圧下で
キャリアガスにより脱炭剤粉体を溶鋼の表面に吹き付
け、効率よく溶鋼中に侵入させるのが最もよい。In order to obtain the above-mentioned effect of the decarburizing agent, it is best to spray the decarburizing agent powder on the surface of the molten steel with a carrier gas under reduced pressure so that the decarburizing agent powder can efficiently penetrate into the molten steel.
【0032】本発明の方法では、脱炭剤粉体をアルゴン
ガス、窒素ガス、酸素ガス、あるいは酸素ガスを含有す
る精錬用ガスをキャリアガスとして溶鋼表面に吹き付け
ることにより脱炭反応を行う。溶鋼表面に吹き付けられ
た脱炭剤粉体は溶鋼中に侵入し、酸化剤は脱炭反応の酸
素供給源となり、反応促進剤は反応核となり、脱炭反応
を促進させる。In the method of the present invention, the decarburizing reaction is carried out by spraying the decarburizing agent powder onto the surface of the molten steel using argon gas, nitrogen gas, oxygen gas or a refining gas containing oxygen gas as a carrier gas. The decarburizing agent powder sprayed on the surface of the molten steel penetrates into the molten steel, the oxidizing agent serves as an oxygen supply source for the decarburizing reaction, and the reaction accelerator serves as a reaction nucleus to accelerate the decarburizing reaction.
【0033】酸素ガスまたは酸素ガスを含む精錬用ガス
をキャリアガスとして使用する場合には、キャリアガス
も酸素の供給源となるので脱炭反応の促進にさらに効果
的である。さらにこのとき、火点での昇熱による補熱効
果も期待できる。When oxygen gas or a refining gas containing oxygen gas is used as a carrier gas, the carrier gas also serves as a supply source of oxygen, which is more effective in promoting the decarburization reaction. Furthermore, at this time, the effect of supplementing heat by raising the temperature at the fire point can be expected.
【0034】キャリアガス中の酸素ガス濃度は変更する
ことが可能であり、蒸発しやすいMnや酸化しやすいCrな
どを多く含む鋼種の場合は、アルゴンガスなどの不活性
ガスと酸素ガスとの混合ガスを用いることが望ましい。
また吹き付ける酸素ガスは純粋な酸素ガスである必要は
なく、脱炭速度が低下する領域では、酸素とアルゴンガ
スなどとの混合ガスを用いることにより、脱炭に寄与し
ない酸素が不必要な酸化物を生成させるのを抑制するこ
とができる。The oxygen gas concentration in the carrier gas can be changed, and in the case of steel types containing a large amount of Mn that easily evaporates and Cr that easily oxidizes, a mixture of an inert gas such as argon gas and oxygen gas is used. It is desirable to use gas.
Further, the oxygen gas to be sprayed need not be pure oxygen gas, and in the region where the decarburization rate decreases, the use of a mixed gas of oxygen and argon gas, etc., makes it possible to use an oxide that does not contribute to decarburization. Can be suppressed.
【0035】本発明の方法は、RH真空脱ガス装置、D
H真空脱ガス装置、VOD装置およびタンク脱ガス装置
などの減圧下での鋼の精錬装置を用いて実施することが
できる。The method of the present invention comprises a RH vacuum degasser, D
It can be carried out using a steel refining device under reduced pressure such as an H vacuum degassing device, a VOD device, and a tank degassing device.
【0036】図1に基づいて本発明の方法を実施するた
めの装置例を説明する。An example of an apparatus for carrying out the method of the present invention will be described with reference to FIG.
【0037】図1は、RH真空脱ガス装置の縦断面図で
ある。真空槽1は取鍋3の上方に設置され、転炉などで
溶製された溶鋼6は取鍋3に収容されている。真空槽1
の下部には2本の浸漬管、つまり上昇管2aと下降管2bが
設置されており、真空槽1内を減圧しながら2本の浸漬
管を取鍋3内の溶鋼6に浸漬して、溶鋼6を真空槽1内
に引き上げ、環流ガス吹込羽口4から不活性ガスを流入
させてガスリフト原理に基づき溶鋼6を環流させ、真空
脱炭処理を行う。真空槽1の内部には粉体上吹ランス5
が設けられており、脱炭処理中にその先端のノズルか
ら、アルゴンガス、窒素ガス、酸素ガスまたは酸素ガス
を含む精錬用ガスをキャリアガスとして、脱炭剤粉体7
を溶鋼表面に吹き付け、脱炭反応を促進させる。FIG. 1 is a vertical sectional view of an RH vacuum degassing apparatus. The vacuum tank 1 is installed above the ladle 3, and the molten steel 6 melted in a converter or the like is housed in the ladle 3. Vacuum tank 1
Two dip pipes, that is, an ascending pipe 2a and a descending pipe 2b, are installed in the lower part of the soaker. While depressurizing the vacuum chamber 1, the two dipping pipes are immersed in the molten steel 6 in the ladle 3, The molten steel 6 is pulled up into the vacuum tank 1, an inert gas is introduced from the circulating gas blowing tuyere 4 to reflux the molten steel 6 based on the gas lift principle, and vacuum decarburization treatment is performed. Inside the vacuum chamber 1, a powder top blowing lance 5
The decarburizing agent powder 7 is provided with a refining gas containing argon gas, nitrogen gas, oxygen gas or oxygen gas as a carrier gas from a nozzle at its tip during decarburization treatment.
Is sprayed on the surface of molten steel to accelerate the decarburization reaction.
【0038】[0038]
【実施例】図1に示す 170t規模のRH真空脱ガス装置
を用いて脱炭処理試験を行った。EXAMPLE A decarburization treatment test was conducted using a 170 t scale RH vacuum degassing apparatus shown in FIG.
【0039】転炉で終点炭素量を約400ppm、終点酸素量
を約400ppmに吹錬した後、未脱酸状態で出鋼した溶鋼を
対象とした。基本条件は次のとおりである。The molten steel was blown out in the converter to an end point carbon content of about 400 ppm and an end point oxygen content of about 400 ppm, and then tapped in a non-deoxidized state. The basic conditions are as follows.
【0040】取鍋内の未脱酸溶鋼 (温度1640〜1660℃)
に、浸漬管を浸漬した後、真空槽内を減圧し溶鋼を真空
槽内へ吸い上げた。その後、上昇管内部に設けられた環
流ガス吹込み羽口からArガスを吹込み、上昇管内の溶鋼
を上昇させることにより溶鋼を環流させ、脱炭処理を開
始した。Undeoxidized molten steel in the ladle (temperature 1640 to 1660 ° C)
After immersing the dipping pipe in, the pressure inside the vacuum chamber was reduced and the molten steel was sucked up into the vacuum chamber. After that, Ar gas was blown from the circulating gas blowing tuyere provided inside the rising pipe to raise the molten steel in the rising pipe so that the molten steel was refluxed, and decarburization treatment was started.
【0041】脱炭処理前の〔C〕以外の溶鋼成分は、次
のとおりである。The molten steel components other than [C] before the decarburization treatment are as follows.
【0042】Si:0.2 %、Mn:0.15%、P:0.010 %、
S:0.005 %、Cr:0.025 %、Ti:0.025 %、残部はFe
および不可避的不純物 処理中は定期的に溶鋼のサンプリングを繰り返して
〔C〕=50ppm となる時間を予測し、その時点で10Nリ
ットル/minの流量のキャリアガスを用いて、予め配合し
た種々の脱炭剤粉体 (平均粒径約0.15mm) の吹き付けを
行った。真空度は脱炭処理中をとおして1〜2Torr、吹
き付けノズルの孔径は25mmφ、ランス−溶鋼湯面間距離
は2.0mとした。Si: 0.2%, Mn: 0.15%, P: 0.010%,
S: 0.005%, Cr: 0.025%, Ti: 0.025%, balance Fe
And inevitable impurities During the treatment, the molten steel is repeatedly sampled periodically to predict the time when [C] = 50ppm, and at that time, a carrier gas having a flow rate of 10 Nl / min is used to perform various demixing in advance. A carbon powder (average particle size of about 0.15 mm) was sprayed. The degree of vacuum was 1 to 2 Torr throughout the decarburizing process, the hole diameter of the spray nozzle was 25 mmφ, and the distance between the lance and the molten steel surface was 2.0 m.
【0043】〔試験1〕上記の方法に従い、次の条件で
脱炭処理の比較を行った。[Test 1] The decarburization treatments were compared under the following conditions according to the above method.
【0044】粉体吹き付け用のキャリアガス種:アルゴ
ンガス 本発明例:脱炭剤(鉄鉱石粉体90%、MgO 粉体10%) 比較例:酸化剤(鉄鉱石粉体のみ、平均粒径約0.15m
m) 比較例:通常のRH脱炭処理(粉体吹き付けなし) 用いた鉄鉱石とMgO の化学組成は、次のとおりである。Carrier gas type for powder spraying: Argon gas Inventive example: Decarburizing agent (iron ore powder 90%, MgO powder 10%) Comparative example: Oxidizing agent (iron ore powder only, average particle size) About 0.15m
m) Comparative Example: Ordinary RH decarburization treatment (without powder spraying) The chemical compositions of iron ore and MgO used are as follows.
【0045】鉄鉱石:T.Fe=63%、Al2O3 =1%、SiO2
=5%、残部=不可避的不純物 MgO :MgO =98%、CaO =1%、SiO2=0.3 %、Al2O3
=0.08%、残部=不可避的不純物 図2はこのときの〔C〕の時間変化を示す図である。図
2から明らかなように本発明例と比較例では、〔C〕が
50ppm 程度になる脱炭前期までの脱炭速度は、分析およ
び試料採取時期による誤差の範囲内であり、実質的に差
がない。しかし脱炭剤または酸化剤を吹き付け始めた脱
炭後期の低炭素濃度領域から、脱炭反応に差が現れ始
め、本発明例では低炭素濃度領域で脱炭速度が大きく、
かつ短時間で最も低い炭素濃度に到達している。Iron ore: T.Fe = 63%, Al 2 O 3 = 1%, SiO 2
= 5%, balance = unavoidable impurities MgO: MgO = 98%, CaO = 1%, SiO 2 = 0.3%, Al 2 O 3
= 0.08%, balance = unavoidable impurities FIG. 2 is a diagram showing the time change of [C] at this time. As is clear from FIG. 2, in the example of the present invention and the comparative example, [C] is
The decarburization rate up to the decarburization period of about 50 ppm is within the margin of error due to the timing of analysis and sampling, and there is virtually no difference. However, from the low carbon concentration region in the latter stage of decarburization where the decarburizing agent or the oxidant has begun to be sprayed, the decarburization reaction begins to show a difference, and in the present invention example, the decarburization rate is large in the low carbon concentration region
And the lowest carbon concentration was reached in a short time.
【0046】〔試験2〕基本条件と試験1のキャリアガ
ス条件に従い、試験1の脱炭剤中の鉄鉱石粉体とMgO 粉
体の混合比率を変えて脱炭処理を実施した。図3はこの
ときの混合比率と〔C〕の時間変化を示す図である。[Test 2] Decarburization was carried out according to the basic conditions and the carrier gas conditions of Test 1 by changing the mixing ratio of the iron ore powder and the MgO powder in the decarburizing agent of Test 1. FIG. 3 is a diagram showing the mixing ratio and [C] with time in this case.
【0047】図示するように、本発明で定める条件を満
たす例ではいずれも、脱炭剤の吹き込みを開始した低炭
素濃度領域から脱炭挙動の相違が明らかである。すなわ
ち、低炭素濃度領域での脱炭速度および到達炭素濃度
は、MgO 粉体比率が5、10、20%の3例では分析誤差の
範囲内で実質的に差がないのに対し、鉄鉱石粉体に1%
のMgO 粉体を加えた例では悪化している。鉄鉱石粉体に
80%の MgO粉体を混合した例では、脱炭速度、到達酸素
濃度ともさらに悪化している。As shown in the figure, in all the examples satisfying the conditions defined by the present invention, the difference in decarburization behavior is apparent from the low carbon concentration region where the blowing of the decarburizing agent was started. In other words, the decarburization rate and the ultimate carbon concentration in the low carbon concentration region are substantially the same within the analytical error range in the three cases where the MgO powder ratio is 5, 10 and 20%, whereas the iron ore 1% for powder
It is worse in the case of adding MgO powder. For iron ore powder
In the example in which 80% MgO powder was mixed, both the decarburization rate and the reached oxygen concentration were even worse.
【0048】〔試験3〕脱炭剤の混合比率を鉄鉱石粉体
90%と MgO粉体10%に固定し、キャリアガスをアルゴン
ガス、酸素ガス、50%アルゴン−50%酸素ガスに変更し
て脱炭処理を行った。その他の条件は基本条件と試験1
の条件に順じた。[Test 3] The mixing ratio of the decarburizing agent was changed to iron ore powder.
It was fixed to 90% and 10% MgO powder, and the carrier gas was changed to argon gas, oxygen gas, and 50% argon-50% oxygen gas for decarburization treatment. Other conditions are basic conditions and test 1
It complied with the conditions.
【0049】図4は、このときのキャリアガス種の条件
および〔C〕の時間変化を示す図である。図示するよう
に、脱炭挙動は図2、図3の本発明例と略々同じく良好
である。また、脱炭剤の吹き付けを開始した低炭素濃度
域から、キャリアガス種による相違は認められない。す
なわち、低炭素濃度領域での脱炭速度および到達炭素濃
度は、キャリアガス中の酸素濃度が 100%の場合でも、
分析誤差の範囲内で差はない。したがって、脱炭のため
に酸素ガスを供給するという意味でキャリアガスに酸素
ガスを用いる方法は有効であるので、キャリアガスを酸
素ガスのみとする方法は、特に転炉における終点酸素量
が低く、脱炭反応に供される酸素源が少ない場合に効果
的であると考えられる。FIG. 4 is a diagram showing the conditions of the carrier gas species and the time change of [C] at this time. As shown in the figure, the decarburization behavior is almost as good as the examples of the present invention shown in FIGS. Further, no difference due to the carrier gas species is observed from the low carbon concentration range where the spraying of the decarburizing agent was started. That is, the decarburization rate and the ultimate carbon concentration in the low carbon concentration region are as follows even if the oxygen concentration in the carrier gas is 100%.
There is no difference within the analytical error. Therefore, since a method of using oxygen gas as a carrier gas is effective in the sense of supplying oxygen gas for decarburization, a method of using only oxygen gas as a carrier gas has a particularly low end point oxygen amount in a converter, It is considered to be effective when the oxygen source supplied to the decarburization reaction is small.
【0050】〔試験4〕脱炭剤粉体に、鉄酸化物+10%
SiO2、鉄酸化物+10%Al2O3 、鉄酸化物+10%MgO を、
キャリアガスにアルゴンガスを、それぞれ用いて脱炭処
理を行った。その他の条件は基本条件と試験1の条件に
順じた。[Test 4] Iron oxide + 10% in decarburizing agent powder
SiO 2 , iron oxide + 10% Al 2 O 3 , iron oxide + 10% MgO,
Decarburization was performed using argon gas as the carrier gas, respectively. Other conditions were in accordance with the basic conditions and the conditions of Test 1.
【0051】図5はこのときの脱炭剤粉体の種類および
〔C〕の時間変化を示す図である。FIG. 5 is a diagram showing the kind of decarburizing agent powder and the time change of [C] at this time.
【0052】図示するように、いずれの粉体の組成も本
発明の範囲内にあるので、低炭素濃度域での脱炭速度は
十分速く、到達炭素濃度は10ppm 以下となっている。こ
の結果から、本発明の方法は、炭素濃度が10ppm 以下の
極低炭素鋼の溶製方法として優れていることがわかる。As shown in the drawing, since the composition of any powder is within the range of the present invention, the decarburization rate in the low carbon concentration range is sufficiently high and the ultimate carbon concentration is 10 ppm or less. From this result, it is understood that the method of the present invention is excellent as a method for melting ultra-low carbon steel having a carbon concentration of 10 ppm or less.
【0053】〔試験5〕溶鋼の組成をSi:0.45%、Mn:
1.3 %、P:0.08%に変え、脱炭剤粉体に、マンガン酸
化物+10%SiO2、マンガン酸化物+10%MgO 、鉄酸化物
+10%MgO を、キャリアガスにアルゴンガスを、それぞ
れ用いて脱炭処理を行った。その他の条件は基本条件と
試験1の条件に順じた。[Test 5] The composition of the molten steel was Si: 0.45%, Mn:
1.3%, P: 0.08%, manganese oxide + 10% SiO 2 , manganese oxide + 10% MgO, iron oxide + 10% MgO, and argon gas as carrier gas were used as the decarburizing agent powder. A decarburization process was performed. Other conditions were in accordance with the basic conditions and the conditions of Test 1.
【0054】図6はこのときの脱炭剤粉体の種類および
〔C〕の時間変化を示す図である。FIG. 6 is a diagram showing the kind of decarburizing agent powder and the time change of [C] at this time.
【0055】図示するように、いずれの粉体の組成も本
発明例の範囲内にあるので、低炭素濃度域での脱炭速度
は十分速く、到達炭素濃度は10ppm 以下となっている。
また、Mn含有量の増加が許容される鋼種では、酸化剤と
してマンガン酸化物も同様に脱炭に使用できることがわ
かる。As shown in the drawing, since the composition of each powder is within the range of the present invention example, the decarburization rate in the low carbon concentration range is sufficiently high and the reached carbon concentration is 10 ppm or less.
In addition, it is understood that manganese oxide can also be used for decarburization as an oxidizing agent in steel types in which an increase in Mn content is allowed.
【0056】[0056]
【発明の効果】本発明の方法によれば、減圧下で溶鋼の
脱炭処理を行う際の低炭素濃度領域からの脱炭速度の向
上、到達炭素濃度の低下および処理時間の短縮が可能で
あり、極低炭素鋼を安定して得ることができる。EFFECTS OF THE INVENTION According to the method of the present invention, it is possible to improve the decarburization rate from a low carbon concentration region, reduce the ultimate carbon concentration and shorten the treatment time when performing decarburization treatment of molten steel under reduced pressure. Therefore, ultra low carbon steel can be stably obtained.
【図1】本発明の方法を実施するためのRH真空脱ガス
装置の概略縦断面図である。1 is a schematic vertical sectional view of an RH vacuum degassing apparatus for carrying out the method of the present invention.
【図2】脱炭処理方法と溶鋼中の炭素濃度の時間変化を
示す図である。FIG. 2 is a diagram showing a decarburization treatment method and a temporal change in carbon concentration in molten steel.
【図3】脱炭剤中の鉄鉱石粉体と MgO粉体の混合比率を
変えたときの溶鋼中の炭素濃度の時間変化を示す図であ
る。FIG. 3 is a diagram showing a time change of carbon concentration in molten steel when the mixing ratio of iron ore powder and MgO powder in the decarburizing agent is changed.
【図4】本発明の方法による溶鋼中の炭素濃度の時間変
化の例を示す図である。FIG. 4 is a diagram showing an example of changes over time in carbon concentration in molten steel according to the method of the present invention.
【図5】本発明の方法による溶鋼中の炭素濃度の時間変
化の例を示す図である。FIG. 5 is a diagram showing an example of changes over time in carbon concentration in molten steel according to the method of the present invention.
【図6】本発明の方法による溶鋼中の炭素濃度の時間変
化の例を示す図である。FIG. 6 is a diagram showing an example of changes over time in carbon concentration in molten steel according to the method of the present invention.
1:真空槽、2a:浸漬管(上昇管)、 2b:浸漬管(下
降管)、3:取鍋、 4:環流ガス吹込み羽口、5:粉
体上吹きランス、6:溶鋼、 7:キャリアガスおよび
脱炭剤粉体1: Vacuum tank, 2a: Immersion pipe (upward pipe), 2b: Immersion pipe (downward pipe), 3: Ladle, 4: Circulating gas blowing tuyere, 5: Powder top blowing lance, 6: Molten steel, 7 : Carrier gas and decarburizing powder
───────────────────────────────────────────────────── フロントページの続き (72)発明者 眞目 薫 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaoru Mame Sumitomo Metal Industries, Ltd. 4-53-3 Kitahama, Chuo-ku, Osaka-shi, Osaka
Claims (3)
物、マンガン酸化物、クロム酸化物およびニッケル酸化
物の1種または2種以上からなる粉体をキャリアガスと
共に溶鋼表面に吹き付ける溶鋼の脱炭処理方法であっ
て、前記粉体にアルカリ土類金属酸化物(MgO、CaO 、Sr
O 、BaO)、Al2O3 およびSiO2の1種または2種以上から
なる粉体を5〜20重量%混合して吹き付けることを特徴
とする溶鋼の脱炭促進方法。1. In refining steel under reduced pressure, powder of at least one of iron oxide, manganese oxide, chromium oxide and nickel oxide is sprayed onto the surface of molten steel together with a carrier gas to remove molten steel. A method of treating charcoal, wherein the powder contains alkaline earth metal oxides (MgO, CaO, Sr).
A method for promoting decarburization of molten steel, characterized by mixing 5 to 20% by weight of powder consisting of one or more of O 2 , BaO), Al 2 O 3 and SiO 2 and spraying.
において粉体を吹き付けることを特徴とする請求項1に
記載の溶鋼の脱炭促進方法。2. The method for accelerating decarburization of molten steel according to claim 1, wherein the powder is sprayed in a region where [C] in the molten steel is 0.005% by weight or less.
ルゴンガス、窒素ガス、酸素ガスまたは酸素ガスを含有
する精錬用ガスを使用することを特徴とする請求項1ま
たは請求項2に記載の溶鋼の脱炭促進方法。3. The molten steel according to claim 1, wherein argon gas, nitrogen gas, oxygen gas or a refining gas containing oxygen gas is used as a carrier gas for spraying the powder. Decarburization promotion method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30629493A JPH07157820A (en) | 1993-12-07 | 1993-12-07 | Method for promoting decarburization of molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30629493A JPH07157820A (en) | 1993-12-07 | 1993-12-07 | Method for promoting decarburization of molten steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07157820A true JPH07157820A (en) | 1995-06-20 |
Family
ID=17955371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30629493A Pending JPH07157820A (en) | 1993-12-07 | 1993-12-07 | Method for promoting decarburization of molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07157820A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171994A (en) * | 2016-03-24 | 2017-09-28 | Jfeスチール株式会社 | Secondary refining method of stainless steel molten metal |
-
1993
- 1993-12-07 JP JP30629493A patent/JPH07157820A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017171994A (en) * | 2016-03-24 | 2017-09-28 | Jfeスチール株式会社 | Secondary refining method of stainless steel molten metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960009168B1 (en) | High Purity Solvent Method | |
JP5082417B2 (en) | Method of melting ultra low sulfur low nitrogen high cleanliness steel | |
JP2020180341A (en) | Melting method of ultra-low nitrogen steel | |
JP2010248536A (en) | Method for producing high Mn content metal | |
JPH10212514A (en) | Method for producing highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking | |
JPH07157820A (en) | Method for promoting decarburization of molten steel | |
JP4844552B2 (en) | Melting method of low carbon high manganese steel | |
JP3241910B2 (en) | Manufacturing method of extremely low sulfur steel | |
JP4085898B2 (en) | Melting method of low carbon high manganese steel | |
JPS63143216A (en) | Melting method for extremely low carbon and low nitrogen steel | |
JP5267513B2 (en) | High-speed desulfurization denitrification method for molten steel | |
JP5338124B2 (en) | Method for desulfurizing and refining molten iron | |
JPH05311231A (en) | Refining method of high-purity steel using reflux type vacuum degasser | |
JPH06330148A (en) | Method for melting low n steel in vacuum refining furnace | |
JP5272480B2 (en) | Method for desulfurizing and refining molten iron | |
JP2012207248A (en) | Method for dephosphorizing molten iron | |
JPH08134528A (en) | Ultra low carbon steel manufacturing method | |
JPH05195046A (en) | Method for melting high manganese and extremely low carbon steel | |
JPS6396210A (en) | Preliminary deoxidation method in converter furnace | |
JPH07316636A (en) | Method of refining molten steel | |
JP2024083797A (en) | Method for denitrification of molten steel | |
JPH06306445A (en) | Decarburization and desulfurization method for molten steel | |
JPH09287017A (en) | High-purity steel melting method | |
JPH0941028A (en) | Highly clean ultra low carbon steel manufacturing method | |
JPH0673429A (en) | Method for desulfurizing and denitrogenizing molten steel |