[go: up one dir, main page]

JPH07153687A - Silicon laminate - Google Patents

Silicon laminate

Info

Publication number
JPH07153687A
JPH07153687A JP5300466A JP30046693A JPH07153687A JP H07153687 A JPH07153687 A JP H07153687A JP 5300466 A JP5300466 A JP 5300466A JP 30046693 A JP30046693 A JP 30046693A JP H07153687 A JPH07153687 A JP H07153687A
Authority
JP
Japan
Prior art keywords
film
silicon
polycrystalline silicon
intermediate film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5300466A
Other languages
Japanese (ja)
Inventor
Naotake Kono
尚毅 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP5300466A priority Critical patent/JPH07153687A/en
Publication of JPH07153687A publication Critical patent/JPH07153687A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【目的】 電気的特性の改善が図れかつシリコン膜が剥
離し難いシリコン積層体を提供すること。 【構成】 このシリコン積層体20は、カーボンファイバ
ー織布21と、この表面に形成されたSiC膜22と、この
SiC膜22上に製膜されたSiCx (0<x<1)の中
間膜23と、この中間膜23上に製膜された多結晶シリコン
膜24とで構成されている。そして、中間膜23の作用によ
り多結晶シリコン膜24の膜ストレスが低減され、かつ化
学量論化合物であるSiCに代えてSiCx を中間膜と
して適用しているためSiの比率が高い分シリコンとの
格子不整合が緩和され、これに伴い中間膜上に多結晶シ
リコン膜をエピタキシャル的に成長させることが可能と
なる。従って、このシリコン積層体20を太陽電池等に適
用した場合、その光電変換効率の向上が図れ、シリコン
膜が剥離し難いためその物理的耐性も向上し、シリコン
層と裏面電極との間のオーミック性接合も可能となる。
(57) [Abstract] [Purpose] To provide a silicon laminate in which electrical characteristics are improved and a silicon film is not easily peeled off. [Structure] This silicon laminate 20 comprises a carbon fiber woven cloth 21, an SiC film 22 formed on the surface thereof, and an intermediate film 23 of SiCx (0 <x <1) formed on the SiC film 22. And a polycrystalline silicon film 24 formed on the intermediate film 23. The film stress of the polycrystalline silicon film 24 is reduced by the action of the intermediate film 23, and since SiCx is applied as the intermediate film instead of SiC which is a stoichiometric compound, the ratio of Si is high. The lattice mismatch is relaxed, and with this, the polycrystalline silicon film can be epitaxially grown on the intermediate film. Therefore, when this silicon laminate 20 is applied to a solar cell or the like, its photoelectric conversion efficiency can be improved, and the physical resistance thereof is also improved because the silicon film is difficult to peel off, and the ohmic contact between the silicon layer and the back electrode is improved. Sexual joining is also possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系基材とこの基材
上に製膜された多結晶シリコン膜とでその主要部が構成
され、例えば、太陽電池の一部を構成するシリコン層と
裏面電極部材として一体的に適用可能なシリコン積層体
に係り、特に、その電気的特性の改善が図れるシリコン
積層体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-based base material and a polycrystalline silicon film formed on the base material, the main part of which is composed of, for example, a silicon layer forming a part of a solar cell. The present invention relates to a silicon laminate that can be integrally applied as a back electrode member, and more particularly to an improvement of a silicon laminate that can improve its electrical characteristics.

【0002】[0002]

【従来の技術】炭素系基材を適用したこの種のシリコン
積層体としては、例えば、特開昭55−73450号公
報に記載されたものが知られている。
2. Description of the Related Art As a silicon laminate of this type to which a carbon-based material is applied, for example, one described in JP-A-55-73450 is known.

【0003】すなわち、このシリコン積層体は、融解槽
に収容された融体シリコン内に一連の穴を備えた網状構
造のカーボンファイバー織布等を浸漬し、上記穴内並び
に表面に融体シリコンを充填並びに被覆すると共に、こ
の融体を結晶化させて製造された構造のものが知られて
おり、例えば、図4に示された太陽電池のシリコン層と
裏面電極部材等として一体的に適用されている。
That is, in this silicon laminate, a carbon fiber woven cloth having a net-like structure having a series of holes is dipped in the melted silicon contained in the melting tank, and the melted silicon is filled in the holes and on the surface. Also known is a structure manufactured by crystallizing this melt together with coating. For example, it is integrally applied as a silicon layer and a back electrode member of the solar cell shown in FIG. There is.

【0004】尚、図4中、aはp型シリコン層、bはn
型シリコン層、cはITO等の反射防止層、dは櫛歯状
電極、eはオーミック性接合層、fは裏面電極をそれぞ
れ示している。
In FIG. 4, a is a p-type silicon layer and b is n.
A type silicon layer, c is an antireflection layer such as ITO, d is a comb-shaped electrode, e is an ohmic contact layer, and f is a backside electrode.

【0005】ところで、このシリコン積層体において
は、上記融体シリコンを保持しかつ結晶化させる一連の
穴を備えた網状構造のカーボンファイバー織布等が適用
されており、このカーボンファイバー織布等が上記穴を
備えている分だけその電気抵抗が大きくなるため、この
シリコン積層体が組込まれた太陽電池についてはその光
電変換効率の向上を図り難い欠点があった。
By the way, in this silicon laminated body, a carbon fiber woven cloth having a net-like structure having a series of holes for holding and crystallizing the melt silicon is applied, and this carbon fiber woven cloth is used. Since the electric resistance increases as much as the holes are provided, there is a drawback that it is difficult to improve the photoelectric conversion efficiency of the solar cell incorporating the silicon laminated body.

【0006】このため、従来においては、通常、熱CV
D法やプラズマCVD法等の製膜手段によりシート状の
炭素系基材面に多結晶シリコン膜を直接製膜させてシリ
コン積層体を製造し、このシリコン積層体を上記太陽電
池等に組込む方法が採られている。
Therefore, in the past, the thermal CV is usually used.
A method for producing a silicon laminated body by directly forming a polycrystalline silicon film on a sheet-shaped carbon-based substrate surface by a film forming means such as D method or plasma CVD method, and incorporating the silicon laminated body into the solar cell or the like. Is taken.

【0007】しかし、上記製膜手段を適用して製造され
た後者のシリコン積層体においても以下のような問題が
あった。
However, the latter silicon laminated body manufactured by applying the above-mentioned film forming means also has the following problems.

【0008】すなわち、シート状の炭素系基材面に対し
て熱CVD法等の手段により多結晶シリコン膜を製膜し
た場合、上記炭素系基材とシリコンの熱膨張係数の差異
に起因して製膜された多結晶シリコン膜にストレスが生
じ易くなり、このストレスに伴い上記多結晶シリコン膜
の膜厚をある程度の大きさに設定しないと膜内に欠陥や
クラックが発生し易く、かつ、上記膜ストレスが原因と
なって基材から多結晶シリコン膜が剥がれ易くなる問題
があった。
That is, when a polycrystalline silicon film is formed on a sheet-like carbon-based substrate surface by means of a thermal CVD method or the like, due to the difference in thermal expansion coefficient between the carbon-based substrate and silicon. Stress is likely to occur in the formed polycrystalline silicon film, defects and cracks easily occur in the film unless the thickness of the polycrystalline silicon film is set to a certain degree due to this stress, and There is a problem that the polycrystalline silicon film is easily peeled from the base material due to the film stress.

【0009】そこでこのような問題を解消するため、本
出願人は、シート状の炭素系基材と、この炭素系基材表
面の全域に亘り形成された炭化シリコン(SiC)より成
る中間膜と、この中間膜上に製膜された多結晶シリコン
膜とでその主要部が構成されるシリコン積層体を既に提
案している。
In order to solve such a problem, the applicant of the present invention has a sheet-shaped carbon-based substrate and an intermediate film made of silicon carbide (SiC) formed over the entire surface of the carbon-based substrate. , A polycrystalline silicon film formed on this intermediate film and a silicon laminated body, the main part of which is constituted by the polycrystalline silicon film, have already been proposed.

【0010】そして、このシリコン積層体によれば、小
孔を有さないシート状の炭素系基材を適用しているため
電気抵抗の低減が図れ、かつ、この基材と多結晶シリコ
ン膜との間には化学的並びに物理的に炭素とシリコンの
中間的性質を有する炭化シリコン(SiC)の中間膜を介
在しているため、化学的親和性の向上と多結晶シリコン
製膜後における膜ストレスの低減が図れると共に多結晶
シリコン膜と炭素系基材間のオーミック性接合をも形成
できる利点を有するものであった。
Further, according to this silicon laminated body, since the sheet-like carbonaceous base material having no small holes is applied, the electric resistance can be reduced, and the base material and the polycrystalline silicon film are Since an intermediate film of silicon carbide (SiC), which has the intermediate properties of carbon and silicon chemically and physically, is interposed between them, the chemical affinity is improved and the film stress after the polycrystalline silicon film is formed. It has an advantage that the ohmic contact between the polycrystalline silicon film and the carbon-based substrate can be formed as well.

【0011】[0011]

【発明が解決しようとする課題】ところで、炭化シリコ
ン(SiC)の中間膜を介在した上記シリコン積層体は上
述したような利点を有しているが、中間膜を構成する炭
化シリコン(SiC)とシリコン(Si)との格子不整合
に起因して上記中間膜上に多結晶シリコン膜をエピタキ
シャル成長させることが困難なため、多結晶シリコン膜
の中間膜との界面に結晶成長の不十分な未成長領域が形
成されてしまうことがあった。
By the way, the above-mentioned silicon laminated body having the intermediate film of silicon carbide (SiC) interposed has the advantages as described above, but the silicon carbide (SiC) constituting the intermediate film and Since it is difficult to epitaxially grow the polycrystalline silicon film on the intermediate film due to the lattice mismatch with silicon (Si), the ungrown crystal growth at the interface between the polycrystalline silicon film and the intermediate film is insufficient. Areas were sometimes formed.

【0012】このため、多結晶シリコン膜における電子
移動度等電気的特性の向上を図る上において未だ改善の
余地を有していた。
Therefore, there is still room for improvement in improving the electrical characteristics such as electron mobility in the polycrystalline silicon film.

【0013】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、多結晶シリコン
膜における電子移動度等電気的特性が更に改善されたシ
リコン積層体を提供することにある。
The present invention has been made in view of such a problem, and an object thereof is to provide a silicon laminated body in which electric characteristics such as electron mobility in a polycrystalline silicon film are further improved. Especially.

【0014】[0014]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、シリコン積層体が、炭素系基材と、この炭素
系基材表面に形成されたSiCx(但し、0<x<1)よ
り成る中間膜と、この中間膜上に製膜された多結晶シリ
コン膜とで構成されることを特徴とするものである。
[Means for Solving the Problems] That is, in the invention according to claim 1, the silicon laminated body comprises a carbon-based substrate and SiCx formed on the surface of the carbon-based substrate (where 0 <x <1). It is characterized in that it is composed of an intermediate film made of and a polycrystalline silicon film formed on this intermediate film.

【0015】そして、このシリコン積層体によれば、炭
素系基材と多結晶シリコン膜との間に化学的並びに物理
的に炭素とシリコンの中間的性質を有するSiCx の中
間膜が介在されているため、化学的親和性の向上と多結
晶シリコン製膜後における膜ストレスの低減が図れると
共に多結晶シリコン膜と炭素系基材間のオーミック性接
合をも形成することが可能となる。更に、化学量論化合
物であるSiCに代えて炭素原子の比率が少ないSiC
x (但し、0<x<1)を上記中間膜として適用してお
り、この中間膜はSiCで構成された従来の中間膜に較
べてSiの比率が高い分シリコン(Si)との格子不整合
が緩和され、これに伴い上記中間膜上に多結晶シリコン
膜をエピタキシャル的に成長させることが可能になると
共に、中間膜との界面にシリコンの未成長領域が形成さ
れ難くなるため、多結晶シリコン膜における結晶性が向
上してその電気的特性の改善が図れる。
According to this silicon laminate, an SiCx intermediate film having intermediate properties between carbon and silicon is chemically and physically interposed between the carbon-based substrate and the polycrystalline silicon film. Therefore, it is possible to improve the chemical affinity and reduce the film stress after the polycrystalline silicon film is formed, and it is also possible to form an ohmic contact between the polycrystalline silicon film and the carbon-based substrate. Furthermore, in place of SiC, which is a stoichiometric compound, SiC containing a small proportion of carbon atoms
x (however, 0 <x <1) is applied as the above-mentioned intermediate film, and this intermediate film has a high Si ratio as compared with the conventional intermediate film made of SiC, and therefore has a lattice mismatch with silicon (Si). The matching is relaxed, and as a result, it becomes possible to epitaxially grow the polycrystalline silicon film on the intermediate film, and it becomes difficult to form an ungrown region of silicon at the interface with the intermediate film. The crystallinity of the silicon film is improved and its electrical characteristics can be improved.

【0016】従って、この発明に係るシリコン積層体を
太陽電池等に適用した場合、電気的特性の改善に伴い光
電変換効率等の向上が図れ、かつ、その膜厚を薄く設定
しても製膜された多結晶シリコン膜には欠陥やクラック
等が存在しないと共に炭素系基材からの剥離も起り難い
ためその物理的耐性が向上し、更に、シリコン層と裏面
電極との間のオーミック性接合も可能となる利点を有し
ている。
Therefore, when the silicon laminate according to the present invention is applied to a solar cell or the like, the photoelectric conversion efficiency and the like can be improved along with the improvement of the electrical characteristics, and the film can be formed even if the film thickness is set thin. The polycrystalline silicon film thus formed has no defects or cracks and is less likely to be peeled off from the carbon-based base material, so that its physical resistance is improved, and ohmic contact between the silicon layer and the back electrode is also formed. It has the advantage of being possible.

【0017】ここで、上記中間膜を構成するSiCx の
xの値は、0<x<1の範囲内において炭素系基材側で
はSiCに近い大きな値に設定する一方、多結晶シリコ
ン膜側に近付くにつれてxの値が連続的に小さくなるよ
うに設定し中間膜内の組成が厚み方向で変化するよう調
整してもよいし、あるいは、0<x<1の範囲内の特定
の値に設定し中間膜内の組成が厚み方向で略一定となる
よう調整してもよく、上記多結晶シリコン膜の目的とす
る電気的特性に応じて任意に選択できる。
Here, the value of x of SiCx forming the above-mentioned intermediate film is set to a large value close to SiC on the carbon-based base material side within the range of 0 <x <1, while on the polycrystalline silicon film side. It may be set so that the value of x becomes smaller continuously as it gets closer, and the composition in the interlayer film may be adjusted to change in the thickness direction, or set to a specific value within the range of 0 <x <1. However, the composition in the intermediate film may be adjusted to be substantially constant in the thickness direction, and can be arbitrarily selected according to the intended electrical characteristics of the polycrystalline silicon film.

【0018】尚、この発明において適用できる炭素系基
材としては、例えば、表面並びに内部構造が密状態にあ
るグラファイト板や炭素−炭素複合材料(例えば、カー
ボンファイバーと炭化された樹脂成分とでその主要部が
構成されたもの等)、及び、密に編まれて表面並びに内
部構造が密状態にあるカーボンファイバー織布等が挙げ
られ、更に、疎に編まれた網状構造のカーボンファイバ
ー織布の適用も可能である。
The carbon-based substrate applicable in the present invention is, for example, a graphite plate having a dense surface and internal structure or a carbon-carbon composite material (for example, carbon fiber and carbonized resin component). (A main part is constituted), and a carbon fiber woven cloth having a densely knitted surface and internal structure, and the like. Application is also possible.

【0019】次に、この発明においては中間膜の材料と
してシリコンより炭素成分の比率が少ないSiCx (但
し、0<x<1)を適用しているため上記中間膜が緻密
な原子配列の結晶形にならない場合があり、かかる場合
に炭素系基材側から上記中間膜内に不純物原子が拡散さ
れ易く、かつ、この不純物原子が多結晶シリコン膜側へ
も拡散されてしまうことがある。請求項2に係る発明は
このような現象を防止する発明に関するものである。
Next, in the present invention, since SiCx (where 0 <x <1) having a smaller carbon content ratio than silicon is applied as the material of the intermediate film, the intermediate film has a dense atomic arrangement of crystalline form. In some cases, the impurity atoms may easily diffuse from the carbon-based substrate side into the intermediate film, and the impurity atoms may also diffuse into the polycrystalline silicon film side. The invention according to claim 2 relates to an invention for preventing such a phenomenon.

【0020】すなわち、請求項2に係る発明は、請求項
1記載の発明に係るシリコン積層体を前提とし、上記炭
素系基材と中間膜との間に化学量論化合物であるSiC
膜が介在していることを特徴とするものである。
That is, the invention according to claim 2 is premised on the silicon laminate according to the invention according to claim 1, and is a stoichiometric SiC compound between the carbon-based substrate and the intermediate film.
It is characterized in that a film is interposed.

【0021】そして、請求項2記載の発明に係るシリコ
ン積層体によれば、炭素系基材と中間膜との間に化学量
論化合物であるSiC膜が介在しているため、SiC膜
の作用により炭素系基材側から上記中間膜内への不純物
原子の拡散が起こり難くなり、多結晶シリコン膜内への
不純物原子の拡散を防止することが可能となる。
According to the silicon laminate of the second aspect of the present invention, since the SiC film, which is a stoichiometric compound, is interposed between the carbon-based substrate and the intermediate film, the function of the SiC film is increased. As a result, diffusion of impurity atoms from the carbon-based base material side into the intermediate film becomes difficult to occur, and diffusion of impurity atoms into the polycrystalline silicon film can be prevented.

【0022】次に、請求項3に係る発明は、請求項1又
は2記載の発明に係るシリコン積層体を前提とし、Si
Cx (但し、0<x<1)より成る中間膜内にn型又はp
型ドーパントが混入されていることを特徴とするもので
ある。
Next, the invention according to claim 3 is based on the silicon laminated body according to the invention according to claim 1 or 2,
N-type or p-type in the interlayer film of Cx (where 0 <x <1)
It is characterized in that a type dopant is mixed therein.

【0023】そして、請求項3記載の発明に係るシリコ
ン積層体によれば、SiCx より成る中間膜内にn型又
はp型ドーパントが混入されているため、このn型又は
p型ドーパントの作用により炭素系基材と多結晶シリコ
ン膜との間のオーミック性接合をより完全に形成するこ
とが可能になると共に中間膜の電気抵抗も下げられ、か
つ、多結晶シリコン膜に対して電界が生じるためBSF
(Back Surface Field)効果を得ることも可能となる。
According to the third aspect of the present invention, since the n-type or p-type dopant is mixed in the intermediate film made of SiCx, the n-type or p-type dopant acts. Since it becomes possible to more completely form an ohmic contact between the carbon-based substrate and the polycrystalline silicon film, the electric resistance of the intermediate film is lowered, and an electric field is generated with respect to the polycrystalline silicon film. BSF
(Back Surface Field) It is also possible to obtain the effect.

【0024】従って、このシリコン積層体についてはB
SF型太陽電池等にそのまま適用することが可能とな
り、かつ、その膜厚を薄く設定しても製膜された多結晶
シリコン膜には欠陥やクラック等が存在しないと共に炭
素系基材からの剥離も起こり難いためその物理的耐性の
向上も図れる利点を有している。
Therefore, for this silicon laminate, B
It can be applied as it is to SF type solar cells, etc., and even if the film thickness is set thin, there is no defect or crack in the formed polycrystalline silicon film, and peeling from the carbon-based substrate. Since it is unlikely to occur, it has an advantage that its physical resistance can be improved.

【0025】尚、SiCx より成る中間膜内に混入され
るn型ドーパントとしては、P(リン)、Sb(アンチ
モン)、As(ひ素)等があり、p型ドーパントとして
は、B(ボロン)、In(インジウム)、Ga(ガリウ
ム)、Al(アルミニウム)等がある。また、これ等の
ドーパントは、中間膜の製膜時にPH3 (フォスフィ
ン)ガス、AsH3(アルシン)ガス、B26(ジボラ
ン)ガス、B(CH33(トリメチルボロン)ガス等の
ドーパントガスを作用させることにより上記中間膜内に
混入させることができる。
The n-type dopant mixed in the intermediate film made of SiCx includes P (phosphorus), Sb (antimony), As (arsenic), etc., and the p-type dopant is B (boron), There are In (indium), Ga (gallium), Al (aluminum), and the like. Further, these dopants include PH 3 (phosphine) gas, AsH 3 (arsine) gas, B 2 H 6 (diborane) gas, B (CH 3 ) 3 (trimethylboron) gas, etc. during the formation of the intermediate film. It can be mixed into the intermediate film by acting a dopant gas.

【0026】また、請求項1〜3記載の発明に係るシリ
コン積層体の適用対象としては上記太陽電池に限らず、
例えば光センサ等が挙げられる。
Further, the application target of the silicon laminate according to the inventions of claims 1 to 3 is not limited to the above solar cell,
For example, an optical sensor may be used.

【0027】[0027]

【作用】請求項1に係る発明によれば、炭素系基材と、
この炭素系基材表面に形成されたSiCx (但し、0<
x<1)より成る中間膜と、この中間膜上に製膜された
多結晶シリコン膜とでシリコン積層体が構成されてお
り、化学的並びに物理的に炭素とシリコンの中間的性質
を有するSiCx の中間膜の作用により炭素系基材と多
結晶シリコン膜との化学的親和性の向上と上記多結晶シ
リコン製膜後における膜ストレスの低減が図れ、かつ、
多結晶シリコン膜と炭素系基材間のオーミック性接合を
も形成することが可能となる。
According to the invention of claim 1, a carbon-based substrate,
SiCx formed on the surface of the carbon-based substrate (where 0 <
xx <1), and a polycrystalline silicon film formed on the intermediate film to form a silicon laminate, which is chemically and physically SiCx having an intermediate property between carbon and silicon. By the action of the intermediate film of, the chemical affinity between the carbon-based substrate and the polycrystalline silicon film can be improved and the film stress after the polycrystalline silicon film formation can be reduced, and
It also becomes possible to form an ohmic contact between the polycrystalline silicon film and the carbon-based substrate.

【0028】更に、化学量論化合物であるSiCに代え
て炭素原子の比率が少ないSiCx(但し、0<x<1)
を上記中間膜として適用しており、この中間膜はSiC
で構成された従来の中間膜に較べてSiの比率が高い分
シリコン(Si)との格子不整合が緩和され、これに伴い
上記中間膜上に多結晶シリコン膜をエピタキシャル的に
成長させることが可能になると共に中間膜との界面にシ
リコンの未成長領域が形成され難くなるため、多結晶シ
リコン膜の結晶性が向上してその電気的特性の改善を図
ることが可能となる。
Further, in place of SiC which is a stoichiometric compound, SiCx having a small ratio of carbon atoms (where 0 <x <1)
Is applied as the intermediate film, and this intermediate film is made of SiC.
The lattice mismatch with silicon (Si) is relaxed because the proportion of Si is higher than that of the conventional intermediate film constituted by, so that a polycrystalline silicon film can be epitaxially grown on the intermediate film. In addition to this, it becomes difficult to form an ungrown region of silicon at the interface with the intermediate film, so that the crystallinity of the polycrystalline silicon film is improved and its electrical characteristics can be improved.

【0029】また、請求項2に係る発明によれば、炭素
系基材と中間膜との間に化学量論化合物であるSiC膜
が介在しているため、このSiC膜の作用により炭素系
基材側から上記中間膜内への不純物原子の拡散が起こり
難くなり、多結晶シリコン膜内への不純物原子の拡散を
防止することが可能となる。
Further, according to the invention of claim 2, since the SiC film which is a stoichiometric compound is interposed between the carbon-based substrate and the intermediate film, the carbon-based group is acted by the action of this SiC film. Diffusion of impurity atoms from the material side into the intermediate film is less likely to occur, and diffusion of impurity atoms into the polycrystalline silicon film can be prevented.

【0030】一方、請求項3に係る発明によれば、Si
Cx (但し、0<x<1)より成る上記中間膜内にn型又
はp型ドーパントが混入されているため、このn型又は
p型ドーパントの作用により炭素系基材と多結晶シリコ
ン膜との間のオーミック性接合をより完全に形成するこ
とが可能になると共に中間膜の電気抵抗も下げられ、か
つ、多結晶シリコン膜に対して電界が生じるためBSF
(Back Surface Field)効果を得ることも可能となる。
On the other hand, according to the invention of claim 3, Si
Since the n-type or p-type dopant is mixed in the intermediate film of Cx (where 0 <x <1), the carbon-based substrate and the polycrystalline silicon film are formed by the action of the n-type or p-type dopant. It becomes possible to more completely form an ohmic junction between them, the electric resistance of the intermediate film is lowered, and an electric field is generated in the polycrystalline silicon film, so that the BSF is formed.
(Back Surface Field) It is also possible to obtain the effect.

【0031】[0031]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0032】[実施例1]まず、この実施例に係るシリ
コン積層体20は、図1に示すようにその全域に亘り小
孔を有していないシート状のカーボンファイバー織布2
1と、このカーボンファイバー織布21表面の全域に亘
り形成されたSiC膜22と、このSiC膜22上に製
膜されかつSiC膜22から離れるにつれてxの値が連
続的に小さく設定されているSiCx (0<x<1)か
ら成る中間膜23と、この中間膜23上にエピタキシャ
ル的に成長された多結晶シリコン膜24とでその主要部
が構成されている。
Example 1 First, as shown in FIG. 1, the silicon laminated body 20 according to this example has a sheet-like carbon fiber woven fabric 2 having no small holes throughout its area.
1, the SiC film 22 formed over the entire area of the surface of the carbon fiber woven fabric 21, the film formed on the SiC film 22, and the value of x is continuously set smaller as the distance from the SiC film 22 increases. An intermediate film 23 made of SiCx (0 <x <1) and a polycrystalline silicon film 24 epitaxially grown on this intermediate film 23 constitute the main part.

【0033】尚、上記カーボンファイバー織布21に
は、以下の表1にその特性が示されている株式会社有沢
製作所のカーボンファイバークロス(商品名 CFS
1140)が適用されている。
The carbon fiber woven fabric 21 has carbon fiber cloth (trade name: CFS) manufactured by Arisawa Manufacturing Co., Ltd. whose characteristics are shown in Table 1 below.
1140) has been applied.

【0034】[0034]

【表1】 そして、このシリコン積層体20は以下に述べるような
方法にて製造されている。すなわち、図2に示すように
アークプラズマ並びに誘導プラズマを形成できる高温プ
ラズマ発生部1と、この高温プラズマ発生部1に隣接し
て設けられ内部に基材ホルダー7を備える反応室3とで
その主要部が構成される装置内に上記カーボンファイバ
ー織布21を配置し、かつ、反応室3内を〜10-3Torr
まで真空引きを行って反応室3内の空気等を排気した
後、プラズマ点火後の急加熱や局所的過熱を防ぐため点
火に先がけ上記基材ホルダー7に設けられカーボンファ
イバー織布21を水平方向へ移動操作する移動機構(図
示せず)を作動させた。
[Table 1] The silicon stack 20 is manufactured by the method described below. That is, as shown in FIG. 2, a high temperature plasma generating part 1 capable of forming arc plasma and induction plasma, and a reaction chamber 3 provided adjacent to the high temperature plasma generating part 1 and having a substrate holder 7 therein, The carbon fiber woven fabric 21 is arranged in the apparatus constituting the part, and the inside of the reaction chamber 3 is -10 −3 Torr.
After evacuating the air and the like in the reaction chamber 3 until the plasma chamber is ignited, the carbon fiber woven cloth 21 is horizontally attached to the base material holder 7 prior to ignition in order to prevent rapid heating and local overheating after plasma ignition. A moving mechanism (not shown) for moving to (1) was operated.

【0035】次に、プラズマ発生部1内へアルゴンガス
と水素ガスを導入すると共にプラズマ点火を行った。電
源は最初に直流を投入しその後に高周波を投入した。
尚、高温プラズマフレームの形状はアルゴンガス、水素
ガスの流量でかなり変化するが安定した状態を比較的容
易に得ることができた。また、この装置にはアルゴンガ
スと水素ガスの導入口並びにシリコン原料の導入口に圧
力制御弁が取付けられ、かつ、反応室3の下流側には排
気系4が設けられておりこれ等機構により反応室3内の
圧力は〜550Torrに保持されている。
Next, an argon gas and a hydrogen gas were introduced into the plasma generating section 1 and plasma ignition was performed. As the power source, direct current was first applied and then high frequency was applied.
The shape of the high temperature plasma flame varied considerably depending on the flow rates of argon gas and hydrogen gas, but a stable state could be obtained relatively easily. In addition, a pressure control valve is attached to the inlets of argon gas and hydrogen gas and an inlet of silicon raw material, and an exhaust system 4 is provided on the downstream side of the reaction chamber 3 in this apparatus. The pressure in the reaction chamber 3 is maintained at ˜550 Torr.

【0036】そして、上記カーボンファイバー織布21
を高温プラズマと基材ホルダー7内に設けられた加熱手
段8により加熱してその表面温度が十分上昇しているこ
とを放射温度計を用いてモニターし、かつ、その表面温
度がシリコンの融点直下の温度(1400℃)になった
時点で上記ガス導入口からシランガスとメタンガスとの
混合ガスを導入し、この混合ガスをカーボンファイバー
織布21上で気相反応させてSiC膜22を形成した。
尚、SiC膜22形成時のシランガス流量とメタンガス
流量は共に0.5リットル/minに設定されている。
次に、SiC膜22を形成した後、メタンガスの流量の
みを0.5リットル/minから連続的に下げて最終的
には0リットル/minにすると共に、SiC膜22上
で気相反応させてそのxの値が連続的に小さく設定され
たSiCx (0<x<1)から成る中間膜23を形成し
た。
Then, the carbon fiber woven fabric 21
Is heated by high-temperature plasma and heating means 8 provided in the substrate holder 7 to monitor its surface temperature sufficiently using a radiation thermometer, and the surface temperature is directly below the melting point of silicon. When the temperature (1400 ° C.) was reached, a mixed gas of silane gas and methane gas was introduced from the gas inlet, and the mixed gas was subjected to a gas phase reaction on the carbon fiber woven fabric 21 to form the SiC film 22.
The silane gas flow rate and the methane gas flow rate at the time of forming the SiC film 22 are both set to 0.5 liter / min.
Next, after the SiC film 22 is formed, only the flow rate of methane gas is continuously decreased from 0.5 liter / min to finally 0 liter / min, and a gas phase reaction is performed on the SiC film 22. An intermediate film 23 made of SiCx (0 <x <1) whose x value was continuously set small was formed.

【0037】次いで、カーボンファイバー織布21の温
度を1400℃に保持する一方、上記シランガスとメタ
ンガスから成る混合ガスの供給を停止すると共に、シリ
コン原料の導入口から定量のシリコン粒子6を導入して
このシリコン粒子6を高温プラズマ中にて溶融させ、か
つ、この溶融物を上記中間膜23上に製膜させた。
Next, while maintaining the temperature of the carbon fiber woven fabric 21 at 1400 ° C., the supply of the mixed gas composed of the silane gas and the methane gas is stopped and a fixed amount of silicon particles 6 is introduced from the inlet of the silicon raw material. The silicon particles 6 were melted in high temperature plasma, and the melted material was formed on the intermediate film 23.

【0038】そして、この製膜処理を2〜3分間行い、
かつ、シリコン粒子6の供給停止後も高周波を投入して
アルゴンの高温プラズマを継続させ5〜10分程度の冷
却制御を行い膜厚1mm程度の多結晶シリコン膜24を形
成して上記シリコン積層体20を製造した。
Then, this film forming treatment is performed for 2 to 3 minutes,
Further, even after the supply of the silicon particles 6 is stopped, a high frequency is applied to continue the high temperature plasma of argon to control the cooling for about 5 to 10 minutes to form a polycrystalline silicon film 24 with a film thickness of about 1 mm to form the above silicon laminated body. 20 was produced.

【0039】尚、基材ホルダー7に設けられた移動機構
は上記SiC膜22の形成前からシリコン膜の冷却制御
中も継続して作動させておりカーボンファイバー織布2
1表面への入熱の均一化を図っている。
The moving mechanism provided on the substrate holder 7 is continuously operated before the formation of the SiC film 22 and during the cooling control of the silicon film.
(1) The heat input to the surface is made uniform.

【0040】 (製 膜 条 件) 反応室内の圧力 〜550Torr DCプラズマ投入電力 5KW RFプラズマ投入電力 30KW アルゴンガス流量 60〜80リットル/min 水素ガス流量 2〜4リットル/min シランガス流量 0.5リットル/min メタンガス流量 0〜0.5リットル/min シリコン粒子の粒径 75〜150μm シリコン粒子の供給量 1g/min 高温プラズマ発生部と織布間距離 10〜20cm この様にして求められた多結晶シリコン膜24について
TEM観察を行ったところ、膜厚1mm程度でその結晶粒
径は100μm程度に達していることが確認でき、か
つ、その膜特性も均一になっていることが確認された。
(Conditions for Film Formation) Pressure in the reaction chamber to 550 Torr DC plasma input power 5 KW RF plasma input power 30 KW Argon gas flow rate 60 to 80 liters / min Hydrogen gas flow rate 2 to 4 liters / min Silane gas flow rate 0.5 liters / min Methane gas flow rate 0 to 0.5 liter / min Particle size of silicon particles 75 to 150 μm Supply amount of silicon particles 1 g / min Distance between high temperature plasma generating part and woven fabric 10 to 20 cm Polycrystalline silicon film thus obtained As a result of TEM observation of No. 24, it was confirmed that the crystal grain size reached about 100 μm at a film thickness of about 1 mm, and that the film characteristics were also uniform.

【0041】[実施例2]上記中間膜23を形成する
際、メタンガスの流量を0.3リットル/minと定量
条件に設定し、この条件で厚み方向の組成が略一定のS
iCx (x=0.8)から成る中間膜23を形成してい
る点を除き実施例1と略同一の条件でシリコン積層体を
製造した。
[Example 2] When the intermediate film 23 was formed, the flow rate of methane gas was set to 0.3 liter / min under quantitative conditions, and under this condition, the composition in the thickness direction was substantially constant.
A silicon laminated body was manufactured under substantially the same conditions as in Example 1 except that the intermediate film 23 made of iCx (x = 0.8) was formed.

【0042】そして、このシリコン積層体20の多結晶
シリコン膜24についてTEM観察を行ったところ、実
施例1に係る多結晶シリコン膜と略同一の特性を有して
いることが確認された。
Then, the TEM observation of the polycrystalline silicon film 24 of the silicon laminated body 20 confirmed that the polycrystalline silicon film 24 had substantially the same characteristics as the polycrystalline silicon film of Example 1.

【0043】[実施例3]反応室内の圧力を略60To
rrに設定し、かつ、DCプラズマ投入電力を10K
W、RFプラズマ投入電力を50KWに設定すると共
に、上記SiC膜22の形成を省略した点を除き実施例
1と略同一の条件で、カーボンファイバー織布21と、
SiCx (0<x<1)の中間膜23と、多結晶シリコ
ン膜24とで構成されるシリコン積層体20を製造した
(図3参照)。
[Embodiment 3] The pressure in the reaction chamber is set to about 60 To.
rr and set DC plasma input power to 10K
W, the RF plasma input power was set to 50 kW, and the carbon fiber woven fabric 21 was prepared under substantially the same conditions as in Example 1 except that the formation of the SiC film 22 was omitted.
A silicon laminated body 20 composed of an intermediate film 23 of SiCx (0 <x <1) and a polycrystalline silicon film 24 was manufactured (see FIG. 3).

【0044】TEM観察の結果、この多結晶シリコン膜
も実施例1に係る多結晶シリコン膜と略同一の特性を有
していた。
As a result of TEM observation, this polycrystalline silicon film also had substantially the same characteristics as the polycrystalline silicon film according to Example 1.

【0045】[実施例4]上記SiCx (0<x<1)
の中間膜23を形成する際に、5ミリリットル/min
流量のフォスフィンガスを導入してn型ドーパントのリ
ン(P)が混入された上記中間膜23を形成している点
を除き実施例1と略同一の条件でシリコン積層体を製造
した。
[Embodiment 4] SiCx (0 <x <1)
5 ml / min when forming the intermediate film 23 of
A silicon laminate was manufactured under substantially the same conditions as in Example 1 except that a flow rate of phosphine gas was introduced to form the intermediate film 23 in which the n-type dopant phosphorus (P) was mixed.

【0046】TEM観察の結果、この多結晶シリコン膜
も実施例1に係る多結晶シリコン膜と略同一の特性を有
していた。
As a result of TEM observation, this polycrystalline silicon film also had substantially the same characteristics as the polycrystalline silicon film of Example 1.

【0047】[0047]

【発明の効果】請求項1に係る発明によれば、化学的並
びに物理的に炭素とシリコンの中間的性質を有するSi
Cx の中間膜の作用により炭素系基材と多結晶シリコン
膜との化学的親和性の向上と上記多結晶シリコン製膜後
における膜ストレスの低減が図れ、かつ、多結晶シリコ
ン膜と炭素系基材間のオーミック性接合をも形成するこ
とが可能となる。更に、化学量論化合物であるSiCに
代えて炭素原子の比率が少ないSiCx を上記中間膜と
して適用しており、この中間膜はSiCで構成された従
来の中間膜に較べてSiの比率が高い分シリコン(Si)
との格子不整合が緩和され、これに伴い上記中間膜上に
多結晶シリコン膜をエピタキシャル的に成長させること
が可能になると共に中間膜との界面にシリコンの未成長
領域が形成され難くなるため、多結晶シリコン膜の結晶
性が向上してその電気的特性の改善を図ることが可能と
なる。
According to the invention of claim 1, Si having the intermediate properties of carbon and silicon chemically and physically is obtained.
By the action of the intermediate film of Cx, the chemical affinity between the carbon-based substrate and the polycrystalline silicon film can be improved and the film stress after the polycrystalline silicon film formation can be reduced, and the polycrystalline silicon film and the carbon-based substrate can be reduced. It also becomes possible to form an ohmic bond between the materials. Further, instead of SiC which is a stoichiometric compound, SiCx having a small ratio of carbon atoms is applied as the above-mentioned intermediate film, and this intermediate film has a high Si ratio as compared with the conventional intermediate film composed of SiC. Silicon (Si)
Lattice mismatch with the above is relaxed, and as a result, it becomes possible to grow a polycrystalline silicon film epitaxially on the intermediate film and it becomes difficult to form an ungrown region of silicon at the interface with the intermediate film. Thus, the crystallinity of the polycrystalline silicon film is improved, and the electrical characteristics of the polycrystalline silicon film can be improved.

【0048】従って、その電気的特性が良好でかつ多結
晶シリコン膜が剥離し難いシリコン積層体を提供できる
効果を有している。
Therefore, there is an effect that it is possible to provide a silicon laminated body which has good electrical characteristics and in which the polycrystalline silicon film is difficult to peel off.

【0049】また、請求項2に係る発明によれば、炭素
系基材と中間膜との間に介在された化学量論化合物であ
るSiC膜の作用により炭素系基材側から上記中間膜内
への不純物原子の拡散が起こり難くなり、これに伴い多
結晶シリコン膜内への不純物原子の拡散も防止できるた
め電気的特性が更に良好なシリコン積層体を提供できる
効果を有している。
According to the second aspect of the present invention, the inside of the intermediate film is changed from the carbon-based substrate side by the action of the SiC film which is the stoichiometric compound interposed between the carbon-based substrate and the intermediate film. Diffusion of impurity atoms into the polycrystalline silicon film is less likely to occur, and along with this, diffusion of impurity atoms into the polycrystalline silicon film can also be prevented, which has the effect of providing a silicon laminate with even better electrical characteristics.

【0050】一方、請求項3に係る発明によれば、Si
Cx の中間膜内に混入されたn型又はp型ドーパントの
作用により炭素系基材と多結晶シリコン膜との間のオー
ミック性接合をより完全に形成できると共に中間膜の電
気抵抗も下げられ、かつ、多結晶シリコン膜に対して電
界が生じるためBSF(Back Surface Field)効果を得
ることも可能となる。
On the other hand, according to the invention of claim 3, Si
By the action of the n-type or p-type dopant mixed in the intermediate film of Cx, the ohmic contact between the carbon-based substrate and the polycrystalline silicon film can be more completely formed, and the electric resistance of the intermediate film can be lowered. Moreover, since an electric field is generated in the polycrystalline silicon film, it is possible to obtain a BSF (Back Surface Field) effect.

【0051】従って、BSF型太陽電池等にそのまま適
用され、しかも電気的特性が良好でかつ多結晶シリコン
膜が剥離し難いシリコン積層体を提供できる効果を有し
ている。
Therefore, it has an effect of being able to provide a silicon laminated body which is directly applied to a BSF solar cell or the like and has good electric characteristics and in which the polycrystalline silicon film is difficult to peel off.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係るシリコン積層体の概略断面図。FIG. 1 is a schematic cross-sectional view of a silicon stack according to a first embodiment.

【図2】実施例1の製法に適用された装置の構成概念
図。
FIG. 2 is a structural conceptual diagram of an apparatus applied to the manufacturing method of the first embodiment.

【図3】実施例3に係るシリコン積層体の概略断面図。FIG. 3 is a schematic cross-sectional view of a silicon stack according to Example 3.

【図4】従来の太陽電池の概略断面図。FIG. 4 is a schematic cross-sectional view of a conventional solar cell.

【符号の説明】[Explanation of symbols]

20 シリコン積層体 21 カーボンファイバー織布 22 SiC膜 23 SiCx から成る中間膜 24 多結晶シリコン膜 20 Silicon Laminate 21 Carbon Fiber Woven 22 SiC Film 23 Intermediate Film Made of SiCx 24 Polycrystalline Silicon Film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 31/04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素系基材と、この炭素系基材表面に形成
されたSiCx (但し、0<x<1)より成る中間膜と、
この中間膜上に製膜された多結晶シリコン膜とで構成さ
れることを特徴とするシリコン積層体。
1. A carbon-based substrate, and an intermediate film made of SiCx (where 0 <x <1) formed on the surface of the carbon-based substrate,
A silicon laminated body comprising a polycrystalline silicon film formed on the intermediate film.
【請求項2】上記炭素系基材と中間膜との間にSiC膜
が介在していることを特徴とする請求項1記載のシリコ
ン積層体。
2. The silicon laminate according to claim 1, wherein a SiC film is interposed between the carbon-based base material and the intermediate film.
【請求項3】SiCx (但し、0<x<1)より成る上記
中間膜内にn型又はp型ドーパントが混入されているこ
とを特徴とする請求項1又は2記載のシリコン積層体。
3. The silicon laminate according to claim 1, wherein an n-type or p-type dopant is mixed in the intermediate film made of SiCx (where 0 <x <1).
JP5300466A 1993-11-30 1993-11-30 Silicon laminate Pending JPH07153687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300466A JPH07153687A (en) 1993-11-30 1993-11-30 Silicon laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300466A JPH07153687A (en) 1993-11-30 1993-11-30 Silicon laminate

Publications (1)

Publication Number Publication Date
JPH07153687A true JPH07153687A (en) 1995-06-16

Family

ID=17885139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300466A Pending JPH07153687A (en) 1993-11-30 1993-11-30 Silicon laminate

Country Status (1)

Country Link
JP (1) JPH07153687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172519A (en) * 2020-01-17 2020-05-19 中国航发北京航空材料研究院 Device and method for continuously preparing composite interface layer on surface of silicon carbide fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172519A (en) * 2020-01-17 2020-05-19 中国航发北京航空材料研究院 Device and method for continuously preparing composite interface layer on surface of silicon carbide fiber

Similar Documents

Publication Publication Date Title
EP0635874B1 (en) Thin film single crystal substrate
KR900007042B1 (en) Multiple chamber deposition and isolation system and method
US4177473A (en) Amorphous semiconductor member and method of making the same
Kong et al. Epitaxial growth of β‐SiC thin films on 6 H α‐SiC substrates via chemical vapor deposition
US3961997A (en) Fabrication of polycrystalline solar cells on low-cost substrates
US7745831B2 (en) Diamond-like carbon electronic devices and methods of manufacture
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US5007971A (en) Pin heterojunction photovoltaic elements with polycrystal BP(H,F) semiconductor film
JP2020077851A (en) Method for manufacturing a solar cell having a heterojunction and a diffused and penetrated emitter region
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
CA1187622A (en) Semiconductor device having a body of amorphous silicon
US4710786A (en) Wide band gap semiconductor alloy material
US5211761A (en) Photovoltaic device and manufacturing method thereof
Chu et al. Deposition and properties of silicon on graphite substrates
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPH07153687A (en) Silicon laminate
JPH07153698A (en) Silicon laminate
Green et al. High gain Si Ge heterojunction bipolar transistors grown by rapid thermal chemical vapor deposition
JPH06224140A (en) Manufacture of silicon laminate
JPH07153697A (en) Silicon laminate
JP2664056B2 (en) Thin film single crystal substrate
JP2592809B2 (en) Method for manufacturing photovoltaic element
JPH06140647A (en) Laminated silicon element
JP2001044456A (en) Solar cell manufacturing method
Wang et al. Polycrystalline silicon thin‐film solar cells on various substrates