JP3396116B2 - Method for producing Si-containing glassy carbon material - Google Patents
Method for producing Si-containing glassy carbon materialInfo
- Publication number
- JP3396116B2 JP3396116B2 JP23469695A JP23469695A JP3396116B2 JP 3396116 B2 JP3396116 B2 JP 3396116B2 JP 23469695 A JP23469695 A JP 23469695A JP 23469695 A JP23469695 A JP 23469695A JP 3396116 B2 JP3396116 B2 JP 3396116B2
- Authority
- JP
- Japan
- Prior art keywords
- glassy carbon
- carbon material
- sic
- thermosetting resin
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Drying Of Semiconductors (AREA)
Description
【0001】[0001]
【発明が属する技術分野】本発明は、Si成分を連続相
として含有する均質緻密な複合組織構造を備える改質さ
れたガラス状カーボン材、特に優れた耐酸化性を有する
Si含有ガラス状カーボン材の製造方法に関する。TECHNICAL FIELD The present invention relates to a modified glassy carbon material having a homogeneous and dense composite structure structure containing a Si component as a continuous phase, and particularly a Si-containing glassy carbon material having excellent oxidation resistance. Manufacturing method.
【0002】ガラス状カーボン材は、熱硬化性樹脂の成
形体を焼成炭化して得られる巨視的にガラス質の緻密な
組織構造を有する異質な炭素材料で、一般のカーボン材
に比べてガス不透過性、耐摩耗性、耐蝕性、自己潤滑
性、表面の平滑性および堅牢性などに優れることから、
その特性を生かして多様の分野で各種工業部材に有用さ
れている。近年では、組織から微小な炭素粒子が離脱す
ることのない非汚染性の材質性状に着目して、シリコン
ウエハーのプラズマエッチング用電極やイオン注入装置
用部材など汚染を嫌う半導体分野での実用が図られてい
る。[0002] A glassy carbon material is a heterogeneous carbon material having a macroscopically vitreous and dense structure obtained by firing and carbonizing a thermosetting resin compact, and is gas-free compared to general carbon materials. Because of its excellent permeability, abrasion resistance, corrosion resistance, self-lubricating property, surface smoothness and robustness,
Utilizing its characteristics, it is useful for various industrial members in various fields. In recent years, focusing on the non-contaminating material properties that do not cause minute carbon particles to separate from the tissue, practical applications in the semiconductor field such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment that do not like contamination have been developed. Has been.
【0003】[0003]
【従来の技術】ところが、ガラス状カーボン材は材質的
に脆弱であるうえ、一般のカーボン材と同様に高温酸化
雰囲気中では速やかに酸化が進行して物性を損ねる炭素
材固有の材質的欠点がある。このため、従来からガラス
状カーボン組織中にセラミックス成分を複合させて物性
の改善を図る試みがなされている。初期の段階では、原
料となる熱硬化性樹脂に乾式もしくは湿式法でSiCの
ようなセラミックス微粒子を混合し、これを硬化した成
形体を焼成炭化する方法が行われたが、この方法ではセ
ラミックス粒子を炭素組織に均一に分散させることがで
きず、またセラミックス粒子と炭素組織間に粒界が存在
するため、過酷な使用条件では材質破壊を起こしたり、
セラミックス粒子が離脱する現象が生じる問題があっ
た。2. Description of the Related Art However, a glassy carbon material is fragile in its material and, like a general carbon material, has a material defect peculiar to a carbon material that is rapidly oxidized in a high temperature oxidizing atmosphere and deteriorates its physical properties. is there. Therefore, it has been attempted to improve the physical properties by compounding a ceramic component in a glassy carbon structure. In the initial stage, a method was used in which ceramic particles such as SiC were mixed with a thermosetting resin as a raw material by a dry method or a wet method, and a molded body obtained by curing this was carbonized by firing. Cannot be uniformly dispersed in the carbon structure, and because grain boundaries exist between the ceramic particles and the carbon structure, material destruction may occur under severe usage conditions,
There is a problem that the phenomenon that the ceramic particles come off occurs.
【0004】このため、熱硬化性樹脂に珪素含有化合物
を混合して原料系とすることにより均一組織のSi含有
ガラス状カーボン材を得る方法が提案されている。例え
ば特開昭61−6111号公報には、液状珪素化合物、
官能基を有し加熱により炭素化する液状有機化合物、お
よび重合または架橋用の触媒を溶化したSi、Oおよび
Cを含む前駆体物質を炭化して耐酸化性の炭素材料を製
造する方法が開示されている。この方法では、液状珪素
化合物として水ガラスの脱アルカリで得られた珪酸ポリ
マー、水酸基を含有する有機化合物と珪酸とのエステ
ル、エチルシリケートのようなSiエステル、四塩化珪
素とエタノールの反応生成物等が挙げられ、触媒として
硫酸、塩酸、有機過酸化物、有機スルホン酸類などの併
用を必須要件としている。For this reason, there has been proposed a method of obtaining a Si-containing glassy carbon material having a uniform structure by mixing a silicon-containing compound with a thermosetting resin to prepare a raw material system. For example, JP-A-61-1111 discloses a liquid silicon compound,
Disclosed is a method for producing an oxidation resistant carbon material by carbonizing a liquid organic compound having a functional group and carbonized by heating, and a precursor substance containing Si, O and C in which a catalyst for polymerization or crosslinking is solubilized. Has been done. In this method, a silicic acid polymer obtained by dealkalization of water glass as a liquid silicon compound, an ester of a silicic acid with an organic compound having a hydroxyl group, a Si ester such as ethyl silicate, a reaction product of silicon tetrachloride and ethanol, etc. The use of sulfuric acid, hydrochloric acid, organic peroxides, organic sulfonic acids, etc. as a catalyst is an essential requirement.
【0005】しかし、上記の方法は比較的多量のSi成
分(C/Si原子比;0.5〜19)を含有する炭素材
料を製造目的としている関係で、原料系に混合する液状
珪素化合物の量が多いため、Si、OおよびCを含む前
駆体物質を形成する過程で珪素化合物が相互に結合して
微細な凝集体を形成し、これがそのまま炭化組織中にS
i粒状体となって分散する不均一な組織性状になり易
い。また、シロキサン結合(Si-0-Si) のような複数のS
i原子が連鎖する重合エステルを珪素源として用いた場
合にも、同様に凝集化に伴う不均質な組織になるため、
液状有機化合物に対する配合量を少なくしても、Siが
粒子状態で分散することのない連続相の炭素質組織を得
ることはできない。そのうえ、併用する触媒が硫酸や塩
酸等の強酸の場合にはゲル化反応を急激に進行させて組
織の均一性を損ね、ナトリウムエチラートや有機スルホ
ン酸類などの触媒を使用すると含有無機成分が残留不純
物となって純度を低下させる要因となる。However, the above-mentioned method is intended to produce a carbon material containing a relatively large amount of Si component (C / Si atomic ratio: 0.5 to 19). Due to the large amount, the silicon compounds bond with each other in the process of forming the precursor material containing Si, O and C to form fine agglomerates, which are the same as S in the carbonized structure.
i It tends to have a non-uniform texture that is dispersed as a granular material. Also, multiple S such as siloxane bond (Si-0-Si)
Even when a polymerized ester in which i atoms are chained is used as a silicon source, a heterogeneous structure is likewise caused by agglomeration.
Even if the blending amount with respect to the liquid organic compound is reduced, it is not possible to obtain a continuous phase carbonaceous structure in which Si is not dispersed in a particle state. In addition, when the catalyst used in combination is a strong acid such as sulfuric acid or hydrochloric acid, the gelation reaction proceeds rapidly and the homogeneity of the structure is impaired, and when using a catalyst such as sodium ethylate or organic sulfonic acid, the contained inorganic components remain. It becomes an impurity and becomes a factor to reduce the purity.
【0006】特開平5−43319号公報には、熱硬化
性樹脂と有機金属化合物を液状で均一に混合し、加熱
(焼成)して得られる超微細なセラミックスが高度に分
散した状態のガラス状炭素複合材料が開示されている。
この発明では、珪素源となる有機金属化合物として、S
iCを与えるポリカルボシランおよびポリシラン、Si
−Ti−C−Oを与えるTi含有ポリカルボシラン、S
ix Ny 、Si−N−CあるいはSi2 N4 −SiCを
与えるポリシラザン類が用いられている。しかしなが
ら、複数のシラン結合を有するポリカルボシランやポリ
シラン等のポリマーを熱硬化性樹脂と混合して原料系と
すると、セラミックス源が分子として分散する状態とな
るため、熱処理後に微細な金属炭化物粒子となって粒界
が生成することが避けられず、セラミックスと炭素が均
質な連続相を呈するガラス状カーボン組織を得ることが
できない。JP-A-5-43319 discloses a glassy state in which ultrafine ceramics obtained by uniformly mixing a thermosetting resin and an organometallic compound in a liquid state and heating (calcining) are highly dispersed. A carbon composite material is disclosed.
In the present invention, as the organometallic compound serving as a silicon source, S
Polycarbosilanes and polysilanes that give iC, Si
A Ti-containing polycarbosilane which gives —Ti—C—O, S
Polysilazanes that give i x N y , Si—N—C or Si 2 N 4 —SiC have been used. However, when a polymer such as polycarbosilane or polysilane having a plurality of silane bonds is mixed with a thermosetting resin to form a raw material system, the ceramics source is in a state of being dispersed as a molecule, so that fine metal carbide particles and fine particles are formed after heat treatment. It is unavoidable that grain boundaries are generated, and a glassy carbon structure in which ceramics and carbon exhibit a homogeneous continuous phase cannot be obtained.
【0007】このほか、特開平5−339006号公報
には、液状のケイ素化合物と官能基を有し加熱により炭
素を生成する液状の有機化合物を原料とし、これを均一
に溶化する重合又は架橋触媒を加え、重合又は架橋反応
させ、得られた前駆体物質を非酸化性雰囲気中で加熱炭
化した中間体生成物を非酸化性雰囲気中で更に高温焼成
することからなるβ型炭化ケイ素−炭素混合粉末の製造
方法において、該原料および触媒が不純物元素を実質的
に含有しないものであり、中間体成形物の炭素/ケイ素
のモル比が2.5〜3.5であり、混合粉末中の炭化ケ
イ素と炭素が均質に混合され、その炭素量が3〜28重
量%であり、混合粉末中の各不純物元素の含有量が1pp
m 以下である高純度β型炭化ケイ素−炭素混合粉末の製
造方法が提案されている。しかし、この方法は焼結体用
のSiC−C系粉末を製造するものであって、主要成分
がガラス状カーボン組織からなるSi含有カーボン成形
体の製造技術ではない。In addition, Japanese Patent Laid-Open No. 5-339006 discloses a polymerization or cross-linking catalyst which uses a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating as a raw material, and uniformly solubilizes it. A β-type silicon carbide-carbon mixture, which is obtained by subjecting the resulting precursor substance to heating or carbonization in a non-oxidizing atmosphere and further firing the resulting intermediate product at a higher temperature in a non-oxidizing atmosphere. In the method for producing a powder, the raw material and the catalyst do not substantially contain an impurity element, the intermediate molded product has a carbon / silicon molar ratio of 2.5 to 3.5, and the carbonization in the mixed powder is Silicon and carbon are homogeneously mixed, the amount of carbon is 3 to 28% by weight, and the content of each impurity element in the mixed powder is 1 pp.
A method for producing a high-purity β-type silicon carbide-carbon mixed powder having a size of m or less has been proposed. However, this method is for producing a SiC-C-based powder for a sintered body, and is not a production technique for a Si-containing carbon compact whose main component is a glassy carbon structure.
【0008】上記の実情に鑑み、本出願人は先に−O−
Si−O−で架橋された熱硬化性樹脂の成形体を焼成炭
化して得られ、原子レベルのSiがガラス状カーボン組
織中に0.1〜15重量%の範囲で均一な連続相として
分布する組織性状を備えるSiC含有ガラス状カーボン
材と、その製造技術として熱硬化性樹脂と1分子中に単
一のSi原子を有するSiアルコキシドの加水分解物を
有機溶媒中で撹拌混合し、架橋反応により得られるゲル
化物を硬化成形したのち、硬化成形体を非酸化性雰囲気
下で800℃以上の温度で焼成炭化処理する方法(以下
「先行技術」という)を開発し、特願平7−15517
7号として提案した。In view of the above situation, the present applicant has previously proposed -O-
Obtained by firing and carbonizing a molded body of a thermosetting resin crosslinked with Si-O-, and atomic level Si is distributed as a uniform continuous phase in the range of 0.1 to 15% by weight in the glassy carbon structure. The SiC-containing glassy carbon material having a texture property, a thermosetting resin, and a hydrolyzate of a Si alkoxide having a single Si atom in one molecule are stirred and mixed in an organic solvent to produce a crosslinking reaction. After curing and molding the gelled product obtained by the above method, a method (hereinafter referred to as "prior art") of firing and curing the cured molded body at a temperature of 800 ° C. or more under a non-oxidizing atmosphere was developed.
Proposed as No. 7.
【0009】[0009]
【発明が解決しようとする課題】上記の先行技術によれ
ば、ガラス状カーボン源となる熱硬化性樹脂とSi源と
して1分子中に単一のSi原子を有するSiアルコキシ
ドの加水分解物とを均一混合した状態で架橋反応させる
ことにより、−O−Si−O−が熱硬化性樹脂のメチロ
ール基に結合した均質な連続相を呈するゲル化物として
得られ、該ゲル化物を硬化成形したのち焼成炭化するこ
とにより組織中に原子レベルのSiが均一な連続相とし
て分布する特異な複合組織構造のガラス状カーボンに転
化させることが可能となる。According to the above-mentioned prior art, a thermosetting resin as a glassy carbon source and a hydrolyzate of a Si alkoxide having a single Si atom in one molecule as a Si source are used. By carrying out a crosslinking reaction in a state of being uniformly mixed, -O-Si-O- is obtained as a gelled product exhibiting a homogeneous continuous phase bonded to a methylol group of a thermosetting resin, and the gelled product is cured and molded and then fired. By carbonizing, it becomes possible to convert Si at the atomic level into glassy carbon having a unique composite texture structure in which atomic level Si is distributed as a uniform continuous phase.
【0010】しかしながら、この方法においてSi含有
量を高めて行くとSiアルコキシド同士の反応が優先的
に進行して二量化、多量化し易くなり、特にテトラエト
キシシランを珪素源として大型の成形品を調製しようと
すると分散系に凝集が生じたり、ゲル化、硬化の段階で
組織に亀裂が発生する難点があった。また、製造過程で
多量の有機溶媒を使用しなければならない関係で、成形
硬化工程での溶媒揮散による収縮が甚だしく、寸法精度
の高い成形品を得ることが困難となるうえ、組織内部に
有機溶媒の不均一な揮散に伴うポア(気孔)が残留する
という問題点もあった。However, when the Si content is increased in this method, the reaction between Si alkoxides preferentially proceeds to facilitate dimerization and mass increase, and in particular, large-sized molded articles are prepared using tetraethoxysilane as a silicon source. If this is attempted, there is a problem in that aggregation occurs in the dispersion system and cracks occur in the structure during gelling and hardening. In addition, since a large amount of organic solvent must be used in the manufacturing process, shrinkage due to solvent volatilization during the molding and curing process is severe, and it becomes difficult to obtain a molded product with high dimensional accuracy, and the organic solvent inside the tissue. There is also a problem that pores (pores) remain due to the non-uniform volatilization.
【0011】本発明者は、先行技術に残された前記の課
題を解決するため鋭意研究を重ねた結果、珪素源として
アミノ基を有し、かつ1分子中に単一のSi原子を含む
シラン化合物を選択し、これを溶媒類を介在させること
なく直接に熱硬化性樹脂液と均一混合させて緩徐に重合
反応させるとシロキサン結合による凝集現象を生成せ
ず、また大型成形体とした場合でも亀裂、ポアおよび寸
法変形のなく、かつSiが原子レベルで組織中に均質分
散した複合組織のSi含有ガラス状カーボン材が得られ
る事実を解明した。The present inventor has conducted extensive studies to solve the above-mentioned problems remaining in the prior art, and as a result, has a silane having an amino group as a silicon source and containing a single Si atom in one molecule. When a compound is selected and directly mixed with a thermosetting resin liquid without the interposition of solvents to cause a slow polymerization reaction, an agglomeration phenomenon due to a siloxane bond is not generated, and even when a large molded body is formed. The fact that a Si-containing glassy carbon material having a composite structure without cracks, pores and dimensional deformation and having Si uniformly dispersed in the structure at the atomic level is obtained has been clarified.
【0012】本発明は上記の知見に基づいて開発された
もので、その課題とする第1の目的は、Si成分が連続
相として分布する耐酸化性に優れる均一緻密な複合組織
構造を備えたSi含有ガラス状カーボン材の製造方法を
提供することにある。第2の目的は、前記性状を有する
大型のSi含有ガラス状カーボン材を亀裂や組織欠陥の
ない状態で工業的に製造するための方法を提供すること
にある。The present invention was developed on the basis of the above findings, and a first object of the present invention is to provide a uniform and dense composite structure structure in which Si component is distributed as a continuous phase and which is excellent in oxidation resistance. It is to provide a method for producing a Si-containing glassy carbon material. A second object is to provide a method for industrially manufacturing a large Si-containing glassy carbon material having the above properties without cracks or structural defects.
【0013】[0013]
【課題を解決するための手段】上記の目的を達成するた
めの本発明によるSi含有ガラス状カーボン材の製造方
法は、1分子中に単一のSi原子を含むアミノシラン化
合物を熱硬化性樹脂液中に滴下して撹拌混合し、該混合
溶液を成形硬化したのち、硬化成形体を非酸化性雰囲気
下で800℃以上の温度により焼成炭化処理することを
主要な技術的特徴とする。In order to achieve the above object, a method for producing a Si-containing glassy carbon material according to the present invention comprises a thermosetting resin liquid containing an aminosilane compound containing a single Si atom in one molecule. The main technical feature is that the mixture is dropped into the mixture, stirred and mixed, and the mixed solution is molded and cured, and then the cured molded body is calcined and carbonized at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere.
【0014】[0014]
【発明の実施の態様】熱硬化性樹脂は焼成炭化処理によ
りガラス状カーボンに転化する炭素源となるもので、例
えば液状のフェノール系樹脂、フラン系樹脂、ポリイミ
ド系樹脂、ポリカルボジイミド系樹脂、ポリアクリロニ
トリル系樹脂、ピレン−フェナントレン系樹脂、ポリ塩
化ビニル系樹脂、エポキシ系樹脂あるいはこれらの混合
樹脂等が挙げられる。特に樹脂を非酸化性雰囲気下で8
00℃の温度により焼成したときに残留する残炭率が高
く、かつ珪素源成分と混合した際にシラン化合物中のア
ミノ基が作用して緩徐に脱水縮合反応を生じるフェノー
ル系樹脂またはフラン系樹脂の初期縮合物もしくはこれ
らの混合樹脂液が好ましく使用される。BEST MODE FOR CARRYING OUT THE INVENTION A thermosetting resin serves as a carbon source which is converted into glassy carbon by a firing carbonization treatment. For example, a liquid phenol resin, furan resin, polyimide resin, polycarbodiimide resin, poly Examples thereof include acrylonitrile-based resin, pyrene-phenanthrene-based resin, polyvinyl chloride-based resin, epoxy-based resin, and mixed resins thereof. In particular, the resin should
Phenol-based resin or furan-based resin that has a high residual carbon ratio when baked at a temperature of 00 ° C., and that when mixed with a silicon source component, the amino groups in the silane compound act to cause a slow dehydration condensation reaction. The initial condensate or a mixed resin liquid thereof is preferably used.
【0015】珪素源としては、1分子中に単一のSi原
子を含むアミノシラン化合物が選択的に使用される。1
分子中に2個以上のSi原子が結合したポリシランでは
熱硬化性樹脂液との混合段階で凝集現象が発生し易く、
またアミノ基以外の有機官能基、例えばメチル基、ビニ
ル基等の有するシラン化合物では熱硬化性樹脂と直接反
応しないため、混合時に分離したり、会合、多量化(高
分子化)が生じて原子レベルでのSi分散化が不可能と
なる。As the silicon source, an aminosilane compound containing a single Si atom in one molecule is selectively used. 1
In the case of polysilane in which two or more Si atoms are bonded in the molecule, the agglomeration phenomenon easily occurs at the mixing stage with the thermosetting resin liquid,
In addition, organic functional groups other than amino groups, such as methyl groups and vinyl groups, do not react directly with the thermosetting resin, so they may separate during the mixing process, or they may associate with each other or polymerize (polymerize) to form atoms. It becomes impossible to disperse Si at the level.
【0016】1分子中に単一のSi原子を含むアミノシ
ラン化合物は、下記の一般式(化1)で表され、通常、
アミン系シランカップリング剤として市販されている。The aminosilane compound containing a single Si atom in one molecule is represented by the following general formula (Formula 1), and is usually
It is commercially available as an amine-based silane coupling agent.
【0017】[0017]
【化1】 [Chemical 1]
【0018】アルコキシ基を含有するアミン系シランカ
ップリング剤としては、3−アミノプロピルトリエトキ
シシラン(SiC9H23NO3)、N−(2−アミノエチル)−3
−アミノプロピルトリメトキシシラン(SiC8H22N2O3) 、
N−(2−アミノエチル)−3−アミノプロピルメチル
ジメトキシシラン(SiC8H22N2O2) 、p−〔N−(2−ア
ミノエチル)アミノメチル〕フェネチルトリメトキシシ
ラン(SiC14H2 6N2O3)、4−アミノブチルジメチルメトキ
シシラン(SiC7H19NO) 、4−アミノブチルトリエトキシ
シラン(SiC10H2 5NO3) 、N−(2−アミノエチル)−3
−アミノプロピルトリス(2−エチルヘキシソ)シラン
(SiC29H6 4N2O3)、p−アミノフェニルトリメトキシシラ
ン(SiC9H15NO3)、p−アミノフェニルトリエトキシシラ
ン(SiC9H15NO3)、3−(1−アミノプロポキシ)3,3
−ジメチル−1−プロペニルトリメトキシシラン(SiC11
H2 5NO4) 、3−アミノプロピルトリス(メトキシエトキ
シエトキシ)シラン(SiC18H4 1NO9) 、3−アミノプロピ
ルジメチルエトキシシラン(SiC7H19NO) 、3−アミノプ
ロピルメチルジエトキシシラン(SiC8H21NO2)、3−アミ
ノプロピルトリメトキシシラン(SiC9H23NO3)、ω−アミ
ノウンデシルトリメトキシシラン(SiC14H3 3NO3) 、1−
トリメトキシシリル−2−(p,m−アミノメチル)フ
ェニルエタン(SiC12H2 1NO3) 、6−(アミノヘキシルア
ミノプロピル)トリメトキシシラン(SiC12H3 0N2O3)、N
−(トリエトキシシリルプロピル)尿素(SiC10H1 4N
2O4)、トリメトキシシリルプロピルジエチレントリアミ
ン(SiC10H2 7N3O3)などが例示される。As the amine-based silane coupling agent containing an alkoxy group, 3-aminopropyltriethoxysilane (SiC 9 H 23 NO 3 ), N- (2-aminoethyl) -3 is used.
-Aminopropyltrimethoxysilane (SiC 8 H 22 N 2 O 3 ),
N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (SiC 8 H 22 N 2 O 2 ), p- [N- (2-aminoethyl) aminomethyl] phenethyltrimethoxysilane (SiC 14 H 2 6 N 2 O 3), 4- aminobutyl dimethylmethoxysilane (SiC 7 H 19 NO), 4- aminobutyl triethoxysilane (SiC 10 H 2 5 NO 3 ), N- (2- aminoethyl) -3
-Aminopropyltris (2-ethylhexiso) silane
(SiC 29 H 6 4 N 2 O 3 ), p-aminophenyltrimethoxysilane (SiC 9 H 15 NO 3 ), p-aminophenyltriethoxysilane (SiC 9 H 15 NO 3 ), 3- (1-amino Propoxy) 3,3
-Dimethyl-1-propenyltrimethoxysilane (SiC 11
H 2 5 NO 4), 3- aminopropyl tris (methoxyethoxy) silane (SiC 18 H 4 1 NO 9 ), 3- aminopropyldimethylethoxysilane (SiC 7 H 19 NO), 3- aminopropyl methyl diethoxy Silane (SiC 8 H 21 NO 2 ), 3-aminopropyltrimethoxysilane (SiC 9 H 23 NO 3 ), ω-aminoundecyltrimethoxysilane (SiC 14 H 3 3 NO 3 ), 1-
Trimethoxysilyl-2- (p, m-aminomethyl) phenylethane (SiC 12 H 2 1 NO 3 ), 6- (aminohexylaminopropyl) trimethoxysilane (SiC 12 H 3 0 N 2 O 3 ), N
- (triethoxysilylpropyl) urea (SiC 10 H 1 4 N
2 O 4), trimethoxysilylpropyl diethylene triamine (SiC 10 H 2 7 N 3 O 3) , etc. are exemplified.
【0019】また、アルコキシ基を含有しないアミン系
シランカップリング剤としては、3−アミノプロピルト
リメチルシラン(SiC6H17N)、3−アミノプロピルジエチ
ルメチルシラン(SiC8H21N)などが挙げられる。Examples of the amine-based silane coupling agent containing no alkoxy group include 3-aminopropyltrimethylsilane (SiC 6 H 17 N) and 3-aminopropyldiethylmethylsilane (SiC 8 H 21 N). To be
【0020】これらのアミノシラン化合物は、炭化する
際にSi以外の有機成分が熱分解して揮散するため可及
的に低分子量のものを用いることが好ましい。したがっ
て、本発明に最も好適なアミノ基含有シラン化合物は3
−アミノプロピルトリエトキシシランである。It is preferable to use these aminosilane compounds having a molecular weight as low as possible because organic components other than Si are thermally decomposed and volatilized during carbonization. Therefore, the most suitable amino group-containing silane compound for the present invention is 3
-Aminopropyltriethoxysilane.
【0021】上記の1分子中に単一のSi原子を含むア
ミノシラン化合物(以下、単に「アミノシラン化合物」
という)は、熱硬化性樹脂液中に直接滴下して撹拌混合
を施す。アミノシラン化合物の滴下量は、最終的にガラ
ス状カーボン組織に占めるSiの含有量が0.1〜15
重量%、好ましくは2.0〜10重量%の範囲になるよ
うに調整する。このSi含有率が0.1重量%未満では
耐酸化性の向上などの複合効果が不十分となり、また1
5重量%を越えると組織中のSiが粒状化して粒界が生
じるようになり、原子レベルの連続相が崩れて微細粒子
の脱離や機械的強度の低下を招くようになる。The above-mentioned aminosilane compound containing a single Si atom in one molecule (hereinafter, simply referred to as "aminosilane compound")
Is dropped directly into the thermosetting resin liquid and stirred and mixed. The dropping amount of the aminosilane compound is such that the Si content in the glassy carbon structure is 0.1 to 15 finally.
The weight is adjusted to be in the range of preferably 2.0 to 10% by weight. If the Si content is less than 0.1% by weight, the combined effects such as improvement in oxidation resistance will be insufficient, and 1
If it exceeds 5% by weight, Si in the structure will be granulated and grain boundaries will occur, and the continuous phase at the atomic level will collapse, resulting in desorption of fine particles and reduction in mechanical strength.
【0022】この段階で滴下混合を進めると、アミノシ
ラン化合物中のアミノ官能基がアルコキシ基に優先して
熱硬化性樹脂と結合し、脱水縮合反応が進行する。例え
ば、3−アミノプロピルトリエトキシシランをフェノー
ル樹脂液中に滴下しながら撹拌混合すると、下記の化2
および化3に示すような二段階の反応が進行する。When the drop-wise mixing proceeds at this stage, the amino functional group in the aminosilane compound is bonded to the thermosetting resin in preference to the alkoxy group, and the dehydration condensation reaction proceeds. For example, when 3-aminopropyltriethoxysilane is dropped into a phenol resin solution and mixed with stirring, the following chemical formula 2
And a two-step reaction as shown in Chemical formula 3 proceeds.
【0023】[0023]
【化2】 [Chemical 2]
【0024】[0024]
【化3】 [Chemical 3]
【0025】上記の反応を介してアミノシラン化合物は
熱硬化性樹脂中に均一に分散した均質組成の溶液とな
る。この段階で、アミノシラン化合物中のアルコキシ基
は熱硬化性樹脂と殆ど反応せず、アミノ基が樹脂成分と
結合した形態はSiを中心として分子が巨大化すること
により相対的にアルコキシ基の反応性は低下する。この
ため、アルコキシ基と樹脂成分との反応は抑制され、同
時にアミノシラン同士の重合に伴う凝集化が抑制される
ため、混合溶液は凝集粒子を含まない極めて均質な連続
相を呈する。Through the above reaction, the aminosilane compound becomes a solution having a homogeneous composition in which it is uniformly dispersed in the thermosetting resin. At this stage, the alkoxy group in the aminosilane compound scarcely reacts with the thermosetting resin, and the form in which the amino group is bonded to the resin component is relatively reactive due to the enormous molecule centering on Si. Will fall. For this reason, the reaction between the alkoxy group and the resin component is suppressed, and at the same time, the aggregation caused by the polymerization of aminosilanes is suppressed, so that the mixed solution exhibits an extremely homogeneous continuous phase containing no aggregated particles.
【0026】熱硬化性樹脂液にアミノシラン化合物は混
合する過程で発熱を伴うため、このままの状態を放置す
ると硬化反応が進行して不均質組成の混合分散状態とな
り易い。このような現象を避けるため、混合後の溶液を
冷却保存して硬化反応を抑制し、その後に緩徐な流動を
与えて混合状態の均質性を高める操作を行うことが好ま
しい。Since the aminosilane compound is heated in the process of mixing with the thermosetting resin liquid, if the state is left as it is, the curing reaction proceeds and the heterogeneous composition is easily mixed and dispersed. In order to avoid such a phenomenon, it is preferable that the solution after mixing is cooled and stored to suppress the curing reaction, and then a slow flow is applied to enhance the homogeneity of the mixed state.
【0027】混合溶液は、必要に応じて真空脱気処理し
て吸蔵する空気を除去したのち、成形する。成形手段
は、通常、注型成形や遠心成形により行われるが、半硬
化した段階で圧縮成形、押出成形、トランスファー成形
などを適用することができる。成形された成形体は、7
0〜150℃の温度に加熱して硬化する。The mixed solution is subjected to vacuum deaeration as necessary to remove the stored air, and then molded. The molding means is usually cast molding or centrifugal molding, but compression molding, extrusion molding, transfer molding or the like can be applied at the semi-cured stage. The molded body is 7
It is cured by heating to a temperature of 0 to 150 ° C.
【0028】ついで、硬化成形体を非酸化性雰囲気に保
持された加熱炉に移し、800℃以上の温度域、好まし
くは1000〜2500℃の範囲で焼成炭化処理を施し
て熱硬化性樹脂成分をガラス状カーボンに転化する。Then, the cured molded article is transferred to a heating furnace kept in a non-oxidizing atmosphere and subjected to a firing carbonization treatment in a temperature range of 800 ° C. or higher, preferably in the range of 1000 to 2500 ° C. to remove the thermosetting resin component. Converts to glassy carbon.
【0029】このようにて得られるSi含有ガラス状カ
ーボン材は、熱硬化性樹脂の成形体を焼成炭化して得ら
れる炭素質構造体であって、原子レベルのSiが熱硬化
性樹脂の炭化により転化したガラス状カーボン組織中に
均一な連続相として分布する複合組織性状を備えてい
る。この組織性状は、Si成分が微粒子状態で分散する
組織とは異なり、組織内にSiとCとの粒界が存在しな
いアロイ状の連続固溶相を呈しており、巨視的にはガラ
ス状カーボン単独の組織構造と実質的に相違が認められ
ず、他方、微視的にはガラス状カーボン組織の一部のC
がSiに置換結合された独特の複合形態となっている。
かかる特有の組織性状により、Si含有量が0.1〜1
5重量%の比較的少ない量比(C/Si原子比=約21
〜2333)でありながら、強度特性を損ねずに耐酸化
性を効果的に向上させるために機能し、過酷な条件下で
も粒子の脱落を伴うことなしに安定した使用状態が発揮
される。The Si-containing glassy carbon material thus obtained is a carbonaceous structure obtained by firing and carbonizing a thermosetting resin compact, and Si at the atomic level is carbonized of the thermosetting resin. It has a composite texture property that is distributed as a uniform continuous phase in the glassy carbon texture converted by. Unlike the structure in which the Si component is dispersed in the form of fine particles, this texture shows an alloy-like continuous solid solution phase in which there is no grain boundary between Si and C, and macroscopically glassy carbon is present. Substantially no difference from the single microstructure is observed, while microscopically a part of the glassy carbon microstructure C
Has a unique composite form in which Si is substitutionally bonded.
Due to such peculiar texture properties, the Si content is 0.1 to 1
A relatively small amount ratio of 5% by weight (C / Si atomic ratio = about 21
˜2333), it functions to effectively improve the oxidation resistance without impairing the strength characteristics, and a stable use state is exhibited even under severe conditions without particles falling off.
【0030】[0030]
【実施例】以下、本発明の実施例を比較例と対比しなが
ら詳細に説明するが、本発明の範囲はこれら実施例に限
定されるものではない。EXAMPLES Examples of the present invention will be described in detail below in comparison with comparative examples, but the scope of the present invention is not limited to these examples.
【0031】実施例1〜6、比較例1
フェノール樹脂初期縮合物〔住友デュレズ(株)製、P
R−940〕を撹拌槽に流入し、水浴中で撹拌しながら
3−アミノプロピルトリエトキシシラン〔東芝シリコー
ン(株)製、TSL8345〕を滴下し、撹拌混合操作
を1時間継続した。この際、3−アミノプロピルトリエ
トキシシランの滴下量を段階的に変え、最終的にガラス
状カーボン組織に占めるSi含有量が0〜17重量%に
なるように設定した。撹拌混合した溶液を冷蔵庫(2
℃)に入れて18時間冷却保存し、ついで再び撹拌槽で
室温により緩やかに撹拌し、24時間に亘り溶液を流動
状態に保持した。この混合液を型枠に流し込み、真空装
置内で脱泡処理を施したのち70〜150℃まで加温し
て硬化成形した。得られた硬化成形体を窒素雰囲気に保
持された加熱炉に移し、10℃/hrの昇温速度で20
00℃まで加熱して焼成炭化した。このようにしてSi
含有量の異なるSi含有ガラス状カーボン材(縦横300m
m 、厚さ5mm) を製造した。得られた各Si含有ガラス
状カーボン材には、組織に亀裂、ポアの発生は認められ
ず、表面状態も極めて平滑であった。Examples 1 to 6 and Comparative Example 1 Phenolic resin initial condensate [P, P, manufactured by Sumitomo Dures Co., Ltd.]
R-940] was introduced into a stirring tank, 3-aminopropyltriethoxysilane [TSL8345 manufactured by Toshiba Silicone Co., Ltd.] was added dropwise while stirring in a water bath, and the stirring and mixing operation was continued for 1 hour. At this time, the dropping amount of 3-aminopropyltriethoxysilane was changed stepwise so that the final Si content in the glassy carbon structure was 0 to 17% by weight. Stir and mix the solution in the refrigerator (2
C.) for 18 hours under cooling and then again gently stirred at room temperature in a stirring tank to keep the solution in a fluidized state for 24 hours. This mixed solution was poured into a mold, defoamed in a vacuum device, and then heated to 70 to 150 ° C. to cure and mold. The obtained cured molded article was transferred to a heating furnace maintained in a nitrogen atmosphere and heated at a temperature rising rate of 10 ° C./hr for 20 hours.
It was heated to 00 ° C and carbonized by firing. In this way Si
Si-containing glassy carbon materials with different contents (300 m in length and width)
m, thickness 5 mm). No cracks or pores were found in the structure of the obtained Si-containing glassy carbonaceous materials, and the surface condition was extremely smooth.
【0032】得られた各Si含有ガラス状カーボン材の
嵩密度、曲げ強度および高温域での耐酸化性を測定し、
その結果を表1に示した。なお、耐酸化性は試料を乾燥
空気中で750℃および950℃の温度に40分間処理
した際の重量減少率として示した。The bulk density, bending strength and oxidation resistance at high temperature of each obtained Si-containing glassy carbon material were measured,
The results are shown in Table 1. The oxidation resistance was shown as the weight loss rate when the sample was treated in dry air at temperatures of 750 ° C. and 950 ° C. for 40 minutes.
【0033】[0033]
【表1】 [Table 1]
【0034】表1の結果から、実施例品はいずれもSi
未含有の比較例に比べて耐酸化性が効果的に向上してい
ることが確認される。しかし、Si含有量が15重量%
以上の実施例5、6では耐酸化性は良好なものの、材質
強度が低下する現象が認められた。From the results shown in Table 1, the products of the Examples are all Si.
It is confirmed that the oxidation resistance is effectively improved as compared with the non-containing Comparative Example. However, if the Si content is 15% by weight
In Examples 5 and 6 above, although the oxidation resistance was good, the phenomenon that the material strength was lowered was observed.
【0035】実施例7
3−アミノプロピルトリエトキシシランを3−アミノプ
ロピルジエチルメチルシランに変え、その他は実施例1
と同一条件でSi含有率5.0重量%のSi含有ガラス
状カーボン材を製造した。この材料の嵩密度は1.59
g/cc、曲げ強度は1063kg/cm2であり、酸化による重
量減少率は750℃処理時で0.2重量%、950℃処
理時で4.0重量%であった。Example 7 3-aminopropyltriethoxysilane was replaced with 3-aminopropyldiethylmethylsilane, and the others were changed to Example 1
Under the same conditions as above, a Si-containing glassy carbon material having a Si content of 5.0% by weight was manufactured. The bulk density of this material is 1.59
The g / cc and bending strength were 1063 kg / cm 2 , and the weight loss rate due to oxidation was 0.2% by weight when treated at 750 ° C. and 4.0% by weight when treated at 950 ° C.
【0036】比較例2
3−アミノプロピルトリエトキシシランをビニルトリエ
トキシシランに変え、その他は実施例8と同一条件でS
i含有率5.0重量%のSi含有ガラス状カーボン材を
製造した。この例では、成形硬化の段階で一部の珪素源
成分が樹脂と分離して成形品表面に凹凸が発生し、得ら
れた製品表面にも組織の不均質を示す凹凸現象が認めら
れた。また、この材料の嵩密度は1.56g/cc、曲げ強
度は920kg/cm2であり、酸化による重量減少率は75
0℃処理時で0.5重量%、950℃処理時で12.1
重量%であり、本発明品に比べて劣るものであった。Comparative Example 2 S-aminopropyltriethoxysilane was changed to vinyltriethoxysilane, and otherwise S was used under the same conditions as in Example 8.
An Si-containing glassy carbon material having an i content of 5.0% by weight was manufactured. In this example, a part of the silicon source component was separated from the resin at the stage of molding and curing, and unevenness was generated on the surface of the molded product, and the surface of the obtained product was also observed to have unevenness indicating the inhomogeneity of the structure. The bulk density of this material is 1.56 g / cc, the bending strength is 920 kg / cm 2 , and the weight loss rate due to oxidation is 75.
0.5% by weight when treated at 0 ° C, 12.1% when treated at 950 ° C
The weight percentage was inferior to the product of the present invention.
【0037】比較例3
3−アミノプロピルトリエトキシシランをジメチルジエ
トキシシランに変え、その他は実施例8と同一条件でS
i含有率5.0重量%のSi含有ガラス状カーボン材を
製造した。この例では、成形硬化の段階で一部の珪素源
成分が二量化して樹脂と分離し、成形品表面に凹凸が発
生し、得られた製品表面にも組織の不均質を示す凹凸現
象が認められた。また、この材料の嵩密度は1.51g/
cc、曲げ強度は1048kg/cm2であり、酸化による重量
減少率は750℃処理時で2.4重量%、950℃処理
時で50.5重量%であり、本発明品に比べて耐酸化性
が著しく劣るものであった。Comparative Example 3 3-aminopropyltriethoxysilane was changed to dimethyldiethoxysilane, and the other conditions were the same as in Example 8 except that S was used.
An Si-containing glassy carbon material having an i content of 5.0% by weight was manufactured. In this example, a part of the silicon source component dimerizes and separates from the resin at the stage of molding and curing, and unevenness occurs on the surface of the molded product, and the unevenness phenomenon indicating the inhomogeneity of the structure is also observed on the surface of the obtained product. Admitted. The bulk density of this material is 1.51 g /
cc, bending strength is 1048 kg / cm 2 , and the weight loss rate due to oxidation is 2.4% by weight at 750 ° C treatment and 50.5% by weight at 950 ° C treatment, which is higher than that of the present invention. It was extremely inferior in sex.
【0038】[0038]
【発明の効果】以上のとおり、本発明に従えばSi成分
を連続相として含有する均質緻密な複合組織を備え、耐
酸化性が向上したSi含有ガラス状カーボン材を工業的
に製造することができる。したがって、組織中からの微
細粒子の脱離や酸化損傷が嫌われる苛酷な条件において
も十分に安定した使用状態が保てるから、半導体用部材
をはじめ多様の用途分野を対象とする工業用部材として
極めて有用である。As described above, according to the present invention, it is possible to industrially manufacture a Si-containing glassy carbon material having a homogeneous and dense composite structure containing a Si component as a continuous phase and having improved oxidation resistance. it can. Therefore, it is possible to maintain a sufficiently stable use state even under severe conditions where desorption of fine particles from the tissue and oxidative damage are disliked, so it is extremely useful as an industrial member for various application fields including semiconductor members. It is useful.
Claims (3)
シラン化合物を熱硬化性樹脂液中に滴下して撹拌混合
し、該混合溶液を成形硬化したのち、硬化成形体を非酸
化性雰囲気下で800℃以上の温度により焼成炭化処理
することを特徴とするSi含有ガラス状カーボン材の製
造方法。1. An aminosilane compound containing a single Si atom in one molecule is dropped into a thermosetting resin liquid, and the mixture is stirred and mixed, and the mixed solution is molded and cured, and then the cured molded product is subjected to a non-oxidizing atmosphere. A method for producing a Si-containing glassy carbon material, which comprises performing a calcination carbonization treatment at a temperature of 800 ° C. or higher below.
シラン化合物が、3−アミノプロピルトリエトキシシラ
ンである請求項1に記載のSiC含有ガラス状カーボン
材の製造方法。2. The method for producing a SiC-containing glassy carbon material according to claim 1, wherein the aminosilane compound containing a single Si atom in one molecule is 3-aminopropyltriethoxysilane.
液を冷却保存して硬化反応を抑制し、その後に緩徐な流
動を与えて混合状態の均質性を高める請求項1又は2記
載のSiC含有ガラス状カーボン材の製造方法。3. The SiC according to claim 1, wherein the mixed solution of the thermosetting resin liquid and the silane compound is cooled and stored to suppress the curing reaction, and then a slow flow is applied to enhance the homogeneity of the mixed state. Method for producing contained glassy carbon material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23469695A JP3396116B2 (en) | 1995-08-21 | 1995-08-21 | Method for producing Si-containing glassy carbon material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23469695A JP3396116B2 (en) | 1995-08-21 | 1995-08-21 | Method for producing Si-containing glassy carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0959065A JPH0959065A (en) | 1997-03-04 |
JP3396116B2 true JP3396116B2 (en) | 2003-04-14 |
Family
ID=16974984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23469695A Expired - Fee Related JP3396116B2 (en) | 1995-08-21 | 1995-08-21 | Method for producing Si-containing glassy carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3396116B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002029844A (en) * | 2000-07-17 | 2002-01-29 | Tokai Carbon Co Ltd | Components for vapor phase growth equipment |
-
1995
- 1995-08-21 JP JP23469695A patent/JP3396116B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0959065A (en) | 1997-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074012B2 (en) | Function-enhanced boron nitride composition and composition made therefrom | |
WO2009096501A1 (en) | Silicon-containing particle, process for producing the same, organic-polymer composition, ceramic, and process for producing the same | |
JPH10114827A (en) | Cross-linker for silazane polymer | |
JPH05254965A (en) | Ceramic matrix composite and production thereof | |
JPH0764642B2 (en) | Manufacturing method of nitride ceramics | |
JP3396119B2 (en) | Method for producing Si-containing glassy carbon material | |
JP3396116B2 (en) | Method for producing Si-containing glassy carbon material | |
KR101040761B1 (en) | Low-resistance silicon carbide sintered body, composition thereof and method for manufacturing same | |
JP3396113B2 (en) | Si-containing glassy carbon material and method for producing the same | |
KR20100115992A (en) | Sic/c composite powders and a high purity and high strength reaction bonded sic using the same | |
JP3487472B2 (en) | Method for producing Si-containing glassy carbon material | |
JPH0967160A (en) | Preparation of monolithic ceramic body and monolithic ceramic body | |
JPH0532451A (en) | Method for manufacturing ceramic sintered body | |
JP4619118B2 (en) | Sputtering target and manufacturing method thereof | |
KR101322796B1 (en) | Method of manufacturing silicon carbide powder with improved yields and silicon carbide powder thereof | |
JPH07157367A (en) | Production of high purity beta-silicon carbide sintered compact for device for producing semiconductor | |
JPH11302076A (en) | Method for producing Si-containing glassy carbon material | |
JP3682094B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JP3447023B2 (en) | Electrode plate for plasma etching | |
JP2000272965A (en) | Si-containing glassy carbon material | |
JP2000272986A (en) | Method for producing glassy carbon-coated carbon material | |
JPH09255427A (en) | Carbon heating element | |
JP2003081682A (en) | Method for producing silicon-impregnated silicon carbide ceramics | |
JPH10114828A (en) | Cross-linker for silazane polymer | |
JP2002308609A (en) | Si dispersed glassy carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |