[go: up one dir, main page]

JPH07153698A - Silicon laminate - Google Patents

Silicon laminate

Info

Publication number
JPH07153698A
JPH07153698A JP5300468A JP30046893A JPH07153698A JP H07153698 A JPH07153698 A JP H07153698A JP 5300468 A JP5300468 A JP 5300468A JP 30046893 A JP30046893 A JP 30046893A JP H07153698 A JPH07153698 A JP H07153698A
Authority
JP
Japan
Prior art keywords
film
silicon
polycrystalline silicon
intermediate film
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5300468A
Other languages
Japanese (ja)
Inventor
Naotake Kono
尚毅 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP5300468A priority Critical patent/JPH07153698A/en
Publication of JPH07153698A publication Critical patent/JPH07153698A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】 【目的】 電気的特性の改善が図れかつシリコン膜が剥
離し難いシリコン積層体を提供すること。 【構成】 このシリコン積層体20は、焼結SiC基板21
と、この表面に製膜されたSiCx (0<x<1)の中
間膜22と、この中間膜22上に製膜された多結晶シリコン
膜23とで構成されている。そして、中間膜22の作用によ
り多結晶シリコン膜24の膜ストレスが低減され、かつ化
学量論化合物であるSiCに較べ炭素原子の比率が少な
いSiCx を中間膜として適用しているためSiの比率
が高い分シリコンとの格子不整合が緩和され、これに伴
い中間膜上に多結晶シリコン膜をエピタキシャル的に成
長させることが可能となる。従って、このシリコン積層
体20を太陽電池等に適用した場合、その光電変換効率の
向上が図れ、かつシリコン膜が剥離し難いためその物理
的耐性も向上すると共に、シリコン層と裏面電極との間
のオーミック性接合も可能となる。
(57) [Abstract] [Purpose] To provide a silicon laminate in which electrical characteristics are improved and a silicon film is not easily peeled off. [Structure] This silicon laminate 20 is a sintered SiC substrate 21.
And an intermediate film 22 of SiCx (0 <x <1) formed on the surface and a polycrystalline silicon film 23 formed on the intermediate film 22. Since the film stress of the polycrystalline silicon film 24 is reduced by the action of the intermediate film 22, and the ratio of carbon atoms is smaller than that of SiC which is a stoichiometric compound, SiCx is applied as the intermediate film, so that the ratio of Si is reduced. Since the lattice mismatch with silicon is alleviated to a high degree, it becomes possible to epitaxially grow the polycrystalline silicon film on the intermediate film. Therefore, when this silicon laminate 20 is applied to a solar cell or the like, its photoelectric conversion efficiency can be improved, and its physical resistance is improved because the silicon film is difficult to peel off, and the silicon layer and the back electrode are It also enables ohmic bonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SiC基材とこの基材
上に製膜された多結晶シリコン膜とでその主要部が構成
され、例えば、太陽電池の一部を構成するシリコン層と
裏面電極部材として一体的に適用可能なシリコン積層体
に係り、特に、その電気的特性の改善が図れるシリコン
積層体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a SiC base material and a polycrystalline silicon film formed on the base material, the main part of which is composed of, for example, a silicon layer forming a part of a solar cell. The present invention relates to a silicon laminate that can be integrally applied as a back surface electrode member, and more particularly to an improvement of a silicon laminate that can improve its electrical characteristics.

【0002】[0002]

【従来の技術】この種のシリコン積層体としては、例え
ば、特開昭55−73450号公報に記載されたものが
知られている。
2. Description of the Related Art As this type of silicon laminate, for example, the one described in Japanese Patent Application Laid-Open No. 55-73450 is known.

【0003】すなわち、このシリコン積層体は、融解槽
に収容された融体シリコン内に一連の穴を備えた網状構
造のカーボンファイバー織布等を浸漬し、上記穴内並び
に表面に融体シリコンを充填並びに被覆すると共に、こ
の融体を結晶化させて製造された構造のものが知られて
おり、例えば、図3に示された太陽電池のシリコン層と
裏面電極部材等として一体的に適用されている。
That is, in this silicon laminate, a carbon fiber woven cloth having a net-like structure having a series of holes is dipped in the melted silicon contained in the melting tank, and the melted silicon is filled in the holes and on the surface. In addition, a structure is known in which the melt is crystallized while being coated, and the melt is crystallized. For example, it is integrally applied as a silicon layer and a back electrode member of the solar cell shown in FIG. There is.

【0004】尚、図3中、aはp型シリコン層、bはn
型シリコン層、cはITO等の反射防止層、dは櫛歯状
電極、eはオーミック性接合層、fは裏面電極をそれぞ
れ示している。
In FIG. 3, a is a p-type silicon layer and b is n.
A type silicon layer, c is an antireflection layer such as ITO, d is a comb-shaped electrode, e is an ohmic contact layer, and f is a backside electrode.

【0005】ところで、このシリコン積層体において
は、上記融体シリコンを保持しかつ結晶化させる一連の
穴を備えた網状構造のカーボンファイバー織布等が適用
されており、このカーボンファイバー織布等が上記穴を
備えている分だけその電気抵抗が大きくなるため、この
シリコン積層体が組込まれた太陽電池についてはその光
電変換効率の向上を図り難い欠点があった。
By the way, in this silicon laminated body, a carbon fiber woven cloth having a net-like structure having a series of holes for holding and crystallizing the melt silicon is applied, and this carbon fiber woven cloth is used. Since the electric resistance increases as much as the holes are provided, there is a drawback that it is difficult to improve the photoelectric conversion efficiency of the solar cell incorporating the silicon laminated body.

【0006】このため、従来においては、通常、熱CV
D法やプラズマCVD法等の製膜手段によりシート状の
炭素系基材や耐熱性金属基材面に多結晶シリコン膜を直
接製膜させてシリコン積層体を製造し、このシリコン積
層体を上記太陽電池等に組込む方法が採られている。
Therefore, in the past, the thermal CV is usually used.
A polycrystalline silicon film is directly formed on the surface of the sheet-shaped carbon-based base material or heat-resistant metal base material by a film-forming means such as D method or plasma CVD method to manufacture a silicon laminated body, and the silicon laminated body is prepared as described above. The method of incorporating into a solar cell etc. is adopted.

【0007】しかし、上記製膜手段を適用して製造され
た後者のシリコン積層体においても以下のような問題が
あった。
However, the latter silicon laminated body manufactured by applying the above-mentioned film forming means also has the following problems.

【0008】まず、シート状の炭素系基材面に対して熱
CVD法等の手段により多結晶シリコン膜を製膜した場
合、上記炭素系基材とシリコンの熱膨張係数の差異に起
因して製膜された多結晶シリコン膜にストレスが生じ易
くなり、このストレスに伴い上記多結晶シリコン膜の膜
厚をある程度の大きさに設定しないと膜内に欠陥やクラ
ックが発生し易く、かつ、上記膜ストレスが原因となっ
て基材から多結晶シリコン膜が剥がれ易くなる問題があ
った。
First, when a polycrystalline silicon film is formed on a sheet-shaped carbon-based substrate surface by means of a thermal CVD method or the like, due to the difference in thermal expansion coefficient between the carbon-based substrate and silicon. Stress is likely to occur in the formed polycrystalline silicon film, defects and cracks easily occur in the film unless the thickness of the polycrystalline silicon film is set to a certain degree due to this stress, and There is a problem that the polycrystalline silicon film is easily peeled from the base material due to the film stress.

【0009】他方、耐熱性金属基材面に上記熱CVD法
等の手段により多結晶シリコン膜を製膜した場合、製膜
された多結晶シリコン膜内に耐熱性金属基材の金属成分
が拡散されてしまうことがあり、この金属成分の拡散具
合により上記多結晶シリコン膜の電気的特性が変動し易
い問題があった。
On the other hand, when a polycrystalline silicon film is formed on the surface of the heat resistant metal substrate by means of the thermal CVD method or the like, the metal component of the heat resistant metal substrate diffuses into the formed polycrystalline silicon film. There is a problem in that the electrical characteristics of the polycrystalline silicon film are likely to fluctuate due to the diffusion of the metal component.

【0010】このような技術的背景の下、本発明者は、
SiC基材とこのSiC基材上に製膜された多結晶シリ
コン膜とでその主要部が構成されるシリコン積層体を考
案した。すなわち、化学的並びに物理的性質がシリコン
と類似するSiCを基材に適用することにより、上記基
材と多結晶シリコン膜間における化学的、物理的親和性
を向上させることが可能になるため、多結晶シリコン製
膜後における膜ストレスの低減が図れると共に基材と多
結晶シリコン膜間のオーミック性接合をも形成でき、更
に、上記多結晶シリコン膜内への金属成分の拡散をも防
止できる利点を有している。
Under such a technical background, the present inventor has
A silicon laminated body was devised, the main part of which is composed of a SiC base material and a polycrystalline silicon film formed on the SiC base material. That is, by applying SiC, which has chemical and physical properties similar to silicon, to the base material, it becomes possible to improve the chemical and physical affinity between the base material and the polycrystalline silicon film. Advantages of reducing film stress after forming a polycrystalline silicon film, forming an ohmic contact between the base material and the polycrystalline silicon film, and preventing the diffusion of metal components into the polycrystalline silicon film. have.

【0011】[0011]

【発明が解決しようとする課題】ところで、基材として
炭化シリコン(SiC)を適用した上記シリコン積層体は
上述したような利点を有しているが、基材を構成する炭
化シリコン(SiC)とシリコン(Si)との格子不整合
に起因して上記基材上に多結晶シリコン膜をエピタキシ
ャル成長させることが困難なため、多結晶シリコン膜の
基材との界面に結晶成長の不十分な未成長領域が形成さ
れてしまうことがあった。
By the way, the above-mentioned silicon laminated body to which silicon carbide (SiC) is applied as a base material has the advantages as described above, but it is not possible to use silicon carbide (SiC) which constitutes the base material. Since it is difficult to epitaxially grow a polycrystalline silicon film on the above-mentioned substrate due to the lattice mismatch with silicon (Si), the ungrown crystal growth at the interface of the polycrystalline silicon film with the substrate is insufficient. Areas were sometimes formed.

【0012】このため、多結晶シリコン膜における電子
移動度等電気的特性の向上を図る上において未だ改善の
余地を有していた。
Therefore, there is still room for improvement in improving the electrical characteristics such as electron mobility in the polycrystalline silicon film.

【0013】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、多結晶シリコン
膜における電子移動度等電気的特性が更に改善されたシ
リコン積層体を提供することにある。
The present invention has been made in view of such a problem, and an object thereof is to provide a silicon laminated body in which electric characteristics such as electron mobility in a polycrystalline silicon film are further improved. Especially.

【0014】[0014]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、シリコン積層体が、SiC基材と、このSi
C基材表面に形成されたSiCx(但し、0<x<1)よ
り成る中間膜と、この中間膜上に製膜された多結晶シリ
コン膜とで構成されることを特徴とするものである。
That is, the invention according to claim 1 is such that the silicon laminate is a SiC base material and the Si base material.
It is characterized in that it is composed of an intermediate film made of SiCx (where 0 <x <1) formed on the surface of the C substrate and a polycrystalline silicon film formed on this intermediate film. .

【0015】そして、このシリコン積層体によれば、S
iC基材と多結晶シリコン膜との間に化学的並びに物理
的にSiCとシリコンの中間的性質を有するSiCx の
中間膜が介在されているため、化学的親和性の向上と多
結晶シリコン製膜後における膜ストレスの低減が図れ
る。更に、化学量論化合物であるSiCに較べ炭素原子
の比率が少ないSiCx (但し、0<x<1)を上記中間
膜として適用しており、この中間膜はSiの比率が高い
分シリコン(Si)との格子不整合が緩和され、これに伴
い上記中間膜上に多結晶シリコン膜をエピタキシャル的
に成長させることが可能になると共に、中間膜との界面
にシリコンの未成長領域が形成され難くなるため、多結
晶シリコン膜における結晶性が向上してその電気的特性
の改善が図れる。
According to this silicon laminate, S
Since an SiCx intermediate film, which has intermediate properties between SiC and silicon, is chemically and physically interposed between the iC base material and the polycrystalline silicon film, the chemical affinity is improved and the polycrystalline silicon film is formed. It is possible to reduce the film stress later. Further, SiCx (where 0 <x <1), which has a smaller ratio of carbon atoms than that of SiC which is a stoichiometric compound, is applied as the intermediate film. ) Is relaxed, and as a result, it becomes possible to epitaxially grow a polycrystalline silicon film on the intermediate film, and it is difficult to form an ungrown region of silicon at the interface with the intermediate film. Therefore, the crystallinity of the polycrystalline silicon film is improved and its electrical characteristics can be improved.

【0016】従って、この発明に係るシリコン積層体を
太陽電池等に適用した場合、電気的特性の改善に伴い光
電変換効率等の向上が図れ、かつ、その膜厚を薄く設定
しても製膜された多結晶シリコン膜には欠陥やクラック
等が存在しないと共にSiC基材からの剥離も起り難い
ためその物理的耐性が向上し、更に、シリコン層と裏面
電極との間のオーミック性接合も可能となる利点を有し
ている。
Therefore, when the silicon laminate according to the present invention is applied to a solar cell or the like, the photoelectric conversion efficiency and the like can be improved along with the improvement of the electrical characteristics, and the film can be formed even if the film thickness is set thin. The polycrystalline silicon film has no defects or cracks, and its peeling from the SiC substrate is difficult to occur, so its physical resistance is improved, and ohmic bonding between the silicon layer and the back electrode is also possible. Has the advantage that

【0017】ここで、上記中間膜を構成するSiCx の
xの値は、0<x<1の範囲内においてSiC基材側で
はSiCに近い大きな値に設定する一方、多結晶シリコ
ン膜側に近付くにつれてxの値が連続的に小さくなるよ
うに設定し中間膜内の組成が厚み方向で変化するよう調
整してもよいし、あるいは、0<x<1の範囲内の特定
の値に設定し中間膜内の組成が厚み方向で略一定となる
よう調整してもよく、上記多結晶シリコン膜の目的とす
る電気的特性に応じて任意に選択できる。
Here, the value of x of SiCx forming the intermediate film is set to a large value close to that of SiC on the SiC substrate side within the range of 0 <x <1, while approaching to the polycrystalline silicon film side. It is possible to set the value of x to decrease continuously with the adjustment and adjust the composition in the interlayer to change in the thickness direction, or to set it to a specific value within the range of 0 <x <1. The composition in the intermediate film may be adjusted to be substantially constant in the thickness direction, and can be arbitrarily selected according to the intended electrical characteristics of the polycrystalline silicon film.

【0018】次に、請求項2に係る発明は、請求項1記
載の発明に係るシリコン積層体を前提とし、SiCx
(但し、0<x<1)より成る中間膜内にn型又はp型ド
ーパントが混入されていることを特徴とするものであ
る。
Next, the invention according to claim 2 is premised on the silicon laminated body according to the invention according to claim 1, and SiCx
(However, it is characterized in that an n-type or p-type dopant is mixed in the intermediate film of 0 <x <1).

【0019】そして、請求項2記載の発明に係るシリコ
ン積層体によれば、SiCx より成る中間膜内にn型又
はp型ドーパントが混入されているため、このn型又は
p型ドーパントの作用によりSiC基材と多結晶シリコ
ン膜との間のオーミック性接合を更に完全に形成するこ
とが可能になると共に中間膜の電気抵抗も下げられ、か
つ多結晶シリコン膜に対して電界が生じるためBSF
(Back Surface Field)効果を得ることも可能となる。
According to the silicon laminated body of the second aspect of the invention, since the n-type or p-type dopant is mixed in the intermediate film made of SiCx, the n-type or p-type dopant acts. It becomes possible to more completely form an ohmic contact between the SiC base material and the polycrystalline silicon film, the electric resistance of the intermediate film is lowered, and an electric field is generated in the polycrystalline silicon film, so that the BSF is formed.
(Back Surface Field) It is also possible to obtain the effect.

【0020】従って、このシリコン積層体についてはB
SF型太陽電池等にそのまま適用することが可能とな
り、かつ、その膜厚を薄く設定しても製膜された多結晶
シリコン膜には欠陥やクラック等が存在しないと共にS
iC基材からの剥離も起こり難いためその物理的耐性の
向上も図れる利点を有している。
Therefore, regarding this silicon laminated body, B
It can be applied as it is to SF type solar cells and the like, and even if the film thickness is set thin, there is no defect or crack in the formed polycrystalline silicon film, and the S
Since peeling from the iC substrate is unlikely to occur, it has an advantage that the physical resistance thereof can be improved.

【0021】尚、SiCx より成る中間膜内に混入され
るn型ドーパントとしては、P(リン)、Sb(アンチ
モン)、As(ひ素)等があり、p型ドーパントとして
は、B(ボロン)、In(インジウム)、Ga(ガリウ
ム)、Al(アルミニウム)等がある。また、これ等の
ドーパントは、中間膜の製膜時にPH3 (フォスフィ
ン)ガス、AsH3(アルシン)ガス、B26(ジボラ
ン)ガス、B(CH33(トリメチルボロン)ガス等の
ドーパントガスを作用させることにより上記中間膜内に
混入させることができる。
As the n-type dopant mixed in the intermediate film made of SiCx, there are P (phosphorus), Sb (antimony), As (arsenic) and the like, and as the p-type dopant, B (boron), There are In (indium), Ga (gallium), Al (aluminum), and the like. Further, these dopants include PH 3 (phosphine) gas, AsH 3 (arsine) gas, B 2 H 6 (diborane) gas, B (CH 3 ) 3 (trimethylboron) gas, etc. during the formation of the intermediate film. It can be mixed into the intermediate film by acting a dopant gas.

【0022】また、請求項1〜2記載の発明に係るシリ
コン積層体の適用対象としては上記太陽電池に限らず、
例えば光センサ等が挙げられる。
Further, the application target of the silicon laminated body according to the present invention is not limited to the above solar cell,
For example, an optical sensor may be used.

【0023】[0023]

【作用】請求項1に係る発明によれば、SiC基材と、
このSiC基材表面に形成されたSiCx (但し、0<
x<1)より成る中間膜と、この中間膜上に製膜された
多結晶シリコン膜とでシリコン積層体が構成されてお
り、化学的並びに物理的にSiCとシリコンの中間的性
質を有するSiCx の中間膜の作用によりSiC基材と
多結晶シリコン膜との化学的親和性の向上と多結晶シリ
コン製膜後における膜ストレスの低減が図れ、かつ、上
記多結晶シリコン膜とSiC基材間のオーミック性接合
をより完全に形成することも可能となる。
According to the invention of claim 1, a SiC substrate,
SiCx formed on the surface of this SiC substrate (where 0 <
xx <1) and a polycrystalline silicon film formed on the intermediate film to form a silicon laminated body, and SiCx chemically and physically has an intermediate property between SiC and silicon. By the action of the intermediate film, the chemical affinity between the SiC base material and the polycrystalline silicon film can be improved and the film stress after the polycrystalline silicon film formation can be reduced, and between the polycrystalline silicon film and the SiC base material. It is also possible to form the ohmic contact more completely.

【0024】更に、化学量論化合物であるSiCに較べ
炭素原子の比率が少ないSiCx(但し、0<x<1)を
上記中間膜として適用しており、この中間膜はSiの比
率が高い分シリコン(Si)との格子不整合が緩和され、
これに伴い上記中間膜上に多結晶シリコン膜をエピタキ
シャル的に成長させることが可能になると共に、中間膜
との界面にシリコンの未成長領域が形成され難くなるた
め、多結晶シリコン膜の結晶性が向上してその電気的特
性の改善を図ることが可能となる。
Further, SiCx (where 0 <x <1), which has a smaller ratio of carbon atoms than that of SiC which is a stoichiometric compound, is applied as the intermediate film, and this intermediate film has a high Si content. The lattice mismatch with silicon (Si) is relaxed,
Along with this, it becomes possible to epitaxially grow a polycrystalline silicon film on the intermediate film, and it becomes difficult to form an ungrown region of silicon at the interface with the intermediate film. It becomes possible to improve the electrical characteristics.

【0025】また、請求項2に係る発明によれば、Si
Cx (但し、0<x<1)より成る上記中間膜内にn型又
はp型ドーパントが混入されているため、このn型又は
p型ドーパントの作用によりSiC基材と多結晶シリコ
ン膜との間のオーミック性接合を更に完全に形成するこ
とが可能になると共に、中間膜の電気抵抗も下げられ、
かつ、多結晶シリコン膜に対して電界が生じるためBS
F(Back Surface Field)効果を得ることも可能とな
る。
According to the invention of claim 2, Si
Since the n-type or p-type dopant is mixed in the intermediate film of Cx (where 0 <x <1), the action of the n-type or p-type dopant causes the SiC substrate and the polycrystalline silicon film to be separated from each other. It becomes possible to more completely form the ohmic contact between them, and the electric resistance of the interlayer film is lowered,
Moreover, since an electric field is generated in the polycrystalline silicon film, BS
It is also possible to obtain the F (Back Surface Field) effect.

【0026】[0026]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0027】[実施例1]まず、この実施例に係るシリ
コン積層体20は、図1に示すように焼結SiC基材2
1と、このSiC基材21上に製膜されかつSiC基材
21から離れるにつれてxの値が連続的に小さく設定さ
れているSiCx (0<x<1)から成る中間膜22
と、この中間膜22上にエピタキシャル的に成長された
多結晶シリコン膜23とでその主要部が構成されてい
る。
[Example 1] First, as shown in FIG. 1, a silicon laminate 20 according to this example has a sintered SiC substrate 2 as shown in FIG.
1 and an intermediate film 22 made of SiCx (0 <x <1) in which a film is formed on the SiC base material 21 and the value of x is continuously set smaller as the distance from the SiC base material 21 increases.
The polycrystalline silicon film 23 epitaxially grown on the intermediate film 22 constitutes the main part.

【0028】そして、このシリコン積層体20は以下に
述べるような方法にて製造されている。すなわち、図2
に示すようにアークプラズマ並びに誘導プラズマを形成
できる高温プラズマ発生部1と、この高温プラズマ発生
部1に隣接して設けられ内部に基材ホルダー7を備える
反応室3とでその主要部が構成される装置内に上記焼結
SiC基材21を配置し、かつ、反応室3内を〜10-3
Torrまで真空引きを行って反応室3内の空気等を排気し
た後、プラズマ点火後の急加熱や局所的過熱を防ぐため
点火に先がけ上記基材ホルダー7に設けられSiC基材
21を水平方向へ移動操作する移動機構(図示せず)を
作動させた。
The silicon laminate 20 is manufactured by the method described below. That is, FIG.
As shown in FIG. 2, a high temperature plasma generating part 1 capable of forming arc plasma and induction plasma, and a reaction chamber 3 provided adjacent to the high temperature plasma generating part 1 and having a base material holder 7 therein, constitute a main part thereof. The sintered SiC base material 21 is placed in the apparatus, and the inside of the reaction chamber 3 is set to 10 -3.
After vacuuming to Torr to exhaust air in the reaction chamber 3, etc., the SiC base material 21 is installed in the base material holder 7 in the horizontal direction prior to ignition to prevent rapid heating and local overheating after plasma ignition. A moving mechanism (not shown) for moving to (1) was operated.

【0029】次に、プラズマ発生部1内へアルゴンガス
と水素ガスを導入すると共にプラズマ点火を行った。電
源は最初に直流を投入しその後に高周波を投入した。
尚、高温プラズマフレームの形状はアルゴンガス、水素
ガスの流量でかなり変化するが安定した状態を比較的容
易に得ることができた。また、この装置にはアルゴンガ
スと水素ガスの導入口並びにシリコン原料の導入口に圧
力制御弁が取付けられ、かつ、反応室3の下流側には排
気系4が設けられておりこれ等機構により反応室3内の
圧力は〜550Torrに保持されている。
Next, an argon gas and a hydrogen gas were introduced into the plasma generating section 1 and plasma ignition was performed. As the power source, direct current was first applied and then high frequency was applied.
The shape of the high temperature plasma flame varied considerably depending on the flow rates of argon gas and hydrogen gas, but a stable state could be obtained relatively easily. In addition, a pressure control valve is attached to the inlets of argon gas and hydrogen gas and an inlet of silicon raw material, and an exhaust system 4 is provided on the downstream side of the reaction chamber 3 in this apparatus. The pressure in the reaction chamber 3 is maintained at ˜550 Torr.

【0030】そして、上記SiC基材21を高温プラズ
マと基材ホルダー7内に設けられた加熱手段8により加
熱してその表面温度が十分上昇していることを放射温度
計を用いてモニターし、かつ、その表面温度がシリコン
の融点直下の温度(1400℃)になった時点で上記ガ
ス導入口からシランガスとメタンガスとの混合ガスを導
入し、シランガス流量については0.5リットル/mi
nに設定する一方、メタンガス流量については0.5リ
ットル/minから連続的に下げて最終的には0リット
ル/minに設定し、この混合ガスをSiC基材21上
で気相反応させてそのxの値が連続的に小さく設定され
たSiCx (0<x<1)から成る中間膜22を形成し
た。
The SiC base material 21 is heated by the high temperature plasma and the heating means 8 provided in the base material holder 7, and the surface temperature of the SiC base material 21 is monitored to be sufficiently elevated by using a radiation thermometer. Further, when the surface temperature reaches a temperature (1400 ° C.) just below the melting point of silicon, a mixed gas of silane gas and methane gas is introduced from the gas inlet, and the silane gas flow rate is 0.5 liter / mi.
On the other hand, the methane gas flow rate is continuously reduced from 0.5 liter / min and finally set to 0 liter / min while the mixed gas is allowed to undergo a gas phase reaction on the SiC base material 21 to An intermediate film 22 made of SiCx (0 <x <1) in which the value of x was continuously set small was formed.

【0031】次いで、SiC基材21の温度を1400
℃に保持する一方、上記シランガスとメタンガスから成
る混合ガスの供給を停止すると共に、シリコン原料の導
入口から定量のシリコン粒子6を導入してこのシリコン
粒子6を高温プラズマ中にて溶融させ、かつ、この溶融
物を上記中間膜22上に製膜させた。
Next, the temperature of the SiC substrate 21 is set to 1400.
While maintaining the temperature at ℃, while stopping the supply of the mixed gas composed of the silane gas and methane gas, a fixed amount of silicon particles 6 is introduced from the inlet of the silicon raw material to melt the silicon particles 6 in high temperature plasma, and The melt was formed on the intermediate film 22.

【0032】そして、この製膜処理を2〜3分間行い、
かつ、シリコン粒子6の供給停止後も高周波を投入して
アルゴンの高温プラズマを継続させ5〜10分程度の冷
却制御を行い膜厚1mm程度の多結晶シリコン膜23を形
成して上記シリコン積層体20を製造した。
Then, this film forming treatment is performed for 2 to 3 minutes,
Further, even after the supply of the silicon particles 6 is stopped, a high frequency is applied to continue the high temperature plasma of argon to control the cooling for about 5 to 10 minutes to form a polycrystalline silicon film 23 with a film thickness of about 1 mm to form the above silicon laminated body. 20 was produced.

【0033】尚、基材ホルダー7に設けられた移動機構
は上記中間膜22の形成前からシリコン膜の冷却制御中
も継続して作動させておりSiC基材21表面への入熱
の均一化を図っている。
The moving mechanism provided on the base material holder 7 is continuously operated before the formation of the intermediate film 22 and during the cooling control of the silicon film, so that the heat input to the surface of the SiC base material 21 is made uniform. I am trying to

【0034】 (製 膜 条 件) 反応室内の圧力 〜550Torr DCプラズマ投入電力 5KW RFプラズマ投入電力 30KW アルゴンガス流量 60〜80リットル/min 水素ガス流量 2〜4リットル/min シランガス流量 0.5リットル/min メタンガス流量 0〜0.5リットル/min シリコン粒子の粒径 75〜150μm シリコン粒子の供給量 1g/min 高温プラズマ発生部と基材間距離 10〜20cm この様にして求められた多結晶シリコン膜23について
TEM観察を行ったところ、膜厚1mm程度でその結晶粒
径は100μm程度に達していることが確認でき、か
つ、その膜特性も均一になっていることが確認された。
(Conditions for Film Formation) Pressure in the reaction chamber to 550 Torr DC plasma input power 5 KW RF plasma input power 30 KW Argon gas flow rate 60 to 80 liters / min Hydrogen gas flow rate 2 to 4 liters / min Silane gas flow rate 0.5 liters / min Methane gas flow rate 0 to 0.5 liter / min Particle size of silicon particles 75 to 150 μm Supply amount of silicon particles 1 g / min Distance between high temperature plasma generating part and base material 10 to 20 cm Polycrystalline silicon film thus obtained As a result of TEM observation of No. 23, it was confirmed that the crystal grain size reached about 100 μm at a film thickness of about 1 mm, and that the film characteristics were also uniform.

【0035】[実施例2]上記中間膜22を形成する
際、メタンガスの流量を0.3リットル/minと定量
条件に設定し、この条件で厚み方向の組成が略一定のS
iCx (x=0.8)から成る中間膜22を形成してい
る点を除き実施例1と略同一の条件でシリコン積層体を
製造した。
[Embodiment 2] When the intermediate film 22 is formed, the flow rate of methane gas is set to 0.3 liter / min under a quantitative condition, and under this condition, the composition in the thickness direction is substantially constant.
A silicon laminate was manufactured under substantially the same conditions as in Example 1 except that the intermediate film 22 made of iCx (x = 0.8) was formed.

【0036】そして、このシリコン積層体20の多結晶
シリコン膜23についてTEM観察を行ったところ、実
施例1に係る多結晶シリコン膜と略同一の特性を有して
いることが確認された。
The TEM observation of the polycrystalline silicon film 23 of the silicon stack 20 confirmed that the polycrystalline silicon film 23 had substantially the same characteristics as the polycrystalline silicon film of Example 1.

【0037】[実施例3]上記SiCx (0<x<1)
の中間膜22を形成する際に、5ミリリットル/min
流量のフォスフィンガスを導入してn型ドーパントのリ
ン(P)が混入された上記中間膜22を形成している点
を除き実施例1と略同一の条件でシリコン積層体を製造
した。
[Embodiment 3] The above-mentioned SiCx (0 <x <1)
5 ml / min when forming the intermediate film 22 of
A silicon stack was manufactured under substantially the same conditions as in Example 1 except that a flow rate of phosphine gas was introduced to form the intermediate film 22 containing n-type dopant phosphorus (P).

【0038】TEM観察の結果、この多結晶シリコン膜
も実施例1に係る多結晶シリコン膜と略同一の特性を有
していた。
As a result of TEM observation, this polycrystalline silicon film also had substantially the same characteristics as the polycrystalline silicon film of Example 1.

【0039】[0039]

【発明の効果】請求項1に係る発明によれば、化学的並
びに物理的にSiCとシリコンの中間的性質を有するS
iCx の中間膜の作用によりSiC基材と多結晶シリコ
ン膜との化学的親和性の向上と多結晶シリコン製膜後に
おける膜ストレスの低減が図れ、かつ、上記多結晶シリ
コン膜とSiC基材間のオーミック性接合をより完全に
形成することも可能となる。更に、化学量論化合物であ
るSiCに較べ炭素原子の比率が少ないSiCx(但し、
0<x<1)を上記中間膜として適用しており、この中
間膜はSiの比率が高い分シリコン(Si)との格子不整
合が緩和され、これに伴い上記中間膜上に多結晶シリコ
ン膜をエピタキシャル的に成長させることが可能になる
と共に、中間膜との界面にシリコンの未成長領域が形成
され難くなるため、多結晶シリコン膜の結晶性が向上し
てその電気的特性の改善を図ることが可能となる。
According to the invention of claim 1, S which chemically and physically has an intermediate property between SiC and silicon.
By the action of the intermediate film of iCx, the chemical affinity between the SiC base material and the polycrystalline silicon film can be improved, and the film stress after the polycrystalline silicon film formation can be reduced, and between the polycrystalline silicon film and the SiC base material. It is also possible to more completely form the ohmic contact. Furthermore, SiCx (however, having a smaller ratio of carbon atoms than SiC which is a stoichiometric compound)
0 <x <1) is applied as the above-mentioned intermediate film, and the lattice mismatch with silicon (Si) is relaxed due to the high Si ratio in this intermediate film. Since it becomes possible to grow the film epitaxially and it becomes difficult to form an ungrown region of silicon at the interface with the intermediate film, the crystallinity of the polycrystalline silicon film is improved and its electrical characteristics are improved. It is possible to plan.

【0040】従って、その電気的特性が良好でかつ多結
晶シリコン膜が剥離し難いシリコン積層体を提供できる
効果を有している。
Therefore, there is an effect that it is possible to provide a silicon laminate having good electrical characteristics and in which the polycrystalline silicon film is hard to peel off.

【0041】また、請求項2に係る発明によれば、Si
Cx の中間膜内に混入されたn型又はp型ドーパントの
作用によりSiC基材と多結晶シリコン膜との間のオー
ミック性接合を更に完全に形成することが可能になると
共に、中間膜の電気抵抗も下げられ、かつ、多結晶シリ
コン膜に対して電界が生じるためBSF(Back Surface
Field)効果を得ることも可能となる。
Further, according to the invention of claim 2, Si
By the action of the n-type or p-type dopant mixed in the Cx interlayer film, it becomes possible to more completely form an ohmic contact between the SiC substrate and the polycrystalline silicon film, and the electrical conductivity of the interlayer film is improved. Since the resistance is lowered and an electric field is generated in the polycrystalline silicon film, BSF (Back Surface
It is also possible to obtain the (Field) effect.

【0042】従って、BSF型太陽電池等にそのまま適
用され、しかも電気的特性が良好でかつ多結晶シリコン
膜が剥離し難いシリコン積層体を提供できる効果を有し
ている。
Therefore, it has an effect of being able to provide a silicon laminated body which is directly applied to a BSF type solar cell or the like and has good electric characteristics and in which the polycrystalline silicon film is not easily peeled off.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るシリコン積層体の概略断面図。FIG. 1 is a schematic cross-sectional view of a silicon stack according to an example.

【図2】実施例の製法に適用された装置の構成概念図。FIG. 2 is a structural conceptual diagram of an apparatus applied to the manufacturing method of the embodiment.

【図3】従来の太陽電池の概略断面図。FIG. 3 is a schematic sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

20 シリコン積層体 21 焼結SiC基材 22 SiCx から成る中間膜 23 多結晶シリコン膜 20 Silicon Laminate 21 Sintered SiC Base Material 22 SiCx Intermediate Film 23 Polycrystalline Silicon Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】SiC基材と、このSiC基材表面に形成
されたSiCx (但し、0<x<1)より成る中間膜と、
この中間膜上に製膜された多結晶シリコン膜とで構成さ
れることを特徴とするシリコン積層体。
1. An SiC base material, and an intermediate film composed of SiCx (where 0 <x <1) formed on the surface of the SiC base material.
A silicon laminated body comprising a polycrystalline silicon film formed on the intermediate film.
【請求項2】SiCx (但し、0<x<1)より成る上記
中間膜内にn型又はp型ドーパントが混入されているこ
とを特徴とする請求項1記載のシリコン積層体。
2. The silicon laminate according to claim 1, wherein an n-type or p-type dopant is mixed in the intermediate film made of SiCx (where 0 <x <1).
JP5300468A 1993-11-30 1993-11-30 Silicon laminate Pending JPH07153698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300468A JPH07153698A (en) 1993-11-30 1993-11-30 Silicon laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300468A JPH07153698A (en) 1993-11-30 1993-11-30 Silicon laminate

Publications (1)

Publication Number Publication Date
JPH07153698A true JPH07153698A (en) 1995-06-16

Family

ID=17885164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300468A Pending JPH07153698A (en) 1993-11-30 1993-11-30 Silicon laminate

Country Status (1)

Country Link
JP (1) JPH07153698A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049523A1 (en) * 1996-09-18 1999-09-30 Deutsche Shell Aktiengesellschaft Ceramic substrate for solar cells with a thin crystalline silicon layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049523A1 (en) * 1996-09-18 1999-09-30 Deutsche Shell Aktiengesellschaft Ceramic substrate for solar cells with a thin crystalline silicon layer

Similar Documents

Publication Publication Date Title
US5373171A (en) Thin film single crystal substrate
US4077818A (en) Process for utilizing low-cost graphite substrates for polycrystalline solar cells
KR900007042B1 (en) Multiple chamber deposition and isolation system and method
US4177473A (en) Amorphous semiconductor member and method of making the same
US7745831B2 (en) Diamond-like carbon electronic devices and methods of manufacture
JP4906169B2 (en) Method for manufacturing a coated workpiece, use of the method and apparatus therefor
JP2009545165A (en) Method and system for manufacturing polycrystalline silicon and silicon-germanium solar cells
EP1548848A1 (en) Amorphous silicon solar cell
JPS6349751B2 (en)
US5007971A (en) Pin heterojunction photovoltaic elements with polycrystal BP(H,F) semiconductor film
JP2007201336A (en) Method for forming semiconductor laminate
JP7400389B2 (en) Silicon carbide polycrystalline film, silicon carbide polycrystalline film manufacturing method, and silicon carbide polycrystalline film forming apparatus
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
JPH07153698A (en) Silicon laminate
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JPH07153687A (en) Silicon laminate
Green et al. High gain Si Ge heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition
JPH07153697A (en) Silicon laminate
JPH06224140A (en) Manufacture of silicon laminate
JPH03101274A (en) Manufacture of amorphous solar cell
JPH06140647A (en) Laminated silicon element
Wang et al. Polycrystalline silicon thin‐film solar cells on various substrates
JP2675174B2 (en) Solar cell manufacturing method
JPH0554692B2 (en)
JPH06208961A (en) Manufacture of silicon lamination body