[go: up one dir, main page]

JPH07157367A - Production of high purity beta-silicon carbide sintered compact for device for producing semiconductor - Google Patents

Production of high purity beta-silicon carbide sintered compact for device for producing semiconductor

Info

Publication number
JPH07157367A
JPH07157367A JP5306293A JP30629393A JPH07157367A JP H07157367 A JPH07157367 A JP H07157367A JP 5306293 A JP5306293 A JP 5306293A JP 30629393 A JP30629393 A JP 30629393A JP H07157367 A JPH07157367 A JP H07157367A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
powder
sintered body
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5306293A
Other languages
Japanese (ja)
Other versions
JP3483920B2 (en
Inventor
Tadaaki Miyazaki
忠昭 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP30629393A priority Critical patent/JP3483920B2/en
Publication of JPH07157367A publication Critical patent/JPH07157367A/en
Application granted granted Critical
Publication of JP3483920B2 publication Critical patent/JP3483920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To ensure high purity, suppress the production of particles and improve durability and high temp. strength by sintering a powdery mixture of specified beta-SiC powder with a sintering aid at high temp. and pressure. CONSTITUTION:A mixed soln. contg. a liq. silicon compd., a liq. org. compd. having a functional group, forming carbon under heating and contg. <=1ppm impure elements and a polymn. or crosslinking catalyst contg. <=1ppm impure elements is dried, hardened, carbonized by heating at 700-1,100 deg.C in a nonoxidizing atmosphere and burnt at 1,600-2,000 deg.C in a nonoxidizing atmosphere to obtain beta-SiC powder having a ratio of 2.3-2.5 as the molar ratio of C to Si and 0.5-20mum average particle diameter. This SiC powder is mixed with 1-30wt.% superfine SiC powder having 10-100nm average particle diameter as a sintering aid and the resultant mixture is sintered at a high temp. of 1,900-2,000 deg.C under pressure to produce the objective beta-SiC sintered compact having <=0.5OMEGA.cm specific resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度で耐久性があり、
パーティクルの発生も少ない半導体製造装置用高純度β
型炭化ケイ素焼結体に係り、特に半導体工業で用いられ
るヒーターや高強度を要求される耐熱部品、高腐食性ガ
ス周辺部品、エッチャー用電極等に利用できる半導体製
造装置用高純度β型炭化ケイ素焼結体に関する。
FIELD OF THE INVENTION The present invention is highly pure and durable,
High-purity β for semiconductor manufacturing equipment with few particles
High-purity β-type silicon carbide for semiconductor manufacturing equipment that can be used for heaters used in the semiconductor industry, heat-resistant parts that require high strength, peripheral parts for highly corrosive gases, electrodes for etchers, etc. Regarding a sintered body.

【0002】[0002]

【従来の技術】従来、炭化ケイ素は耐熱性材料として使
用されているが、共有結合性の物質であるため難焼性材
料として知られている。炭化ケイ素の焼結法には反応焼
結法(RSSC法)、常圧焼結法、ホットプレス法等が
知られている。
2. Description of the Related Art Conventionally, silicon carbide has been used as a heat resistant material, but it is known as a refractory material because it is a covalent substance. Known sintering methods of silicon carbide include a reactive sintering method (RSSC method), an atmospheric pressure sintering method, and a hot pressing method.

【0003】反応焼結法は、1.原料混合(炭化ケイ素
粉末+炭素粉末) 2.成形加工3.反応焼結及び4.
必要な場合、後加工の各工程からなる。この方法の特徴
は、焼結工程において成形体の炭素粒子をケイ化するも
のであり、成形体の寸法変化が少なく、焼結助剤を必要
としない等の利点があり、高純度の焼結体が得やすいた
め、半導体工業で用いられるウェハーボート等の各種治
具に利用されている。しかし、RSSC法で作られた焼
結体は金属ケイ素が含有されており、ヒーターや高強度
を要求される分野で利用される治具等には不向きであ
る。
The reactive sintering method is as follows: Raw material mixture (silicon carbide powder + carbon powder) 1. Molding 3. 3. Reaction sintering and 4.
If necessary, each step of post-processing is included. The feature of this method is that the carbon particles of the compact are silicified in the sintering step, and there are advantages that the dimensional change of the compact is small and a sintering aid is not required. Since the body is easy to obtain, it is used in various jigs such as wafer boats used in the semiconductor industry. However, the sintered body made by the RSSC method contains metallic silicon and is not suitable for a heater or a jig used in a field requiring high strength.

【0004】また、常圧焼結法は、焼結助剤にボロン等
を使用する必要があるため半導体工業分野への利用には
不向きである。
Further, the atmospheric pressure sintering method is not suitable for use in the semiconductor industry field because it is necessary to use boron or the like as a sintering aid.

【0005】さらに、ホットプレス法(含むHIP法)
は、炭化ケイ素超微粉末を焼結助剤として製造した高放
熱性焼結体についての物性が知られている(FC re
port 11,No2 P40〜44[199
3])。しかし、ここに記載されている最も高純度のU
SCグレードでも半導体に最も有害な鉄不純物やアルカ
リ金属不純物が数ppm含まれており、CVDコート等
の表面被覆をしないと半導体工業では利用できないこと
が知られている。
Further, hot press method (including HIP method)
Is known to have physical properties of a highly heat-dissipating sintered body produced by using silicon carbide ultrafine powder as a sintering aid (FC re
port 11, No2 P40-44 [199
3]). However, the highest purity U listed here
It is known that even the SC grade contains several ppm of iron and alkali metal impurities, which are most harmful to semiconductors, and cannot be used in the semiconductor industry without surface coating such as CVD coating.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高温強度が
高く、表面被覆なしで、半導体工業で利用できるβ型炭
化ケイ素焼結体を得る製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a β-type silicon carbide sintered body which has high strength at high temperature and can be used in the semiconductor industry without surface coating.

【0007】[0007]

【発明を解決するための手段】本発明の高純度β型炭化
ケイ素焼結体の製造方法は、液状のケイ素化合物と官能
基を有し加熱により炭素を生成する液状の有機化合物と
重合又は架橋触媒との混合溶液を硬化乾燥し、得られた
固形物を非酸化性雰囲気下で加熱炭化した後、得られた
中間体物質をさらに非酸化性雰囲気下にて焼成して得ら
れた平均粒径が0.5〜20μmであるβ型炭化ケイ素
粉末(A)と、焼結助剤として平均粒径が10〜100
nmである炭化ケイ素超微粉末(B)を混合した後、得
られた混合粉体を高温加圧下で焼結することからなるβ
型炭化ケイ素焼結体の製造方法において、該原料及び触
媒が不純物元素を実質的に含まないものであり、該中間
体物質の炭素/ケイ素のモル比が2.3〜2.5であ
り、該混合粉体中に含まれるB成分の割合が1〜30重
量%であり、該β型炭化ケイ素焼結体の比抵抗が0.5
Ω・cm以下で、かつ各不純物元素の含有量が1ppm
以下であることを特徴とする。
The method for producing a high-purity β-type silicon carbide sintered body according to the present invention comprises a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating. Average particle size obtained by curing and drying the mixed solution with the catalyst, heating and carbonizing the obtained solid matter in a non-oxidizing atmosphere, and then calcining the obtained intermediate substance in a non-oxidizing atmosphere. Β-type silicon carbide powder (A) having a diameter of 0.5 to 20 μm, and an average particle diameter of 10 to 100 as a sintering aid.
β consisting of mixing silicon carbide ultrafine powder (B) having a thickness of nm and sintering the resulting mixed powder under high temperature pressure
In the method for producing a type silicon carbide sintered body, the raw material and the catalyst are substantially free of impurity elements, and the intermediate substance has a carbon / silicon molar ratio of 2.3 to 2.5, The ratio of the B component contained in the mixed powder is 1 to 30% by weight, and the specific resistance of the β-type silicon carbide sintered body is 0.5.
Ω · cm or less and the content of each impurity element is 1 ppm
It is characterized by the following.

【0008】すなわち、本発明者らは、前記の高純度
で、かつ高強度の炭化ケイ素焼結体を得るには、70%
以上の含有率を占めるβ型炭化ケイ素粉末原料(A)が
高い純度を有することが必要であると考えた。つまり、
半導体関連分野の治具等に用いるためには、A成分の製
造段階から徹底的に不純物が混入しないように改良し、
さらに焼結工程においても同様の改良をすることによっ
て、各不純物元素を1ppm以下の高純度β型炭化ケイ
素焼結体を得る製造方法を確立し、本発明を完成するに
至った。
That is, the present inventors have found that 70% is required to obtain the above-mentioned high-purity and high-strength silicon carbide sintered body.
It was considered necessary for the β-type silicon carbide powder raw material (A) having the above content to have high purity. That is,
In order to use it for jigs in the semiconductor-related field, we have thoroughly modified it from the manufacturing stage of component A to prevent impurities from entering.
Further, by making the same improvements in the sintering step, a manufacturing method for obtaining a high-purity β-type silicon carbide sintered body in which each impurity element is 1 ppm or less was established, and the present invention was completed.

【0009】[0009]

【作用】高純度β型炭化ケイ素焼結体においては、高強
度で耐腐食性を高くすることが望まれるが、反応焼結法
により得られたの炭化ケイ素焼結体では金属ケイ素を含
んでいるために強度が不足していたり、腐食性薬品に対
する耐久性が不足していたが、本発明の製造方法により
得られた高純度β型炭化ケイ素焼結体は焼結助剤を炭化
ケイ素超微粉にすることにより、不純物元素を実質的に
含まない焼結体を得ると共に、腐食性ガスやアーク放電
等に対する耐久性が向上することができるため、半導体
工業において各種電極、耐熱治具、抵抗発熱体等として
利用可能である優れた効果を奏するものである。
In the high-purity β-type silicon carbide sintered body, it is desired to have high strength and high corrosion resistance, but the silicon carbide sintered body obtained by the reaction sintering method contains metallic silicon. However, the high-purity β-type silicon carbide sintered body obtained by the production method of the present invention uses a sintering aid as a silicon carbide By making it into a fine powder, it is possible to obtain a sintered body that is substantially free of impurity elements and to improve the durability against corrosive gas, arc discharge, etc. It has an excellent effect that it can be used as a heating element or the like.

【0010】[0010]

【実施例】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0011】本発明において、液状のケイ素化合物とし
ては、メチルシリケート、エチルシリケート等のアルキ
ルシリケート、ケイ酸ポリマー水溶液、水酸基を持つ有
機化合物とケイ酸のエステル溶液等が挙げられ、特に、
エチルシリケートモノマー及びオリゴマーが好ましい。
In the present invention, examples of the liquid silicon compound include alkyl silicates such as methyl silicate and ethyl silicate, aqueous solutions of silicic acid polymers, ester solutions of organic compounds having a hydroxyl group and silicic acid, and the like.
Ethyl silicate monomers and oligomers are preferred.

【0012】本発明において、官能基を有し加熱により
炭素を生成する液状の有機化合物としては、特に残炭率
の高く、触媒又は加熱により、重合又は架橋する有機化
合物、例えば、フェノール樹脂、ニトリル樹脂、フラン
樹脂、ポリイミド樹脂、スチレン樹脂、キシレン樹脂、
ポリフェニレンオキシド、ポリフェニレンスルフィド、
ポリアニリン等の樹脂(高分子)のモノマーやプレポリ
マーが挙げられ、レゾール型又はノボラック型のフェノ
ール樹脂が好ましい。
In the present invention, as the liquid organic compound having a functional group and generating carbon by heating, an organic compound having a particularly high residual carbon rate and capable of being polymerized or crosslinked by a catalyst or heating, such as phenol resin or nitrile. Resin, furan resin, polyimide resin, styrene resin, xylene resin,
Polyphenylene oxide, polyphenylene sulfide,
Examples thereof include resin (polymer) monomers and prepolymers such as polyaniline, and a resol-type or novolac-type phenol resin is preferable.

【0013】本発明において、原料に均一に溶化する重
合又は架橋触媒としては、原料としてフェノール樹脂を
用いる場合、トルエンスルホン酸、塩酸、硫酸、シュウ
酸等の酸類が好ましく、特に、界面活性作用を持つトル
エンスルホン酸がより好ましい。ニトリル樹脂のモノマ
ーやオリゴマーを用いる場合は、過硫酸アンモニウム、
過酸化水素、各種ヒドロペルオキシド類、過酸化アルキ
ル類、過酸化エステル類、アゾ化合物類等のラジカル重
合開始剤が好ましい。また、この他の有機化合物を用い
る場合も一般に用いられる重合又は架橋触媒が好まし
い。
In the present invention, when a phenol resin is used as a raw material, the polymerization or cross-linking catalyst capable of being uniformly solubilized in the raw material is preferably an acid such as toluenesulfonic acid, hydrochloric acid, sulfuric acid or oxalic acid. More preferred is toluene sulfonic acid. When using monomers or oligomers of nitrile resin, ammonium persulfate,
Radical polymerization initiators such as hydrogen peroxide, various hydroperoxides, alkyl peroxides, peroxide esters, and azo compounds are preferable. Also, when other organic compounds are used, generally used polymerization or crosslinking catalysts are preferable.

【0014】また、これらの液状ケイ素化合物と炭素源
である高純度有機化合物の混合比は、両者に触媒を加え
て硬化乾燥させた前駆体物質を非酸化性雰囲気下で炭化
した炭化中間体の炭素とケイ素のモル比が2.3〜2.
5になるように決定される。また、A成分中に残存する
炭素量は3%以下であることが好ましく、3%以上にな
ると焼結する場合の阻害要因となる。
Further, the mixing ratio of these liquid silicon compound and high-purity organic compound as a carbon source is such that a precursor substance obtained by adding a catalyst to both and curing and drying is carbonized in a non-oxidizing atmosphere. The molar ratio of carbon to silicon is 2.3 to 2.
It is decided to be 5. Further, the amount of carbon remaining in the component A is preferably 3% or less, and if it is 3% or more, it becomes an obstacle to sintering.

【0015】本発明において、原料を重合又は架橋反応
させて得られた前駆体物質は非酸化性雰囲気中で加熱炭
化されるが、炭化温度としては、700〜1100℃が
用いられ、好ましくは800〜1000℃が採用され
る。また、前記前駆体物質を炭化して得られた中間生成
物は非酸化性雰囲気中でさらに高温で焼成されるが、焼
成温度としては、1600〜2000℃が用いられ、好
ましくは1600〜1900℃が採用される。
In the present invention, the precursor substance obtained by polymerizing or cross-linking the raw material is heated and carbonized in a non-oxidizing atmosphere, and the carbonization temperature is 700 to 1100 ° C., preferably 800. ~ 1000 ° C is adopted. The intermediate product obtained by carbonizing the precursor substance is fired at a higher temperature in a non-oxidizing atmosphere, and the firing temperature is 1600 to 2000 ° C, preferably 1600 to 1900 ° C. Is adopted.

【0016】本発明における重要な要素である不純物の
関連事項を次に述べる。
The matters related to impurities, which are important elements in the present invention, are described below.

【0017】本発明でいう不純物元素を実質的に含まな
いとは、各不純物元素の含有量が1ppm以下であると
定義するが、好ましくは0.5ppm以下で、より好ま
しくは0.1ppmである。但し、焼成温度(1600
〜2000℃)で蒸発する元素または元素の化合物につ
いてはこの限りではない。
The term "substantially free of an impurity element" as used in the present invention is defined as the content of each impurity element being 1 ppm or less, preferably 0.5 ppm or less, and more preferably 0.1 ppm. . However, the firing temperature (1600
This does not apply to elements or compounds of elements that evaporate at temperatures of up to 2000 ° C.

【0018】また、本発明に用いる触媒、添加剤、溶媒
(水を含む)等についても、不純物を実質的に含まない
高純度品を用いる必要がある。また、原料、製品はクラ
ス1000以下のクリーン・ブース中で取り扱うのが好
ましい。
Further, for the catalyst, additives, solvent (including water), etc. used in the present invention, it is necessary to use a high-purity product substantially free of impurities. In addition, raw materials and products are preferably handled in a clean booth of class 1000 or lower.

【0019】また、ここでいう不純物元素とは周期律表
のIa(水素を除く)〜III a族元素、I b〜VII b族
元素、VIII族元素、IVa族の原子番号32以上の元素及
びVa族の原子番号33以上の元素をいう。
The term “impurity element” as used herein means an element of Ia (excluding hydrogen) to Group IIIa, an element of Group Ib to Group VIIb, an element of Group VIII, an element of Group IVa having an atomic number of 32 or more, and An element of atomic number 33 or higher in the Va group.

【0020】以下に、該粉末の焼結について詳細に述べ
る。
The sintering of the powder will be described in detail below.

【0021】A成分に気相法で作られた10〜100n
mの炭化ケイ素超微粉(B)を1〜30重量%混合する
方法は、乾式又は湿式法のボールミルが適している。こ
こで、不純物元素等が含まれない樹脂(例えば、ナイロ
ン、ウレタン等)の容器及びボールを使う必要がある。
また、超微粉炭化ケイ素は酸化されやすいため、不活性
ガスで容器を置換することが好ましい。湿式法の場合の
前者と同様に、乾燥、不活性ガス、又は真空下で行うの
が良い。
A component of 10 to 100 n produced by a vapor phase method
A dry or wet ball mill is suitable for the method of mixing 1 to 30% by weight of the silicon carbide ultrafine powder (B) of m. Here, it is necessary to use a container and a ball of resin (for example, nylon, urethane, etc.) that does not contain impurity elements and the like.
Further, since ultrafine silicon carbide is easily oxidized, it is preferable to replace the container with an inert gas. As in the former case of the wet method, it is preferable to carry out the drying, under an inert gas, or under vacuum.

【0022】なお、A成分とB成分の混合粉体中のB成
分の添加量を1〜30重量%としたのは、1重量%では
A成分を焼結させるには不十分であり、30%以上では
B成分のかさ密度が小さいために著しく成型、焼結が困
難になるからである。
The addition amount of the B component in the mixed powder of the A component and the B component is set to 1 to 30% by weight. 1% by weight is not enough to sinter the A component. This is because if the content is more than 100%, the bulk density of the B component is small, which makes it extremely difficult to mold and sinter.

【0023】得られた混合物を加熱して焼結させる方法
としては、ホットプレス法、熱間静水圧法(HIP法)
等の従来方法で行うことが可能である。
As a method for heating and sintering the obtained mixture, a hot pressing method and a hot isostatic pressing method (HIP method) are used.
And the like.

【0024】焼結温度は1900〜2000℃が好適で
ある。特に、比抵抗が0.1Ω・cmの焼結体を得る場
合等には、2000℃の高温で焼結することが好まし
い。これは炭化ケイ素超微粉(B)の表面酸化物をβ型
炭化ケイ素の昇華により生成した炭素で還元されるため
である。また、焼結は非酸化性雰囲気又は不活性ガス中
で行うことが好ましい。
The sintering temperature is preferably 1900 to 2000 ° C. In particular, when obtaining a sintered body having a specific resistance of 0.1 Ω · cm, it is preferable to sinter at a high temperature of 2000 ° C. This is because the surface oxide of the ultrafine silicon carbide powder (B) is reduced by the carbon generated by sublimation of β-type silicon carbide. Further, the sintering is preferably performed in a non-oxidizing atmosphere or an inert gas.

【0025】以下に、実施例を挙げて本発明をより具体
的に説明するが、本発明の主旨を越えない限り、本実施
例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

【0026】(実施例A1)液状ケイ素化合物としてS
iO2 含有量40%の高純度のエチルシリケート690
gと、含水率20%の高純度液体レゾール型フェノール
樹脂300gの混合液に、触媒として高純度p−トルエ
ンスルホン酸の25%水溶液120gを加えて硬化・乾
燥させ、均質な樹脂状固形物を得た。これを窒素雰囲気
下で900℃で1時間炭化した。得られた炭化物の炭素
/ケイ素のモル比は元素分析から2.4であった。この
炭化物をアルゴン雰囲気下で1900℃まで昇温、加熱
し、4時間保持して炭化ケイ素化反応及び結晶粒成長を
行った。得られた粉末の色は淡緑色であった。また、X
線回折による炭化ケイ素の結晶形はβ型(立方晶)であ
った。A成分の不純物分析(ICP−質量分析及びフレ
ームス原子吸光法)の結果を表1に示す。
(Example A1) S as a liquid silicon compound
High-purity ethyl silicate 690 with iO 2 content of 40%
g and 300 g of a high-purity liquid resol-type phenolic resin having a water content of 20%, 120 g of a 25% aqueous solution of high-purity p-toluenesulfonic acid as a catalyst was added and cured and dried to give a homogeneous resinous solid. Obtained. This was carbonized at 900 ° C. for 1 hour in a nitrogen atmosphere. The carbon / silicon molar ratio of the obtained carbide was 2.4 based on elemental analysis. This carbide was heated to 1900 ° C. in an argon atmosphere, heated, and held for 4 hours to carry out silicon carbide reaction and crystal grain growth. The color of the obtained powder was light green. Also, X
The crystal form of silicon carbide by line diffraction was β type (cubic crystal). Table 1 shows the results of the impurity analysis (ICP-mass spectrometry and flames atomic absorption method) of the component A.

【0027】[0027]

【表1】 [Table 1]

【0028】次に、A成分に5重量%の炭化ケイ素超微
粉(平均粒径=0.05μm:住友セメント製)を添加
し、エタノール中に分散し、ナイロン容器と鉄心入りの
ナイロンボールを用いて24時間ボールミル混合を行っ
た。これを、減圧乾燥し、通常の一軸プレスにより直径
50mmの円板形状にした。さらに、この成形体をホッ
トプレス装置で真空中1650℃まで加熱し、次にアル
ゴン雰囲気下で圧力450Kg/cm2 、焼結温度19
50℃で2時間焼結した。得られた厚み約1.5mmの
円板をダイヤモンドで表面研磨した後、よく洗浄して不
純物分析した結果及び3点曲げ強度及び比抵抗を表2に
示す。
Next, 5% by weight of silicon carbide ultrafine powder (average particle size = 0.05 μm: made by Sumitomo Cement) was added to the component A, dispersed in ethanol, and a nylon container and a nylon ball with an iron core were used. Ball milling for 24 hours. This was dried under reduced pressure and made into a disk shape having a diameter of 50 mm by a normal uniaxial press. Further, this molded body was heated in a vacuum to 1650 ° C. in a hot press machine, and then under an argon atmosphere, a pressure was 450 Kg / cm 2 , and a sintering temperature was 19
Sintered at 50 ° C. for 2 hours. Table 2 shows the results of three-point bending strength and specific resistance obtained by surface-polishing the obtained disk having a thickness of about 1.5 mm with diamond, followed by thorough washing and impurity analysis.

【0029】[0029]

【表2】 [Table 2]

【0030】(実施例2)実施例1で得られたA成分に
15重量%の市販の炭化ケイ素超微粉を添加し、焼結温
度1950℃で2時間焼結した以外は、実施例1と同様
にして、焼結円板を作成し、同様の試験を行った。な
お、不純物分析した結果及び3点曲げ強度及び比抵抗を
表2に示す。
Example 2 Example 1 was repeated except that 15% by weight of commercially available ultrafine silicon carbide powder was added to the component A obtained in Example 1 and the mixture was sintered at a sintering temperature of 1950 ° C. for 2 hours. Similarly, a sintered disk was prepared and the same test was conducted. The results of the impurity analysis, the three-point bending strength and the specific resistance are shown in Table 2.

【0031】(実施例3)実施例1で得られたA成分に
28重量%の市販の炭化ケイ素超微粉を添加し、焼結温
度1950℃で2時間焼結した以外は、実施例1と同様
にして、焼結円板を作成し、同様の試験を行った。な
お、不純物分析した結果及び3点曲げ強度及び比抵抗を
表2に示す。
Example 3 Example 1 was repeated except that 28% by weight of commercially available ultrafine silicon carbide powder was added to the component A obtained in Example 1 and the mixture was sintered at a sintering temperature of 1950 ° C. for 2 hours. Similarly, a sintered disk was prepared and the same test was conducted. The results of the impurity analysis, the three-point bending strength and the specific resistance are shown in Table 2.

【0032】(比較例1)実施例1のA成分の代わりに
市販の高純度炭化ケイ素粉体(シュタルク社製:不純物
分析した結果を表1に示す)を用いた以外は実施例2と
同様にして、焼結円板を作成し、同様の試験を行った。
なお、不純物分析した結果及び3点曲げ強度及び比抵抗
を表2に示す。
(Comparative Example 1) The same as Example 2 except that a commercially available high-purity silicon carbide powder (manufactured by Stark Co., Ltd .: the result of impurity analysis is shown in Table 1) was used in place of the component A of Example 1. Then, a sintered disk was prepared and the same test was conducted.
The results of the impurity analysis, the three-point bending strength and the specific resistance are shown in Table 2.

【0033】(比較例2)実施例1で得られたA成分1
00gに対して、高純度ノボラックフェノール樹脂15
gを加え、実施例1と同様のボールミルで乾式混合を1
2時間行った。この一部を加熱できる一軸プレスに入れ
60℃で10分間加圧下で熱硬化させた。得られた成形
体の寸法は50mmΦで厚み2mmであった。この成形
体を炉に入れ、アルゴン雰囲気下で25℃/時間の昇温
速度で900℃で加熱し、45分間保持した後、炉冷し
た。この炭化成形体をアルゴン雰囲気下で1500℃で
溶融した高純度ケイ素と接触させ、1時間保持して反応
焼結を行った。この焼結体の表面に付着したケイ素を除
去し、さらに高純度塩酸と高純度硝酸で表面洗浄後、不
純物分析した結果及び3点曲げ強度及び比抵抗を表2に
示す。
(Comparative Example 2) Component A 1 obtained in Example 1
High-purity novolac phenolic resin 15 against 00g
g, and dry mixed with a ball mill similar to Example 1 to 1
I went for 2 hours. A portion of this was placed in a uniaxial press that can be heated and heat cured under pressure at 60 ° C. for 10 minutes. The obtained molded body had a size of 50 mmΦ and a thickness of 2 mm. This molded body was placed in a furnace, heated at 900 ° C. at a temperature rising rate of 25 ° C./hour in an argon atmosphere, held for 45 minutes, and then cooled in the furnace. This carbonized compact was brought into contact with high-purity silicon melted at 1500 ° C. in an argon atmosphere, and held for 1 hour for reaction sintering. The silicon adhering to the surface of this sintered body was removed, the surface was further washed with high-purity hydrochloric acid and high-purity nitric acid, and the results of impurity analysis and the three-point bending strength and specific resistance are shown in Table 2.

【0034】[0034]

【発明の効果】本発明の製造方法により得られた高純度
β型炭化ケイ素焼結体は、従来の焼結法では得られ難い
高純度で、抵抗発熱体としての使用が可能であるため、
半導体工業において耐熱治具や発熱体としての応用が可
能である。
The high-purity β-type silicon carbide sintered body obtained by the production method of the present invention has a high purity which is hardly obtained by the conventional sintering method and can be used as a resistance heating element.
It can be applied as a heat-resistant jig or heating element in the semiconductor industry.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液状のケイ素化合物と官能基を有し加熱
により炭素を生成する液状の有機化合物と重合又は架橋
触媒との混合溶液を硬化乾燥し、得られた固形物を非酸
化性雰囲気下で加熱炭化した後、得られた中間体物質を
さらに非酸化性雰囲気下にて焼成して得られた平均粒径
が0.5〜20μmであるβ型炭化ケイ素粉末(A)
と、焼結助剤として平均粒径が10〜100nmである
炭化ケイ素超微粉末(B)を混合した後、得られた混合
粉体を高温加圧下で焼結することからなるβ型炭化ケイ
素焼結体の製造方法において、 該原料及び触媒が不純物元素を実質的に含まないもので
あり、該中間体物質の炭素/ケイ素のモル比が2.3〜
2.5であり、該混合粉体中に含まれるB成分の割合が
1〜30重量%であり、該β型炭化ケイ素焼結体の比抵
抗が0.5Ω・cm以下で、かつ各不純物元素の含有量
が1ppm以下であることを特徴とする半導体製造装置
用高純度β型炭化ケイ素焼結体の製造方法。
1. A solid solution obtained by curing and drying a mixed solution of a liquid organic compound having a functional group, which has a functional group to generate carbon by heating, and a polymerization or crosslinking catalyst, and obtains the obtained solid under a non-oxidizing atmosphere. Beta-type silicon carbide powder (A) having an average particle size of 0.5 to 20 μm obtained by further heating and carbonizing the obtained intermediate substance and then firing the obtained intermediate substance in a non-oxidizing atmosphere.
And a silicon carbide ultrafine powder (B) having an average particle size of 10 to 100 nm as a sintering aid, and then sintering the resulting mixed powder under high temperature pressure. In the method for producing a sintered body, the raw material and the catalyst are substantially free of impurity elements, and the carbon / silicon molar ratio of the intermediate substance is 2.3 to.
2.5, the proportion of the B component contained in the mixed powder is 1 to 30% by weight, the resistivity of the β-type silicon carbide sintered body is 0.5 Ω · cm or less, and each impurity A method for producing a high-purity β-type silicon carbide sintered body for a semiconductor manufacturing apparatus, characterized in that an element content is 1 ppm or less.
JP30629393A 1993-12-07 1993-12-07 Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment Expired - Fee Related JP3483920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30629393A JP3483920B2 (en) 1993-12-07 1993-12-07 Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30629393A JP3483920B2 (en) 1993-12-07 1993-12-07 Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment

Publications (2)

Publication Number Publication Date
JPH07157367A true JPH07157367A (en) 1995-06-20
JP3483920B2 JP3483920B2 (en) 2004-01-06

Family

ID=17955358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30629393A Expired - Fee Related JP3483920B2 (en) 1993-12-07 1993-12-07 Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment

Country Status (1)

Country Link
JP (1) JP3483920B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171181A (en) * 1997-06-20 1999-03-16 Bridgestone Corp Member for semiconductor production unit
JP2001203192A (en) * 2000-01-21 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
JP2010173927A (en) * 2009-02-02 2010-08-12 Toshiba Corp SiC-BASED SINTERED COMPACT RING FOR MECHANICAL SEAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND MECHANICAL SEAL DEVICE AND LIGHT-WATER REACTOR PLANT
WO2012121060A1 (en) * 2011-03-08 2012-09-13 信越化学工業株式会社 Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body
JP2015179834A (en) * 2014-02-28 2015-10-08 信越半導体株式会社 Method for manufacturing susceptor for holding wafer, and susceptor for holding wafer
US10280121B2 (en) * 2015-03-31 2019-05-07 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171181A (en) * 1997-06-20 1999-03-16 Bridgestone Corp Member for semiconductor production unit
JP2001203192A (en) * 2000-01-21 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
JP2010173927A (en) * 2009-02-02 2010-08-12 Toshiba Corp SiC-BASED SINTERED COMPACT RING FOR MECHANICAL SEAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND MECHANICAL SEAL DEVICE AND LIGHT-WATER REACTOR PLANT
WO2012121060A1 (en) * 2011-03-08 2012-09-13 信越化学工業株式会社 Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body
JP2012188299A (en) * 2011-03-08 2012-10-04 Shin-Etsu Chemical Co Ltd Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body
JP2015179834A (en) * 2014-02-28 2015-10-08 信越半導体株式会社 Method for manufacturing susceptor for holding wafer, and susceptor for holding wafer
US10280121B2 (en) * 2015-03-31 2019-05-07 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus

Also Published As

Publication number Publication date
JP3483920B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US6627169B1 (en) Silicon carbide powder and production method thereof
WO2007119526A1 (en) In-line heater and method for manufacturing same
JP2565024B2 (en) Method for producing silicon carbide powder for semiconductor jig
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
TW200402404A (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JPH07157307A (en) Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal
JP3174622B2 (en) Method for producing high-purity β-type silicon carbide sintered body
JPH1067565A (en) Sintered silicon carbide body and its production
JPH1171181A (en) Member for semiconductor production unit
KR101084711B1 (en) Low Temperature Preparation Method of High Purity Beta Phase Silicon Carbide Fine Powder
JP2973762B2 (en) Method for producing silicon carbide sintered body for semiconductor production
TW449820B (en) Plasma-etching electrode plate
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JP2002280316A (en) Wafer and manufacturing method therefor
JP2003119077A (en) Method of producing silicon carbide sintered compact, and silicon carbide sintered compact obtained by the same method
JP3396119B2 (en) Method for producing Si-containing glassy carbon material
JPH1179847A (en) Production of silicon carbide sintered compact
JP2003081682A (en) Method for producing silicon-impregnated silicon carbide ceramics
JP4267723B2 (en) Method for producing particulate compound
JP5466087B2 (en) Method for producing sintered silicon carbide
JP2002128566A (en) Silicon carbide sintered compact and electrode
JP3396116B2 (en) Method for producing Si-containing glassy carbon material
JP2000272965A (en) Si-containing glassy carbon material
JP2011236079A (en) Method for producing ceramic material and ceramic material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees