JPH07139844A - Absorption refrigerator - Google Patents
Absorption refrigeratorInfo
- Publication number
- JPH07139844A JPH07139844A JP28302593A JP28302593A JPH07139844A JP H07139844 A JPH07139844 A JP H07139844A JP 28302593 A JP28302593 A JP 28302593A JP 28302593 A JP28302593 A JP 28302593A JP H07139844 A JPH07139844 A JP H07139844A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- absorber
- regenerator
- absorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 78
- 239000003507 refrigerant Substances 0.000 claims abstract description 282
- 239000006096 absorbing agent Substances 0.000 claims abstract description 115
- 239000007788 liquid Substances 0.000 claims abstract description 90
- 239000000243 solution Substances 0.000 claims abstract description 66
- 239000007921 spray Substances 0.000 claims abstract description 50
- 238000012546 transfer Methods 0.000 claims abstract description 41
- 238000002156 mixing Methods 0.000 claims abstract description 32
- 238000001816 cooling Methods 0.000 claims abstract description 27
- 239000012266 salt solution Substances 0.000 claims abstract description 9
- 239000002250 absorbent Substances 0.000 claims description 60
- 230000002745 absorbent Effects 0.000 claims description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 239000000498 cooling water Substances 0.000 claims description 18
- 239000012267 brine Substances 0.000 claims description 17
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 17
- 238000001704 evaporation Methods 0.000 claims description 15
- 230000008020 evaporation Effects 0.000 claims description 11
- 239000003463 adsorbent Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 claims 2
- 238000003303 reheating Methods 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 230000008014 freezing Effects 0.000 abstract description 15
- 238000007710 freezing Methods 0.000 abstract description 15
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000005057 refrigeration Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 19
- 230000008929 regeneration Effects 0.000 description 12
- 238000011069 regeneration method Methods 0.000 description 12
- 238000009835 boiling Methods 0.000 description 11
- 238000005507 spraying Methods 0.000 description 7
- 238000005338 heat storage Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- IPLONMMJNGTUAI-UHFFFAOYSA-M lithium;bromide;hydrate Chemical compound [Li+].O.[Br-] IPLONMMJNGTUAI-UHFFFAOYSA-M 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は水冷媒の吸収冷凍機にか
かり、特に冷蔵倉庫や野菜の保存など、0℃〜5℃程度
の低温度利用に適した吸収冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-refrigerant absorption refrigerating machine, and more particularly to an absorption refrigerating machine suitable for use at a low temperature of about 0 ° C to 5 ° C such as refrigerating warehouses and storing vegetables.
【0002】[0002]
【従来の技術】従来、0℃以下の低温を発生させる方法
としてはフロンR22やアンモニアなど沸点が0℃以下
の冷媒を利用した吸収冷凍機がある。しかし、フロンR
22はオゾン層の保護に不都合な冷媒で今後は使用が規
制されるべき冷媒であり、また、アンモニアは有毒な冷
媒である。さらに、再生器の圧力が大気圧よりも高圧で
丈夫な容器を必要とし、取扱いにも十分な注意が必要で
あるために、人口密集の狭い国土の日本では普及してい
ない。2. Description of the Related Art Conventionally, as a method for generating a low temperature of 0 ° C. or lower, there is an absorption refrigerator using a refrigerant having a boiling point of 0 ° C. or lower such as Freon R22 and ammonia. However, Freon R
Reference numeral 22 is a refrigerant that is inconvenient for protecting the ozone layer and is a refrigerant whose use should be restricted in the future, and ammonia is a toxic refrigerant. Furthermore, since the pressure of the regenerator is higher than atmospheric pressure, a strong container is required, and due care is required in handling, it is not popular in Japan, which is a country with a narrow population density.
【0003】一方、水を冷媒とする吸収冷凍機は再生器
の圧力が真空のために極めて安全であり、ビル空調用熱
源機として広く普及している。その構成は基本的に、再
生器、凝縮器、蒸発器、吸収器、液熱交換器、溶液循環
ポンプなどを動作的に配管接続し、吸収剤には臭化リチ
ウムなどの吸湿性塩を用いている。再生器では吸収剤溶
液を都市ガスの燃焼ガスなどの熱源Hで加熱して沸騰さ
せ、発生した冷媒蒸気(水蒸気)を凝縮器2で冷却水で
冷却して凝縮液化させて液冷媒にする。このようにして
凝縮器で生成した液冷媒を蒸発器4に導き、伝熱管上に
散布して約4〜6℃で蒸発させその蒸発潜熱で管内を流
れる冷水を冷却して7℃程度の冷水を得て、冷房必要個
所に循環している。On the other hand, the absorption refrigerator using water as a refrigerant is extremely safe because the pressure of the regenerator is vacuum, and is widely used as a heat source machine for building air conditioning. The structure is basically such that a regenerator, condenser, evaporator, absorber, liquid heat exchanger, solution circulation pump, etc. are operatively connected by piping, and a hygroscopic salt such as lithium bromide is used as an absorbent. ing. In the regenerator, the absorbent solution is heated by a heat source H such as a combustion gas of city gas to boil, and the generated refrigerant vapor (steam) is cooled by cooling water in the condenser 2 to be condensed and liquefied into a liquid refrigerant. The liquid refrigerant thus generated in the condenser is guided to the evaporator 4, sprayed on the heat transfer tube and evaporated at about 4 to 6 ° C, and the cold water flowing in the tube is cooled by the latent heat of evaporation to cool the cold water at about 7 ° C. Is obtained and is circulated to the places that require cooling.
【0004】なお、この種のものとして関連するものに
は、たとえば特開平5−93555号公報が挙げられ
る。A related example of this type is disclosed in Japanese Patent Application Laid-Open No. 5-93555.
【0005】[0005]
【発明が解決しようとする課題】上記従来の技術では冷
媒である水が凍結するために0℃程度の低温を必要とす
る冷蔵に利用できなかった。すなわち、0℃以下の蒸発
圧力のもとで冷媒である水を蒸発器4の管群上に散布す
る際に蒸発潜熱を冷媒自身から奪うために冷媒自身が凍
結してしまい、伝熱管上を流下しないためサイクルを構
成できなかった。The above-mentioned conventional techniques cannot be used for refrigeration requiring a low temperature of about 0 ° C. because water as a refrigerant is frozen. That is, when water, which is a refrigerant, is sprayed onto the tube group of the evaporator 4 under the evaporating pressure of 0 ° C. or less, the refrigerant itself is frozen because the latent heat of evaporation is taken from the refrigerant itself, and the refrigerant on the heat transfer tubes is frozen. The cycle could not be constructed because it did not flow down.
【0006】本発明の目的は、0℃程度の低温を必要と
する冷蔵に利用可能な、低圧で安全に作動する吸収冷凍
機を提供することにある。An object of the present invention is to provide an absorption refrigerating machine which can be safely operated at a low pressure and which can be used for refrigeration requiring a low temperature of about 0 ° C.
【0007】[0007]
【課題を解決するための手段】上記目的は伝熱管群を有
する蒸発器、吸収器、再生器、凝縮器、溶液循環ポン
プ、冷媒スプレ−ポンプを動作的に接続した配管を備
え、塩類水溶液を吸収剤とする吸収冷凍機において、前
記蒸発器の伝熱管群に散布する冷媒は前記吸収剤を混入
する、ことによって達成される。The above object is provided with a pipe having an evaporator having a heat transfer tube group, an absorber, a regenerator, a condenser, a solution circulation pump and a refrigerant spray pump operatively connected, In an absorption refrigerating machine using an absorbent, the refrigerant dispersed in the heat transfer tube group of the evaporator is achieved by mixing the absorbent.
【0008】また上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、再生器、凝縮器、溶液循
環ポンプ、冷媒スプレポンプを動作的に接続した配管を
備え、塩類水溶液を吸収剤とする吸収冷凍機において、
前記第1蒸発器で前記第2吸収器を冷却する熱交換関係
に配置するとともに、前記第2蒸発器で蒸発した冷媒蒸
気が前記第2吸収器に導入され、前記第1蒸発器で蒸発
した冷媒蒸気が冷却水で冷却される前記第1吸収器に導
入され、前記第2蒸発器に吸収剤混合手段を配置して、
散布冷媒が混合冷媒で熱媒体と熱交換させること、によ
って達成される。Further, the above-mentioned object is provided with a pipe operatively connecting a first evaporator, a second evaporator, a first absorber, a second absorber, a regenerator, a condenser, a solution circulation pump and a refrigerant spray pump, In an absorption refrigerator using an aqueous salt solution as an absorbent,
The first evaporator is arranged in a heat exchange relationship for cooling the second absorber, and the refrigerant vapor evaporated in the second evaporator is introduced into the second absorber and evaporated in the first evaporator. Refrigerant vapor is introduced into the first absorber cooled by cooling water, the absorbent mixture means is arranged in the second evaporator,
This is achieved by allowing the sprayed refrigerant to exchange heat with the heat medium with a mixed refrigerant.
【0009】更に上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、再生器、凝縮器、液熱交
換器、溶液循環ポンプ、冷媒スプレ−ポンプを動作的に
接続した配管を備え、塩類水溶液を吸収剤とする吸収冷
凍機において、前記第1蒸発器の液冷媒で前記第2吸収
器を冷却する熱交換関係に配置するとともに、前記第2
蒸発器で蒸発した冷媒蒸気が前記第2吸収器に導入さ
れ、前記第1蒸発器で蒸発した冷媒蒸気が冷却水で冷却
される前記第1吸収器に導入され、前記第1蒸発器か
ら、前記第2蒸発器に送られる液冷媒流路に吸収剤混合
手段を配置して、前記第2蒸発器の散布冷媒が混合冷媒
で熱媒体と熱交換させること、によって達成される。Further, the above object is to operate the first evaporator, the second evaporator, the first absorber, the second absorber, the regenerator, the condenser, the liquid heat exchanger, the solution circulation pump, and the refrigerant spray pump. In an absorption refrigerating machine, which has a pipe connected to, and uses an aqueous salt solution as an absorbent, it is arranged in a heat exchange relationship for cooling the second absorber with the liquid refrigerant of the first evaporator, and
The refrigerant vapor evaporated in the evaporator is introduced into the second absorber, the refrigerant vapor evaporated in the first evaporator is introduced into the first absorber cooled by cooling water, and from the first evaporator, This is achieved by disposing an absorbent mixing means in the liquid refrigerant flow path sent to the second evaporator and allowing the sprayed refrigerant of the second evaporator to exchange heat with the heat medium as the mixed refrigerant.
【0010】更に上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、高温再生器、低温再生
器、凝縮器、液熱交換器、溶液循環ポンプ、冷媒スプレ
−ポンプを動作的に接続した配管を備え、塩類水溶液を
吸収剤とする吸収冷凍機において、前記第1蒸発器から
は冷水を生成させ、前記第2蒸発器からは前記第1蒸発
器で生成されるよりも低温のブラインを生成させ、2つ
の温度のことなる冷水を負荷側に接続すること、によっ
て達成される。Further, the above object is to provide a first evaporator, a second evaporator, a first absorber, a second absorber, a high temperature regenerator, a low temperature regenerator, a condenser, a liquid heat exchanger, a solution circulation pump, a refrigerant spray. -In an absorption refrigerator having a pipe operatively connected to a pump and using an aqueous salt solution as an absorbent, cold water is generated from the first evaporator, and cold water is generated from the second evaporator from the first evaporator. This is achieved by producing a colder brine than that produced and connecting cold water of two different temperatures to the load side.
【0011】更に上記目的は、第1蒸発器、第2蒸発
器、第1吸収器、第2吸収器、高温再生器、低温再生
器、凝縮器、液熱交換器、溶液循環ポンプ、冷媒スプレ
−ポンプを動作的に接続した配管を備え、塩類水溶液を
吸収剤とする吸収冷凍機において、前記第1蒸発器の液
冷媒または冷水で前記第2吸収器を冷却する熱交換関係
に配置するとともに、前記第2蒸発器で蒸発した冷媒蒸
気が前記第2吸収器に導入され、前記第1蒸発器で蒸発
した冷媒蒸気が冷却水で冷却される前記第1吸収器に導
入される構成にし、前記第1蒸発器から前記第2蒸発器
に送られる液冷媒流路に吸収剤混合手段を配置して、前
記第2蒸発器の散布冷媒が混合冷媒で熱媒体と熱交換さ
せ、前記第1蒸発器からは冷水を生成させ、前記第2蒸
発器からは前記第1蒸発器で生成されるよりも低温のブ
ラインを生成させること、によって達成される。Further, the above object is to provide a first evaporator, a second evaporator, a first absorber, a second absorber, a high temperature regenerator, a low temperature regenerator, a condenser, a liquid heat exchanger, a solution circulation pump, a refrigerant spray. -In an absorption refrigerator having a pipe in which a pump is operatively connected and using an aqueous salt solution as an absorbent, while being arranged in a heat exchange relationship for cooling the second absorber with the liquid refrigerant of the first evaporator or cold water. The refrigerant vapor evaporated in the second evaporator is introduced into the second absorber, and the refrigerant vapor evaporated in the first evaporator is introduced into the first absorber cooled with cooling water, The absorbent mixing means is arranged in the liquid refrigerant flow path sent from the first evaporator to the second evaporator, and the sprayed refrigerant of the second evaporator causes heat exchange with the heat medium by the mixed refrigerant. Cold water is generated from the evaporator and the first steam is generated from the second evaporator. Thereby generating a low-temperature brine than is produced by the vessel, it is accomplished by.
【0012】[0012]
【作用】凝縮器で生成した液冷媒に吸収剤を混合して第
2蒸発器に導入すると、混合冷媒は沸点が上昇するが、
一方、凍結温度も低下するので0℃以下になっても凍結
しない性質になる。それ故、第2蒸発器において伝熱管
群上に散布された混合冷媒は蒸発温度が0℃以下になっ
ても凍結することなく伝熱管群上を流下して伝熱管内を
流れる被冷却媒体、例えば不凍液(ブライン)を冷却し
て約0℃の低温のブラインを供給できる。When the absorbent is mixed with the liquid refrigerant generated in the condenser and introduced into the second evaporator, the boiling point of the mixed refrigerant rises,
On the other hand, since the freezing temperature is also lowered, it has the property of not freezing even at 0 ° C or lower. Therefore, the mixed refrigerant sprinkled on the heat transfer tube group in the second evaporator does not freeze even if the evaporation temperature becomes 0 ° C. or lower, flows down on the heat transfer tube group, and the cooled medium flowing in the heat transfer tube, For example, the antifreeze liquid (brine) can be cooled to supply cold brine at about 0 ° C.
【0013】ここで、蒸発器の冷媒スプレ−ダクトに吸
収剤混合手段を配置したので、該混合冷媒の沸点及び凍
結温度検出手段により混合冷媒の凍結温度低下と沸点上
昇を把握し、被冷却媒体温度センサ−により把握した温
度と比較して、混合冷媒の吸収剤濃度を制御弁を開くこ
とにより薄くして機内圧力平衡温度を低温にするととも
に凍結温度を0℃に近付け、また、制御弁を開くことに
より濃度を濃くコントロ−ルして機内圧力平衡温度を高
温にするとともに凍結温度を0℃より低温側に下げ、混
合冷媒の沸点上昇による熱交換温度差が小さくなること
を制御して、交換熱量が多くなるようにコントロ−ルで
きる。Here, since the adsorbent mixing means is arranged in the refrigerant spray duct of the evaporator, the boiling point of the mixed refrigerant and the freezing temperature detecting means are used to grasp the freezing temperature decrease and the boiling point increase of the mixed refrigerant, and the cooling medium is cooled. Compared with the temperature detected by the temperature sensor, the concentration of the absorbent in the mixed refrigerant is reduced by opening the control valve to lower the pressure equilibrium temperature inside the machine and bring the freezing temperature closer to 0 ° C. By opening it, the concentration is controlled densely to raise the pressure equilibrium temperature inside the machine to a high temperature, and the freezing temperature is lowered to a temperature lower than 0 ° C. to control the difference in heat exchange temperature due to the rise in the boiling point of the mixed refrigerant, It can be controlled to increase the amount of heat exchange.
【0014】第1蒸発器で第2吸収器を冷却する熱交換
関係に配置するとともに、第2蒸発器で蒸発した冷媒蒸
気が第2吸収器に導入され、また、第1蒸発器で蒸発し
た冷媒蒸気が冷却水で冷却される第1吸収器に導入され
る構成にし、第2蒸発器に吸収剤混合手段を配置して、
散布冷媒が混合冷媒で熱媒体と熱交換させたたので、第
1吸収器を冷却する冷却水は通常の冷却塔などでえられ
る約32℃の冷却水で冷却できるようになり、また、吸
収剤濃度を結晶線付近まで高濃度に濃縮することなくサ
イクル構成が可能になる。すなわち、本発明の吸収冷凍
サイクルの一例を第3図のデュ−リング線図に表す。図
中の記号はサイクルの動作点で、構成機器に対応してい
る。図から明らかなように、本実施例のように第1蒸発
器の冷媒を純水冷媒にすると蒸発温度を約20℃にで
き、第2吸収器の吸収温度約35℃との熱交換温度差を
約15Kに大きく取れる効果がある。なお、第1蒸発器
の散布冷媒が混合冷媒の場合では第1蒸発器の蒸発温度
が約25℃であり、第2吸収器の吸収温度約35℃とは
約10Kの温度差となる。The first evaporator is arranged in a heat exchange relationship for cooling the second absorber, and the refrigerant vapor evaporated in the second evaporator is introduced into the second absorber and evaporated in the first evaporator. Refrigerant vapor is introduced into a first absorber cooled by cooling water, and an absorbent mixing means is arranged in a second evaporator,
Since the sprayed refrigerant exchanged heat with the heat medium with the mixed refrigerant, the cooling water for cooling the first absorber can be cooled with the cooling water of about 32 ° C. obtained in a normal cooling tower or the like. It is possible to construct a cycle without concentrating the agent concentration to a high concentration near the crystal line. That is, an example of the absorption refrigeration cycle of the present invention is shown in the Duhring diagram of FIG. The symbols in the figure are the operating points of the cycle and correspond to the components. As is clear from the figure, when the pure water refrigerant is used as the refrigerant of the first evaporator as in this embodiment, the evaporation temperature can be about 20 ° C., and the heat exchange temperature difference between the absorption temperature of the second absorber and about 35 ° C. There is an effect that the value can be greatly increased to about 15K. When the sprayed refrigerant of the first evaporator is a mixed refrigerant, the evaporation temperature of the first evaporator is about 25 ° C, which is a temperature difference of about 10K from the absorption temperature of about 35 ° C of the second absorber.
【0015】[0015]
【実施例】以下、本発明の実施例を図1,図2及び図3
によって説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Explained by.
【0016】吸収冷凍機は再生器1、凝縮器2、第1蒸
発器3A、第2蒸発器3B、第1吸収器4A、第2吸収
器4B、液熱交換器5、溶液循環ポンプ6などを動作的
に接続した配管を備えている。再生器1では吸収剤溶液
を蒸気や都市ガスの燃焼ガスなどで加熱沸騰させる加熱
手段Hが配置されている。再生器1で発生した冷媒蒸気
(水蒸気)は凝縮器2に導入され凝縮器伝熱管内を流れ
る冷却水CWで冷却され凝縮液化されて液冷媒になる。
凝縮器2で生成された液冷媒は液冷媒導管14を介して
第1蒸発器3Aの第2吸収器4Bの冷却熱交換手段20
上に散布されて蒸発し、冷媒蒸気は第1吸収器4Aに導
かれる。また、該蒸発潜熱により冷却熱交換手段20を
介して第2吸収器4Bが冷却される。第1蒸発器3Aの
未蒸発冷媒は下部の冷媒タンク15Aに保持される。該
冷媒タンク15Aの底部と、冷媒スプレ−ポンプ7の吸
い込み管16とは冷媒導管17で連絡され、第2蒸発器
3Bに液冷媒が送られる。冷媒スプレポンプ7の吐出側
には冷媒スプレ−ダクト18が接続され、また、吸収剤
混合手段9が配置されており、前記冷媒は混合冷媒とな
って第2蒸発器3Bの伝熱管群上には混合冷媒が散布さ
れる。未蒸発混合冷媒は混合冷媒タンク15Bに貯えら
れ、再び冷媒スプレ−ポンプ7により吸引されて第2蒸
発器3Bの伝熱管群上に散布されて冷媒が蒸発し、その
際の蒸発潜熱により第2蒸発器3Bの伝熱管群内を流れ
るブラインを冷却する。該ブラインはポンプ19により
冷蔵倉庫21の空気ブライン熱交換手段22へ送られ
て、冷蔵倉庫21内の空気を冷却し、再び第2蒸発器3
Bの伝熱管群内に流入する。The absorption refrigerator includes a regenerator 1, a condenser 2, a first evaporator 3A, a second evaporator 3B, a first absorber 4A, a second absorber 4B, a liquid heat exchanger 5, a solution circulation pump 6 and the like. It is equipped with piping that is operatively connected. The regenerator 1 is provided with heating means H for heating and boiling the absorbent solution with steam or combustion gas of city gas. Refrigerant vapor (steam) generated in the regenerator 1 is introduced into the condenser 2 and cooled by the cooling water CW flowing in the condenser heat transfer tube to be condensed and liquefied to become a liquid refrigerant.
The liquid refrigerant generated in the condenser 2 passes through the liquid refrigerant conduit 14 and the cooling heat exchange means 20 for the second absorber 4B of the first evaporator 3A.
It is sprayed on and evaporated, and the refrigerant vapor is guided to the first absorber 4A. Further, the latent heat of vaporization cools the second absorber 4B via the cooling heat exchange means 20. The non-evaporated refrigerant in the first evaporator 3A is held in the lower refrigerant tank 15A. The bottom portion of the refrigerant tank 15A and the suction pipe 16 of the refrigerant spray pump 7 are connected by a refrigerant conduit 17, and the liquid refrigerant is sent to the second evaporator 3B. A refrigerant spray duct 18 is connected to the discharge side of the refrigerant spray pump 7, and an absorbent mixing means 9 is arranged so that the refrigerant serves as a mixed refrigerant on the heat transfer tube group of the second evaporator 3B. The mixed refrigerant is sprinkled. The non-evaporated mixed refrigerant is stored in the mixed refrigerant tank 15B, is again sucked by the refrigerant spray pump 7 and is sprayed on the heat transfer tube group of the second evaporator 3B to evaporate the refrigerant. The brine flowing in the heat transfer tube group of the evaporator 3B is cooled. The brine is sent to the air brine heat exchange means 22 of the refrigerating warehouse 21 by the pump 19 to cool the air in the refrigerating warehouse 21 and again to the second evaporator 3
It flows into the heat transfer tube group B.
【0017】一方、再生器1で冷媒蒸気を発生して濃縮
された吸収液は溶液熱交換器5で希溶液と熱交換して低
温になり、まず、濃液導管24を経由して第2吸収器4
Bの冷却熱交換手段20上に散布されて第1蒸発器3A
による冷媒の蒸発潜熱により冷却されるとともに第2蒸
発器3Bからの冷媒蒸気を吸収して薄くなる。この薄く
なった吸収液はさらに溶液スプレ−ポンプ8により第1
吸収器4Aに送られ、第1吸収器4Aの伝熱管群上に散
布されて管内を流れる冷却水に冷却されるとともに第1
蒸発器3Aで蒸発した冷媒蒸気を吸収してさらに希釈さ
れて希溶液になり、ポンプサクション管27を経由して
溶液循環ポンプ6により希溶液導管25、溶液熱交換器
5を経由して再生器1に送られる。また、これらの冷凍
負荷情報は、冷凍機制御盤30へ送られ、加熱源の制御
に用いる。すなわち、冷凍負荷が大きく、ブライン濃度
が高い時は熱入力を大きくし、ブライン濃度が低く、か
つ冷凍負荷が小さい場合は熱入力を制限するように制御
する。On the other hand, the absorption liquid generated by generating the refrigerant vapor in the regenerator 1 and concentrated in the solution heat exchanger 5 exchanges heat with the dilute solution to reach a low temperature. Absorber 4
The first evaporator 3A is sprinkled on the cooling heat exchange means 20 of B.
It is cooled by the latent heat of vaporization of the refrigerant due to and absorbs the refrigerant vapor from the second evaporator 3B to become thin. This thinned absorption liquid is further fed to the first by the solution spray pump 8.
The first water is sent to the absorber 4A, is sprayed on the heat transfer tube group of the first absorber 4A, and is cooled by the cooling water flowing in the tube.
The refrigerant vapor that has evaporated in the evaporator 3A is absorbed and further diluted to form a diluted solution, and the solution circulation pump 6 passes through the pump suction pipe 27, the diluted solution conduit 25, and the regenerator through the solution heat exchanger 5. Sent to 1. Further, the refrigeration load information is sent to the refrigerator control panel 30 and used for controlling the heating source. That is, when the refrigeration load is large and the brine concentration is high, the heat input is increased, and when the brine concentration is low and the refrigeration load is small, the heat input is limited.
【0018】以上のようにサイクルは構成されている。
◆ここに、前記吸収剤混合手段9は希溶液導管25と冷
媒スプレ−ダクト18とを連絡する溶液導管26と該溶
液導管26に配置した流量制御弁10、また、冷媒スプ
レ−ダクト18と第1吸収器4Aとを連絡する液冷媒ブ
ロ−管28と該液冷媒ブロ−管28に配置したブロ−量
制御弁11,冷媒スプレ−ダクト18に配置した液冷媒
の吸収剤濃度センサ−12、ブライン出口温度センサ−
29、演算制御装置13から構成されている。The cycle is configured as described above.
Here, the absorbent mixing means 9 is a solution conduit 26 that connects the dilute solution conduit 25 and the refrigerant spray duct 18, the flow control valve 10 disposed in the solution conduit 26, and the refrigerant spray duct 18 and the first. 1 liquid refrigerant blow pipe 28 which communicates with the absorber 4A, a blow amount control valve 11 arranged in the liquid refrigerant blow pipe 28, a liquid refrigerant absorbent concentration sensor 12 arranged in the refrigerant spray duct 18, Brine outlet temperature sensor
29, the arithmetic and control unit 13.
【0019】また、冷却熱交換手段20は第2吸収器4
Bと第1蒸発器3Aとを熱交換させる手段で、水平なヒ
−トパイプ23から構成され、第2吸収器4B側のヒ−
トパイプ23管内で冷媒が凝縮し、その液冷媒が第1蒸
発器3A側で蒸発してスム−スに熱交換させるものであ
る。Further, the cooling heat exchange means 20 is the second absorber 4
B is a means for exchanging heat between B and the first evaporator 3A, and is composed of a horizontal heat pipe 23.
The refrigerant is condensed inside the pipe 23, and the liquid refrigerant is evaporated on the side of the first evaporator 3A so as to exchange heat with the smooth.
【0020】次に作用について述べる。凝縮器2で生成
した液冷媒に吸収剤を混合して第2蒸発器3Bに導入す
ると、混合冷媒は沸点が上昇するが、一方、凍結温度も
低下するので0℃以下になっても凍結しない性質にな
る。それ故、第2蒸発器3Bにおいて伝熱管群上に散布
された混合冷媒は蒸発温度が0℃以下になっても凍結す
ることなく伝熱管群上を流下して伝熱管内を流れる被冷
却媒体、例えば不凍液(ブライン)を冷却して約0℃の
低温のブラインを供給できる効果を発揮する。Next, the operation will be described. When the liquid refrigerant generated in the condenser 2 is mixed with the absorbent and introduced into the second evaporator 3B, the boiling point of the mixed refrigerant rises, but the freezing temperature also lowers, so that it does not freeze even if it becomes 0 ° C or lower. Become a property. Therefore, the mixed refrigerant sprinkled on the heat transfer tube group in the second evaporator 3B does not freeze even if the evaporation temperature becomes 0 ° C. or less, flows down on the heat transfer tube group, and flows into the heat transfer tube. For example, the antifreeze liquid (brine) is cooled, and an effect of supplying low-temperature brine of about 0 ° C. is exerted.
【0021】ここで、第2蒸発器3Bの冷媒スプレ−ダ
クト18に吸収剤混合手段9を配置したので、図2に示
すように、該混合冷媒の沸点及び凍結温度検出手段とし
て、吸収剤濃度センサ−12と演算制御手段13とによ
り混合冷媒の凍結温度低下と沸点上昇を把握し、被冷却
媒体温度センサ−29により把握した温度と比較して、
混合冷媒の吸収剤濃度をブロ−量制御弁11を開くこと
により薄くして凍結温度が0℃に近付くものの蒸発器内
圧力平衡温度が低温にでき、また、流量制御弁10を開
くことにより濃度を濃くコントロ−ルして混合冷媒の凍
結温度を低温側に下げるとともに蒸発器内圧力平衡温度
が沸点上昇により熱交換温度差が小さくなることを制御
して、交換熱量が多くなるようにコントロ−ルできる。Since the adsorbent mixing means 9 is arranged in the refrigerant spray duct 18 of the second evaporator 3B, as shown in FIG. 2, the adsorbent concentration is used as a means for detecting the boiling point and freezing temperature of the mixed refrigerant. The freezing temperature decrease and the boiling point increase of the mixed refrigerant are grasped by the sensor-12 and the arithmetic control means 13, and compared with the temperature grasped by the cooled medium temperature sensor-29,
Although the concentration of the absorbent in the mixed refrigerant is made thin by opening the blow amount control valve 11, the freezing temperature approaches 0 ° C., but the pressure equilibrium temperature in the evaporator can be made low, and the concentration is opened by opening the flow control valve 10. To control the decrease of the freezing temperature of the mixed refrigerant to the low temperature side and the decrease of the heat exchange temperature difference due to the increase of the boiling point of the pressure equilibrium temperature in the evaporator to increase the heat exchange amount. You can
【0022】本実施例では弁10、弁11は電磁弁を利
用したが、電動弁による比例制御や小形ポンプによるコ
ントロ−ルによっても、混合冷媒の吸収剤濃度をコント
ロ−ルができることは明らかである。In this embodiment, solenoid valves are used as the valves 10 and 11, but it is clear that the concentration of the absorbent in the mixed refrigerant can be controlled by proportional control by an electric valve or control by a small pump. is there.
【0023】ここで、第1蒸発器3Aで第2吸収器4B
を冷却する熱交換関係に配置するとともに、第2蒸発器
3Bで蒸発した冷媒蒸気が第2吸収器4Bに導入され、
また、第1蒸発器3Aで蒸発した冷媒蒸気が冷却水で冷
却される第1吸収器4Aに導入される構成にし、第2蒸
発器3Bに吸収剤混合手段9を配置して、散布冷媒が混
合冷媒で熱媒体と熱交換させたたので、第1吸収器4A
を冷却する冷却水は通常の冷却塔などでえられる約32
℃の冷却水で冷却できるようになり、また、吸収剤濃度
を結晶線付近まで高濃度に濃縮することなくサイクル構
成が可能になる。すなわち、本発明の吸収冷凍サイクル
の一例を図3のデュ−リング線図に表す。デュ−リング
線図は縦軸に純冷媒の圧力平衡飽和温度を取り、横軸に
である図中の記号はサイクルの動作点で、構成機器に対
応している。図から明らかなように、本実施例のように
第1蒸発器3Aの冷媒を純水冷媒にすると蒸発温度を約
20℃にでき、第2吸収器4Bの吸収温度約35℃との
熱交換温度差を約15Kに大きく取れる効果がある。な
お、第1蒸発器3Aの散布冷媒が混合冷媒の場合では第
1蒸発器3Aの蒸発温度が約25℃であり、第2吸収器
4Bの吸収温度約35℃とは約10Kの温度差となるこ
とから、純冷媒を第1蒸発器3Aで蒸発させる本実施例
は熱交換器の大きさを小形化する上で極めて効果があ
る。Here, the first evaporator 3A and the second absorber 4B are used.
Is arranged in a heat exchange relationship for cooling the refrigerant, and the refrigerant vapor evaporated in the second evaporator 3B is introduced into the second absorber 4B,
Further, the refrigerant vapor evaporated in the first evaporator 3A is introduced into the first absorber 4A cooled by the cooling water, and the absorbent mixing means 9 is arranged in the second evaporator 3B so that the sprayed refrigerant is Since heat was exchanged with the heat medium with the mixed refrigerant, the first absorber 4A
The cooling water that cools the water is about 32
It becomes possible to cool with the cooling water of ℃, and the cycle structure can be realized without concentrating the absorbent concentration to a high concentration near the crystal line. That is, an example of the absorption refrigeration cycle of the present invention is shown in the Duhring diagram of FIG. In the Duhring diagram, the vertical axis represents the pressure equilibrium saturation temperature of the pure refrigerant, and the horizontal axis represents the operating point of the cycle, which corresponds to the constituent equipment. As is apparent from the figure, when the refrigerant of the first evaporator 3A is pure water as in this embodiment, the evaporation temperature can be about 20 ° C., and the heat exchange with the absorption temperature of the second absorber 4B is about 35 ° C. This has the effect of making the temperature difference as large as about 15K. When the sprayed refrigerant of the first evaporator 3A is a mixed refrigerant, the evaporation temperature of the first evaporator 3A is about 25 ° C, and the temperature difference of about 10K from the absorption temperature of about 35 ° C of the second absorber 4B. Therefore, the present embodiment in which the pure refrigerant is evaporated by the first evaporator 3A is extremely effective in reducing the size of the heat exchanger.
【0024】図4は本発明の他の実施例のサイクル系統
図である。図4において、図1と同じ記号の個所は同じ
機能を有するので説明を省略する。本実施例と図1に示
した実施例との違いは以下のとおりである。FIG. 4 is a cycle system diagram of another embodiment of the present invention. In FIG. 4, the portions having the same symbols as in FIG. The difference between this embodiment and the embodiment shown in FIG. 1 is as follows.
【0025】吸収冷凍サイクルの冷媒生成と吸収剤濃縮
過程をいわゆるパラレルフロ−2重効用吸収サイクルと
した点である。再生器1が高温再生器31、該高温再生
器31で発生した冷媒蒸気の凝縮潜熱を熱源とする低温
再生器32の2個になり、それぞれに吸収溶液を並列
(パラレル)に供給して加熱し、冷媒蒸気を発生させて
濃縮させている。すなわち、高温再生器31は外部熱源
Hにより吸収溶液を加熱して冷媒蒸気を発生し、低温再
生器32の伝熱管内に導かれて凝縮液化し、凝縮器2に
流入する。低温再生器32は高温再生器31で発生した
冷媒蒸気の凝縮潜熱により吸収溶液を加熱して冷媒蒸気
を発生させ、発生した冷媒蒸気は凝縮器2に導かれて冷
却水で冷却されて凝縮液化し、低温再生器32の伝熱管
内で凝縮した冷媒とともに第1蒸発器3Aに送られる。
また、高温再生器31の出入りの吸収溶液同士を熱交換
させる高温熱交換器33が配置されて高温再生器31へ
の加熱量を節約している。これらの冷媒生成と吸収剤濃
縮過程の改良により、高温再生器31で発生した冷媒と
低温再生器32で発生した冷媒が得られ、この冷媒を蒸
発器で冷凍作用に供することができるので、吸収冷凍機
を動作させるのに必要な熱エネルギ−を節約でき、効率
良く冷媒を生成できる。This is that the refrigerant generation and absorbent concentration processes of the absorption refrigeration cycle are so-called parallel flow-2 heavy-effect absorption cycles. The regenerator 1 is composed of two parts, a high temperature regenerator 31 and a low temperature regenerator 32 that uses the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 31 as a heat source, and supplies the absorbing solution in parallel to each to heat the same. However, the refrigerant vapor is generated and concentrated. That is, the high temperature regenerator 31 heats the absorbing solution by the external heat source H to generate a refrigerant vapor, which is guided into the heat transfer tube of the low temperature regenerator 32 to be condensed and liquefied, and then flows into the condenser 2. The low temperature regenerator 32 heats the absorbing solution by the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 31 to generate a refrigerant vapor, and the generated refrigerant vapor is guided to the condenser 2 and cooled by cooling water to be condensed and liquefied. Then, it is sent to the first evaporator 3A together with the refrigerant condensed in the heat transfer tube of the low temperature regenerator 32.
Further, a high temperature heat exchanger 33 for exchanging heat between the absorbing solutions coming in and out of the high temperature regenerator 31 is arranged to save the amount of heating to the high temperature regenerator 31. By improving the refrigerant generation and the absorbent concentration process, the refrigerant generated in the high temperature regenerator 31 and the refrigerant generated in the low temperature regenerator 32 can be obtained, and the refrigerant can be used for refrigeration in the evaporator. The thermal energy required to operate the refrigerator can be saved, and the refrigerant can be efficiently generated.
【0026】第1蒸発器3Aは上部に液冷媒スプレ−装
置34と下部に網状液冷媒跳上り防止板35、36、冷
媒液面スイッチ38、冷媒スプレポンプ7Aが配置さ
れ、前述の凝縮器2からの液冷媒導入管14が接続さ
れ、エリミネ−タ37を介して第1吸収器4Aと接続さ
れている。第1蒸発器3Aの液冷媒タンク15Aの低温
液冷媒は前記冷媒スプレ−ポンプ7Aにより第2吸収器
4Bの伝熱管内を流れて管外の吸収液を冷却して温度が
上昇し、前記液冷媒スプレ−装置34から第1蒸発器3
A内の空間にスプレ−されて液冷媒の一部を蒸発させる
ことにより再び低温液冷媒になる。なお、冷媒液面スイ
ッチ38は冷媒スプレ−ポンプ7Aの液冷媒不足による
空転防止の安全スイッチである。第1蒸発器3Aで蒸発
した冷媒はエリミネ−タ37を介して第1吸収器4Aの
吸収溶液に吸収される。The first evaporator 3A is provided with the liquid refrigerant spray device 34 on the upper part and the reticulated liquid refrigerant jump-up prevention plates 35, 36, the refrigerant liquid level switch 38, and the refrigerant spray pump 7A on the lower part, and the first evaporator 3A is connected to the condenser 2 described above. The liquid refrigerant introducing pipe 14 is connected to the first absorber 4A via the eliminator 37. The low-temperature liquid refrigerant in the liquid refrigerant tank 15A of the first evaporator 3A flows in the heat transfer pipe of the second absorber 4B by the refrigerant spray pump 7A to cool the absorption liquid outside the pipe to raise the temperature. From the refrigerant spray device 34 to the first evaporator 3
By spraying in the space in A and evaporating a part of the liquid refrigerant, it becomes a low temperature liquid refrigerant again. The refrigerant liquid level switch 38 is a safety switch for preventing idling due to lack of liquid refrigerant in the refrigerant spray pump 7A. The refrigerant evaporated in the first evaporator 3A is absorbed by the absorbing solution in the first absorber 4A via the eliminator 37.
【0027】以上のように第2吸収器4Bを冷却する構
成となっている。なお、冷媒スプレ−ポンプ7Aの冷媒
サクション部に循環冷媒温度センサ−39が配置されて
おり、該温度信号により冷媒スプレ−ポンプ7Aの回転
数を制御して冷媒流量をコントロ−ルすることによって
第2吸収器4Bの冷却をコントロ−ルすることができる
ので、サイクルを安定して運転できる効果がある。As described above, the second absorber 4B is cooled. A circulating refrigerant temperature sensor-39 is arranged at the refrigerant suction portion of the refrigerant spray pump 7A, and the rotation speed of the refrigerant spray pump 7A is controlled by the temperature signal to control the refrigerant flow rate. Since cooling of the 2 absorber 4B can be controlled, there is an effect that a cycle can be operated stably.
【0028】第2蒸発器3Bは上部に液散布装置、その
下方に管内に被冷却媒体が流れる伝熱管群、混合冷媒タ
ンク15B、混合冷媒液面検出手段38B、混合冷媒ス
プレ−ポンプ7Bが配置されている。また、第1蒸発器
3Aの液冷媒は冷媒スプレ−ポンプ7Aの吐出管から分
岐した冷媒導管40、冷媒流量制御弁41を介して混合
冷媒スプレ−ポンプ7Bの吸入管部に連絡されている。
混合冷媒液面検出手段38Bの制御信号により前記冷媒
流量制御弁41が開閉されて、第1蒸発器3Aの液冷媒
は第2蒸発器3Bに送られ、混合液冷媒と混合して混合
冷媒スプレ−ポンプ7Bによりスプレ−ダクト18を経
由して液散布装置から伝熱管群に混合冷媒が散布され
る。また、スプレ−ダクト18には吸収剤混合手段9が
配置され、第2蒸発器3Bを循環する混合冷媒の吸収剤
濃度をコントロ−ルしている。The second evaporator 3B is provided with a liquid spraying device at an upper part thereof, a heat transfer tube group through which a medium to be cooled flows inside the tube, a mixed refrigerant tank 15B, a mixed refrigerant liquid level detecting means 38B, and a mixed refrigerant spray pump 7B. Has been done. Further, the liquid refrigerant of the first evaporator 3A is connected to the suction pipe section of the mixed refrigerant spray pump 7B via the refrigerant conduit 40 branched from the discharge tube of the refrigerant spray pump 7A and the refrigerant flow control valve 41.
The refrigerant flow rate control valve 41 is opened / closed by the control signal of the mixed refrigerant liquid level detection means 38B, the liquid refrigerant of the first evaporator 3A is sent to the second evaporator 3B, and mixed with the mixed liquid refrigerant to be mixed refrigerant spray. -The mixed refrigerant is sprayed from the liquid spraying device to the heat transfer tube group via the spray duct 18 by the pump 7B. Further, the absorbent mixing means 9 is arranged in the spray duct 18 to control the absorbent concentration of the mixed refrigerant circulating in the second evaporator 3B.
【0029】以上のように構成したので、まず、第1蒸
発器3Aには伝熱管が不要になり、コスト低減が図れる
効果がある。また、第1蒸発器3Aで生成した低温の液
冷媒を第2吸収器4Bの伝熱管内に流し、管外に流下す
る吸収溶液の冷却を管内強制対流冷却で効率良く冷却で
きるので、伝熱管量を節約するとともに第2吸収器4B
の吸収温度と第1蒸発器3Aの冷媒温度との温度差を小
さくでき、高効率にサイクルを運転できる効果が得られ
る。また、第1蒸発器3Aは純冷媒が蒸発し、第2蒸発
器3Bは混合冷媒が蒸発し、両者が混合しないので、高
効率で運転できる効果がある。With the above-mentioned structure, first, the first evaporator 3A does not require a heat transfer tube, which has an effect of reducing the cost. Further, the low-temperature liquid refrigerant generated in the first evaporator 3A is caused to flow into the heat transfer tube of the second absorber 4B, and the cooling of the absorbing solution flowing out of the tube can be efficiently cooled by the forced convection cooling in the tube. The second absorber 4B while saving the amount
It is possible to reduce the temperature difference between the absorption temperature and the refrigerant temperature of the first evaporator 3A, and it is possible to obtain the effect of operating the cycle with high efficiency. Further, since the pure refrigerant is evaporated in the first evaporator 3A and the mixed refrigerant is evaporated in the second evaporator 3B, the both do not mix, so that there is an effect that the operation can be performed with high efficiency.
【0030】図5は本発明の更に他の実施例のサイクル
系統図である。図5において、図4と同じ記号の個所は
同じ機能を有するので説明を省略する。本実施例と図4
に示した実施例との違いは以下のとおりである。FIG. 5 is a cycle system diagram of still another embodiment of the present invention. In FIG. 5, the portions having the same symbols as those in FIG. 4 have the same functions, and thus the description thereof is omitted. This embodiment and FIG.
Differences from the embodiment shown in are as follows.
【0031】第1蒸発器3Aの冷媒ポンプ7により第2
吸収器4Bの伝熱管内を流して再度第1蒸発器3Aに循
環するとともに、一部の液冷媒を分岐して流量制御機構
41Bを経由し、さらに、吸収液混合手段9が配置され
た冷媒スプレ−ダクト18を経由して第2蒸発器3Bの
伝熱管群上に散布される。第2蒸発器3Bの伝熱管群上
を流下して管内を流れる被冷却媒体と熱交換して蒸発す
るとともに、残った混合冷媒は第1蒸発器3Aの冷媒ス
プレ−ポンプ7の吸入管へ冷媒導管40を経由して戻
る。なお、第2蒸発器3Bを第1蒸発器3Aよりも高い
位置に配置して冷媒タンク15Bには液冷媒がほとんど
滞留することがない構造にすることにより、冷媒液面を
第1蒸発器3Aの冷媒タンク15Aのみにした。これに
より吸収冷凍サイクルの循環溶液の吸収剤濃度が過濃縮
されて結晶化が心配される場合には第1蒸発器3Aから
冷媒がオ−バ−フロ−して循環溶液を希釈するので吸収
溶液の結晶化を防止でき、安全に運転させることができ
る効果がある。なお、第1蒸発器3Aの冷媒が混合冷媒
であるので吸収剤混合による沸点上昇分だけ熱交換温度
差が小さくなるものの、第2蒸発器3Bの混合冷媒スプ
レ−ポンプが不要になり、システムを簡略化できる効果
がある。また、第2蒸発器3Bからの冷媒オ−バ−フロ
−をオ−バ−フロ−配管(図示せず)の混合冷媒流量を
検出し、前記流量制御機構41Bを絞ることによって混
合冷媒の過度の流出を防止する制御ができ、省エネルギ
−を図れる効果がある。図6は本発明の更に他の実施例
のサイクル系統図である。図6において、図4と同じ記
号の個所は同じ機能を有するので説明を省略する。本実
施例と図4に示した実施例との違いは以下のとおりであ
る。The second by the refrigerant pump 7 of the first evaporator 3A
The refrigerant flowing in the heat transfer tube of the absorber 4B and circulated to the first evaporator 3A again, and a part of the liquid refrigerant is branched and passed through the flow rate control mechanism 41B, and further the refrigerant in which the absorbing liquid mixing means 9 is arranged. It is sprayed onto the heat transfer tube group of the second evaporator 3B via the spray duct 18. The heat exchanger exchanges heat with the medium to be cooled flowing down the heat transfer tube group of the second evaporator 3B and evaporates, and the remaining mixed refrigerant flows to the suction tube of the refrigerant spray pump 7 of the first evaporator 3A. Return via conduit 40. By disposing the second evaporator 3B at a position higher than that of the first evaporator 3A so that the liquid refrigerant hardly stays in the refrigerant tank 15B, the liquid level of the refrigerant is set to the first evaporator 3A. Only the refrigerant tank 15A was used. As a result, when the concentration of the absorbent in the circulating solution in the absorption refrigeration cycle is over-concentrated and crystallization is a concern, the refrigerant overflows from the first evaporator 3A to dilute the circulating solution. It is possible to prevent the crystallization of and to operate safely. Since the refrigerant in the first evaporator 3A is a mixed refrigerant, the difference in heat exchange temperature is reduced by the amount of the boiling point increase due to the admixture of the absorbent, but the mixed refrigerant spray pump in the second evaporator 3B is not required and the system is There is an effect that can be simplified. In addition, the refrigerant overflow from the second evaporator 3B is detected as a mixed refrigerant flow rate in an overflow pipe (not shown), and the flow rate control mechanism 41B is throttled so that the mixed refrigerant is excessive. Can be controlled to prevent the outflow of water, and there is an effect that energy can be saved. FIG. 6 is a cycle system diagram of still another embodiment of the present invention. In FIG. 6, the portions having the same symbols as those in FIG. 4 have the same functions, and therefore their explanations are omitted. The difference between this embodiment and the embodiment shown in FIG. 4 is as follows.
【0032】吸収冷凍サイクルの冷媒生成と吸収剤濃縮
過程をいわゆるシリ−ズフロ−2重効用吸収サイクルと
し、第2吸収器4Bの希溶液は液熱交換器5、高温熱交
換器33を経由して高温再生器31に流入して外部熱源
Hにより加熱され、濃縮されて高温熱交換器33を経由
して、該高温再生器31で発生した冷媒蒸気の凝縮潜熱
を熱源とする低温再生器32の管群上に散布される。低
温再生器32に散布された溶液は、高温再生器31で発
生した冷媒蒸気の凝縮潜熱で加熱されて冷媒蒸気を発生
し、濃縮されて液熱交換器5を経由して第1吸収器4A
に戻る。The refrigerant generation and absorbent concentration processes of the absorption refrigeration cycle are so-called series flow double effect absorption cycle, and the dilute solution of the second absorber 4B passes through the liquid heat exchanger 5 and the high temperature heat exchanger 33. Flowing into the high temperature regenerator 31, heated by the external heat source H, concentrated and passed through the high temperature heat exchanger 33, and the low temperature regenerator 32 uses the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 31 as a heat source. Sprayed on a group of tubes. The solution sprayed to the low temperature regenerator 32 is heated by the latent heat of condensation of the refrigerant vapor generated in the high temperature regenerator 31 to generate the refrigerant vapor, and is concentrated and passed through the liquid heat exchanger 5 to the first absorber 4A.
Return to.
【0033】以上のように高温再生器31、低温再生器
32と順にシリ−ズに溶液を流す方式である。なお、逆
に低温再生器32、高温再生器31と溶液を循環させる
いわゆるリバ−スフロ−方式もあり、これら2重効用吸
収冷凍サイクルフロ−は前述のパラレルフロ−と同様
に、高温再生器31の外部熱入力の省エネルギ−を図れ
る効果がある。As described above, the system is such that the high temperature regenerator 31 and the low temperature regenerator 32 are sequentially passed through the solution. On the contrary, there is a so-called reverse flow system in which a solution is circulated between the low temperature regenerator 32 and the high temperature regenerator 31, and these double-effect absorption refrigeration cycle flows are similar to the above-mentioned parallel flow, and the high temperature regenerator 31 is used. There is an effect that energy saving of external heat input can be achieved.
【0034】第1蒸発器3Aの冷媒ポンプ7により第2
吸収器4Bの伝熱管内を流して再度第1蒸発器3Aに循
環するとともに、一部の液冷媒を分岐して、冷媒散布量
制御弁41を介して吸収液混合手段9が配置された冷媒
スプレ−ダクト18を経由して第2蒸発器3Bの伝熱管
群上に散布される。第2蒸発器3Bの伝熱管群上を流下
して管内を流れる被冷却媒体と熱交換して蒸発するとと
もに、残った混合冷媒は第2吸収器4Bに送られて溶液
に混合され、該溶液は溶液循環ポンプ6により再生器群
に送られる。By the refrigerant pump 7 of the first evaporator 3A, the second
A refrigerant which flows through the heat transfer tube of the absorber 4B and circulates again to the first evaporator 3A, branches a part of the liquid refrigerant, and is provided with the absorbing liquid mixing means 9 via the refrigerant distribution amount control valve 41. It is sprayed onto the heat transfer tube group of the second evaporator 3B via the spray duct 18. The heat exchanger exchanges heat with the medium to be cooled flowing down the heat transfer tube group of the second evaporator 3B and evaporates, and the remaining mixed refrigerant is sent to the second absorber 4B to be mixed with the solution. Is sent to the regenerator group by the solution circulation pump 6.
【0035】ここで、第2蒸発器3Bに散布される冷媒
は被冷却媒体温度センサ−29の信号により吸収剤混合
手段9である流量制御弁10により吸収剤濃度がコント
ロ−ルされて散布される。また、第2蒸発器3Aに散布
される冷媒量は冷凍負荷に応じて冷媒散布流量制御弁4
1によりコントロ−ルされて散布されるので、未蒸発冷
媒を多量に第2吸収器4Bに流出させて熱損失を大きく
することが無い。それ以上に吸収剤混合手段9の制御系
統システムを簡素化できる効果がある。Here, the refrigerant to be sprayed to the second evaporator 3B is sprayed with the absorbent concentration controlled by the flow rate control valve 10 which is the absorbent mixing means 9 in response to the signal from the cooling medium temperature sensor-29. It Further, the amount of the refrigerant distributed to the second evaporator 3A depends on the refrigeration load, and the refrigerant distribution flow control valve 4
Since it is controlled by 1 and is sprayed, a large amount of the non-evaporated refrigerant does not flow out to the second absorber 4B to increase the heat loss. Further, there is an effect that the control system system of the absorbent mixing means 9 can be simplified.
【0036】本実施例では第2蒸発器3Bへの液冷媒供
給は第1蒸発器3Aの液冷媒を冷媒スプレ−ポンプ7の
吐出側から分岐して供給したが、凝縮器2からの液冷媒
を分岐して、冷媒散布流量制御弁41、吸収剤混合手段
9を経由してより簡素化する方法もある。さらに、吸収
剤混合手段9は単なるオリフィスとして、一定量の吸収
剤を冷媒に混合させて、混合冷媒中の吸収剤濃度をほぼ
一定にして対応させることが可能である。In the present embodiment, the liquid refrigerant supplied to the second evaporator 3B is supplied by branching the liquid refrigerant of the first evaporator 3A from the discharge side of the refrigerant spray pump 7, but the liquid refrigerant from the condenser 2 is supplied. There is also a method of further simplifying the above by branching the flow path through the refrigerant spraying flow rate control valve 41 and the absorbent mixing means 9. Further, the absorbent mixing means 9 can be used as a simple orifice to mix a certain amount of the absorbent with the refrigerant so that the concentration of the absorbent in the mixed refrigerant becomes substantially constant to cope with it.
【0037】図7は本発明の更に他の実施例の蒸発器吸
収器の構成の1例である。図7において、図4と同じ記
号の個所は同じ機能を有するので説明を省略する。本実
施例と図4に示した実施例との違いは以下のとおりであ
る。FIG. 7 shows an example of the structure of an evaporator absorber according to still another embodiment of the present invention. In FIG. 7, the portions having the same symbols as those in FIG. 4 have the same functions, and thus the description thereof will be omitted. The difference between this embodiment and the embodiment shown in FIG. 4 is as follows.
【0038】図7において、第2蒸発器3Bは2列の伝
熱管群から構成され対向して2列の伝熱管群から構成さ
れる第2吸収器4Aが配置されている。各列の伝熱管群
上には液滴下装置51が配置され、蒸発器下部には受け
皿52が配置されて、未蒸発冷媒を集めて再び循環滴下
できるように構成している。各2列の吸収器管群の中央
部には扁平管に孔を開けた抽気管53Aが配置され、抽
気管ヘッダ53より抽気吸収器54に導かれ、冷媒また
は低温冷却水で冷却され、気液混合管56を不凝縮ガス
を混合して流下し、気液分離器57で不凝縮ガスと液に
分け、液は立上り部を有する気液混合管58により吸収
器の溶液に戻される。また分離した不凝縮ガスはガス上
昇管59を経由して貯気タンク60に貯気される。ま
た、抽気吸収器54は第2蒸発器3Bの冷媒ポンプ7B
の吐出側から分岐させた液冷媒分岐管55が接続されて
冷却されている。In FIG. 7, the second evaporator 3B is composed of two rows of heat transfer tube groups, and a second absorber 4A composed of two rows of heat transfer tube groups is arranged opposite to each other. A droplet lowering device 51 is arranged on the heat transfer tube group in each row, and a receiving tray 52 is arranged under the evaporator so that the unevaporated refrigerant can be collected and circulated and dropped again. A bleed tube 53A having a flat tube with a hole is arranged in the center of each two-row absorber tube group, is guided from the bleed tube header 53 to the bleed absorber 54, and is cooled with a refrigerant or low-temperature cooling water. The non-condensable gas is mixed and flows down through the liquid mixing pipe 56, separated into the non-condensable gas and the liquid by the gas-liquid separator 57, and the liquid is returned to the solution in the absorber by the gas-liquid mixing pipe 58 having a rising portion. The separated non-condensed gas is stored in the storage tank 60 via the gas rising pipe 59. Further, the extraction absorber 54 is the refrigerant pump 7B of the second evaporator 3B.
A liquid refrigerant branch pipe 55 branched from the discharge side of is connected and cooled.
【0039】以上のように構成したので、蒸発器3から
吸収器4管群への冷媒蒸気流路を大きく確保でき蒸気流
動圧損を小さくでき、性能低下を防止できる効果があ
る。特に低温真空で作動する本吸収器の場合では、該蒸
気流動圧損が冷媒蒸発圧力に占める割合が大きくなり、
管群を大きくすると冷媒蒸気の移動を阻害するのでます
ます圧損が大きくなり、低温を生成する吸収冷凍サイク
ルが構成できない。図7で開示した、蒸発器と吸収器を
接近した配置とすることにより、蒸気流動圧損を小さく
できるので、低温吸収冷凍サイクルを実現できる。With the above construction, a large refrigerant vapor flow path from the evaporator 3 to the absorber 4 tube group can be secured, the vapor flow pressure loss can be reduced, and the performance can be prevented from deteriorating. Particularly in the case of the present absorber operating in a low temperature vacuum, the ratio of the vapor flow pressure loss to the refrigerant evaporation pressure becomes large,
If the tube group is made larger, the movement of the refrigerant vapor is hindered, so the pressure loss becomes larger and the absorption refrigeration cycle that produces low temperature cannot be constructed. By disposing the evaporator and the absorber close to each other as disclosed in FIG. 7, the vapor flow pressure loss can be reduced, so that a low temperature absorption refrigeration cycle can be realized.
【0040】また、吸収器の不凝縮ガスの存在は冷媒蒸
気吸収を阻害する。極めて低圧の吸収器では効率的な抽
気が不可欠である。本実施例のように、管群内に抽気管
を張り巡らし、抽気吸収器に導くことにより、不凝縮ガ
スを効率的に抽気できるので、低温吸収冷凍サイクルを
実現できる効果がある。The presence of non-condensable gas in the absorber hinders the absorption of refrigerant vapor. Efficient extraction is essential for very low pressure absorbers. As in the present embodiment, by arranging the extraction pipe in the pipe group and guiding the extraction pipe to the extraction absorber, the non-condensable gas can be extracted efficiently, so that a low temperature absorption refrigeration cycle can be realized.
【0041】なお、図7において気液混合管58を第1
吸収器4Aの溶液ポンプのサクションに接続し、比較的
圧力が高くて、不凝縮ガスの影響を受けにくい第1吸収
器側に送り、第1吸収器で抽気処理することも有効であ
る。これにより、気液分離装置57や貯気タンク60を
省略してシステムを簡略化できる効果がある。In FIG. 7, the gas-liquid mixing pipe 58 is connected to the first
It is also effective to connect it to the suction of the solution pump of the absorber 4A, send it to the first absorber side, which has a relatively high pressure and is not easily affected by the non-condensed gas, and perform the bleeding process in the first absorber. This has the effect of simplifying the system by omitting the gas-liquid separator 57 and the air storage tank 60.
【0042】図8は本発明の更に他の実施例のサイクル
系統図であり、図9は図8の実施例の吸収冷凍サイクル
のデュ−リング線図である。図8、図9において、図
4、図2と同じ記号の個所は同じ機能を有するので説明
を省略する。FIG. 8 is a cycle system diagram of still another embodiment of the present invention, and FIG. 9 is a Duhring diagram of the absorption refrigeration cycle of the embodiment of FIG. In FIGS. 8 and 9, the portions having the same symbols as those in FIGS. 4 and 2 have the same functions, and thus the description thereof will be omitted.
【0043】以下、本実施例を説明する。◆再生器1は
垂直管群と該管群に直交するフィンと下部ヘッダ及び上
部ヘッダからなるクロスフィンチュ−ブ熱交換器で構成
され、該再生器1の管群フィン部に高温排ガスが導か
れ、管内の吸収溶液と熱交換し、冷媒蒸気を発生させて
溶液を濃縮し、濃縮された溶液は溶液輸送手段63によ
り再生室61に送られる。再生室61は、垂直管群と該
管群に直交するフィンと下部ヘッダ及び上部ヘッダから
なるクロスフィンチュ−ブ熱交換器で構成される。再生
室61は再生器1の排ガス下流側に配置されている。ま
た、再生室61の気相部は吸収室62と接続されてい
る。ここに、吸収室62は溶液散布装置と伝熱管群から
なり、該伝熱管内に第1吸収器4A、凝縮器2を冷却し
て温度上昇した冷却水が通水される。一方、管外には第
2吸収器4Bから溶液循環ポンプ6により熱交換器5を
経由した希溶液が散布されて冷却され、再生室61で発
生した冷媒蒸気を吸収して再生室61の吸収液をさらに
濃縮する。吸収室62で冷媒蒸気を吸収して薄くなった
溶液は液輸送手段65により再生器1に送られる。ま
た、再生室61で濃縮された吸収液は溶液輸送手段64
により熱交換器5を経由して第1吸収器4Aに流入し、
溶液スプレ−ポンプ8により第1吸収器4A及び第2吸
収器4Bに散布されて冷媒蒸気を吸収する。一方、凝縮
器2で生成された液冷媒は第1蒸発器3Aに導かれ、冷
媒循環ポンプ7Aにより第2吸収器4Bの管内を流れて
第2吸収器4Bを冷却するするとともに、自己蒸発によ
り冷媒蒸気を発生し、第1吸収器4Aの溶液に発生冷媒
蒸気は吸収される。また、第1蒸発器3Aの液冷媒は第
2蒸発器3Bの混合冷媒流路に導かれ、混合冷媒散布ポ
ンプ7Bにより、第2蒸発器3B伝熱管群上に散布され
て管内を流れるブラインと熱交換して蒸発し、発生した
冷媒蒸気は第2吸収器4Bの吸収溶液に吸収される。な
お、第2蒸発器3Bの混合冷媒の吸収剤濃度は、吸収剤
濃度センサ−12の信号により制御される、流量制御弁
10とブロ−量制御弁11とから構成される吸収剤混合
手段9により、最適にコントロ−ルされる。This embodiment will be described below. The regenerator 1 is composed of a vertical tube group, a fin orthogonal to the tube group, a cross fin tube heat exchanger composed of a lower header and an upper header, and high-temperature exhaust gas is guided to the fin group of the tube group of the regenerator 1. Then, the heat is exchanged with the absorption solution in the tube, the refrigerant vapor is generated to concentrate the solution, and the concentrated solution is sent to the regeneration chamber 61 by the solution transportation means 63. The regeneration chamber 61 is composed of a vertical tube group, fins orthogonal to the tube group, and a cross fin tube heat exchanger including a lower header and an upper header. The regeneration chamber 61 is arranged on the exhaust gas downstream side of the regenerator 1. The gas phase portion of the regeneration chamber 61 is connected to the absorption chamber 62. Here, the absorption chamber 62 is composed of a solution spraying device and a heat transfer tube group, and the cooling water whose temperature has risen by cooling the first absorber 4A and the condenser 2 is passed through the heat transfer tube. On the other hand, the diluted solution is sprayed from the second absorber 4B to the outside of the tube by the solution circulation pump 6 via the heat exchanger 5 and cooled, and the refrigerant vapor generated in the regeneration chamber 61 is absorbed and absorbed in the regeneration chamber 61. The liquid is further concentrated. The solution thinned by absorbing the refrigerant vapor in the absorption chamber 62 is sent to the regenerator 1 by the liquid transportation means 65. In addition, the absorption liquid concentrated in the regeneration chamber 61 is the solution transport means 64.
Flows into the first absorber 4A via the heat exchanger 5,
The solution spray pump 8 sprays the first absorber 4A and the second absorber 4B to absorb the refrigerant vapor. On the other hand, the liquid refrigerant generated in the condenser 2 is guided to the first evaporator 3A, flows in the pipe of the second absorber 4B by the refrigerant circulation pump 7A to cool the second absorber 4B, and is self-evaporated. The refrigerant vapor is generated, and the generated refrigerant vapor is absorbed by the solution in the first absorber 4A. Further, the liquid refrigerant of the first evaporator 3A is guided to the mixed refrigerant flow path of the second evaporator 3B, and is sprayed by the mixed refrigerant spray pump 7B onto the heat transfer tube group of the second evaporator 3B so that the brine flows in the tube. The refrigerant vapor generated by heat exchange and evaporation is absorbed by the absorbing solution in the second absorber 4B. The absorbent concentration of the mixed refrigerant in the second evaporator 3B is controlled by the signal of the absorbent concentration sensor-12. The absorbent mixing means 9 is composed of a flow rate control valve 10 and a blow amount control valve 11. Is optimally controlled by.
【0044】図9は上述の吸収冷凍サイクルを臭化リチ
ウム−水のデュ−リング線図に示したものである。再生
器は約82℃で作動し、再生室61は約62℃で作動し
第1吸収器4Aは42℃で作動し、第2吸収器4Bは2
0℃で作動し吸収室62は45℃で作動している。ま
た、凝縮器2は42℃で作動し、第1蒸発器3Aは約1
0℃で作動し、第2蒸発器は−5℃で作動している。吸
収剤としては、臭化リチウムのほかに塩化リチウムほか
の吸収剤が利用でき、冷媒は2エチルヘキサノ−ル、メ
タノ−ルなどを混合させた水を主体とする冷媒も利用で
きる。FIG. 9 shows the absorption refrigeration cycle described above in a lithium bromide-water Duhring diagram. The regenerator operates at about 82 ° C, the regeneration chamber 61 operates at about 62 ° C, the first absorber 4A operates at 42 ° C, and the second absorber 4B operates at 2 ° C.
It operates at 0 ° C. and the absorption chamber 62 operates at 45 ° C. Further, the condenser 2 operates at 42 ° C., and the first evaporator 3A operates at about 1 ° C.
It operates at 0 ° C and the second evaporator operates at -5 ° C. As the absorbent, lithium chloride and other absorbents can be used in addition to lithium bromide, and the refrigerant can also be a water-based refrigerant containing a mixture of 2-ethylhexanol, methanol and the like.
【0045】以上のように、排ガスで加熱される再生室
61と吸収室62を配置したので、比較的低温の排ガ
ス、すなわち150℃程度の排ガスから100℃程度ま
で熱回収して、0℃程度の冷凍作用を有する吸収冷凍サ
イクルを提供できる効果がある。なお、熱源としては、
排ガスのほかに廃温水などの廃熱、太陽熱なども利用で
きる。As described above, since the regeneration chamber 61 and the absorption chamber 62 which are heated by the exhaust gas are arranged, the heat is recovered from the relatively low temperature exhaust gas, that is, the exhaust gas of about 150 ° C. to about 100 ° C., and about 0 ° C. There is an effect that an absorption refrigeration cycle having the above refrigerating action can be provided. As a heat source,
Besides exhaust gas, waste heat such as waste hot water and solar heat can also be used.
【0046】また、吸収室62に冷却管を配置せず、散
布装置だけ配置した場合でも、散布吸収溶液の蒸気圧が
低いところでは、再生器1で発生した冷媒蒸気を吸収さ
せることができるので、前述とは若干異なる吸収冷凍サ
イクルではあるが、冷凍作用を提供できる吸収冷凍サイ
クルを提供できる効果がある。すなわち、吸収室61で
は溶液が低温低圧で流入し、再生室61とほぼ同じ圧力
まで温度上昇するとともに濃度が低下する。この際は、
熱交換器5を省略することもできる。Further, even if the cooling pipe is not arranged in the absorption chamber 62 and only the spraying device is arranged, the refrigerant vapor generated in the regenerator 1 can be absorbed where the vapor pressure of the spraying absorbing solution is low. Although it is an absorption refrigeration cycle that is slightly different from the above, there is an effect that an absorption refrigeration cycle that can provide a refrigerating action can be provided. That is, in the absorption chamber 61, the solution flows in at low temperature and low pressure, the temperature rises to almost the same pressure as in the regeneration chamber 61, and the concentration decreases. In this case,
The heat exchanger 5 can be omitted.
【0047】更に、吸収室62から再生器1に送られる
希溶液と、再生器1から再生室61に送られる濃溶液と
を熱交換させる手段を設けると更に効率が高いサイクル
を実現できる。Further, by providing means for exchanging heat between the dilute solution sent from the absorption chamber 62 to the regenerator 1 and the concentrated solution sent from the regenerator 1 to the regenerator 61, a cycle with higher efficiency can be realized.
【0048】また、本実施例では再生室61と吸収室6
2との組合せが1段の場合を示したが、2段3段と段数
を増やすに従って、排ガスからの熱回収量を増大させる
ことができ、より低温の排ガスで作動する吸収冷凍サイ
クルを実現できる。例えば、2段にすると120℃程度
の排ガスから70℃程度まで熱回収して、0℃程度の冷
凍作用を有する吸収冷凍サイクルを提供できる効果があ
る。すなわち、本実施例ではより低温の熱源で低温を発
生する装置を提供できる効果がある。Further, in this embodiment, the regeneration chamber 61 and the absorption chamber 6
The case where the combination with 2 is 1 stage is shown, but the heat recovery amount from exhaust gas can be increased as the number of stages is increased to 2 stages and 3 stages, and an absorption refrigeration cycle that operates with lower temperature exhaust gas can be realized. . For example, the two stages are effective in recovering heat from exhaust gas at about 120 ° C. to about 70 ° C. and providing an absorption refrigeration cycle having a refrigerating action at about 0 ° C. That is, the present embodiment has the effect of providing a device that generates a low temperature with a lower temperature heat source.
【0049】図10は本発明の更に他の実施例のサイク
ル系統図である。図4の実施例と異なり、第1蒸発器3
Aから冷房用の冷水が得られるように第1蒸発器3A内
に熱交換器を配置した点が異なる。更に、第2蒸発器3
Bは真空蓄熱層70となっている点が異なる。すなわ
ち、第1蒸発器3Aには冷水の流れる伝熱管が配置され
て冷水を冷却するとともに、液冷媒は第2吸収器4Bを
冷却し、第1蒸発器3A内で自己蒸発する。第1蒸発器
3Aの液冷媒は冷媒流量制御弁71を介して第2蒸発器
3Bと連絡されている。真空蓄熱層70の上部は自己蒸
発方式の第2蒸発器3Bになり、冷媒ポンプ7Bの吐出
冷媒が該第2蒸発器3Bでスプレ−される。また、下部
には低温熱交換器72が配置され、撹拌器73も配置さ
れている。該低温熱交換器72は第1蒸発器3Aで冷却
された冷水が通水され、負荷に接続されている。FIG. 10 is a cycle system diagram of still another embodiment of the present invention. Unlike the embodiment of FIG. 4, the first evaporator 3
The difference is that a heat exchanger is arranged in the first evaporator 3A so that cold water for cooling can be obtained from A. Further, the second evaporator 3
B is different in that it is a vacuum heat storage layer 70. That is, a heat transfer tube through which cold water flows is arranged in the first evaporator 3A to cool the cold water, and the liquid refrigerant cools the second absorber 4B and self-evaporates in the first evaporator 3A. The liquid refrigerant in the first evaporator 3A is in communication with the second evaporator 3B via the refrigerant flow control valve 71. The upper part of the vacuum heat storage layer 70 becomes the second evaporator 3B of the self-evaporation system, and the refrigerant discharged from the refrigerant pump 7B is sprayed by the second evaporator 3B. Further, a low temperature heat exchanger 72 is arranged in the lower part, and a stirrer 73 is also arranged. Cold water cooled by the first evaporator 3A is passed through the low-temperature heat exchanger 72, and is connected to a load.
【0050】冷房負荷が軽いときには第2吸収器4Bに
溶液を散布して第2蒸発器3Bの液冷媒を冷却し、更に
負荷が余った場合には真空蓄熱層70の上部に散布され
る液冷媒は自己蒸発により氷結して、槽内に堆積する。
特に、エチレングリコ−ルなどをわずかに添加した水を
冷媒とすると、水分の一部が針状に凍結し、時間ととも
に真空蓄熱層70の上部に堆積する。従って、低温熱交
換器72の個所は0℃程度の低温となっており、冷水は
負荷戻りが12℃でも負荷への供給を従来の7℃からよ
り低温の例えば2℃にして供給でき、行き戻りの温度差
を従来の5Kから2倍の10Kにできるので、冷水循環
ポンプ動力をわずかにできるとともに、冷水配管サイズ
を小形化でき、設備コストを低減できる効果がある。When the cooling load is light, the solution is sprayed to the second absorber 4B to cool the liquid refrigerant in the second evaporator 3B, and when the load is excessive, the liquid sprayed to the upper part of the vacuum heat storage layer 70. The refrigerant freezes by self-evaporation and accumulates in the tank.
In particular, when water with a slight addition of ethylene glycol or the like is used as a refrigerant, a part of the water freezes in a needle shape and accumulates on the vacuum heat storage layer 70 with time. Therefore, the temperature of the low-temperature heat exchanger 72 is as low as 0 ° C., and even if the load return is 12 ° C., the cold water can be supplied from the conventional 7 ° C. to a lower temperature, for example, 2 ° C. Since the return temperature difference can be doubled from the conventional 5K to 10K, the chilled water circulation pump power can be made small, and the chilled water pipe size can be made small, so that the facility cost can be reduced.
【0051】また、冷房負荷の大きい場合は該真空蓄熱
層の氷の融解熱を利用できる。また、第2吸収器4Bを
作動させないので第1蒸発器3Aは最大能力で運転でき
るので冷房効率が高い。すなわち、負荷の少ない夜間や
早朝の間に吸収冷温水機を運転して氷蓄熱することによ
り、負荷の過大な場合に対応できるシステムであり、設
備コストを低減できる効果がある。When the cooling load is large, the heat of melting of ice in the vacuum heat storage layer can be used. Further, since the second absorber 4B is not operated, the first evaporator 3A can be operated with the maximum capacity, so that the cooling efficiency is high. That is, by operating the absorption chiller-heater to store ice heat during nighttime or early morning when the load is low, the system can cope with an excessive load, and there is an effect that the equipment cost can be reduced.
【0052】また、本システムは廃熱利用にも適してい
る。すなわち、時間的に不定な廃熱源を氷の形で蓄熱
し、必要な時間帯に提供できるので従来利用できなかっ
た間けつ的な廃熱の利用ができる効果がある。The system is also suitable for utilizing waste heat. That is, since a waste heat source that is indefinite in time is stored in the form of ice and can be provided in a necessary time period, there is an effect that intermittent waste heat that cannot be used conventionally can be used.
【0053】[0053]
【発明の効果】蒸発器散布液冷媒に吸収剤を混合するこ
とにより混合冷媒凍結温度を0℃以下にすることが可能
になり、冷蔵倉庫のなどの冷却熱源として吸収冷凍機の
利用範囲が広くなる。EFFECTS OF THE INVENTION By mixing an absorbent with an evaporator sprayed liquid refrigerant, it becomes possible to set the mixed refrigerant freezing temperature to 0 ° C. or lower, and the absorption refrigerator is widely used as a cooling heat source for a refrigerated warehouse or the like. Become.
【図1】本発明の実施例のサイクル系統図。FIG. 1 is a cycle system diagram of an embodiment of the present invention.
【図2】図1の実施例の吸収冷凍サイクルのデュ−リン
グ線図。FIG. 2 is a Duhring diagram of the absorption refrigeration cycle of the embodiment of FIG.
【図3】図1の実施例の吸収剤混合装置の制御系統図。FIG. 3 is a control system diagram of the absorbent mixing device of the embodiment of FIG.
【図4】本発明の他の実施例のサイクル系統図。FIG. 4 is a cycle system diagram of another embodiment of the present invention.
【図5】本発明の更に他の実施例のサイクル系統図。FIG. 5 is a cycle system diagram of still another embodiment of the present invention.
【図6】本発明の更に他の実施例のサイクル系統図。FIG. 6 is a cycle system diagram of still another embodiment of the present invention.
【図7】本発明の実施例の蒸発器と吸収器の伝熱管配置
断面図。FIG. 7 is a sectional view showing the arrangement of heat transfer tubes of the evaporator and the absorber according to the embodiment of the present invention.
【図8】本発明の更に他の実施例のサイクル系統図。FIG. 8 is a cycle system diagram of still another embodiment of the present invention.
【図9】図8の実施例の吸収冷凍サイクルのデュ−リン
グ線図。9 is a Duhring diagram of the absorption refrigeration cycle of the embodiment of FIG.
【図10】本発明の更に他の実施例のサイクル系統図。FIG. 10 is a cycle system diagram of still another embodiment of the present invention.
1…再生器、 2…凝縮器、 3…蒸発器、3A…第1蒸発器、3B…第2蒸発器、 4…吸収器、4A…第1吸収器、4B…第2吸収器、 5…溶液熱交換器、 6…溶液循環ポンプ、 7、7A、7B…冷媒スプレ−ポンプ、 8…溶液スプレ−ポンプ、 9…吸収剤混合手段、 10…流量制御弁、 11…ブロ−量制御弁、 12…吸収剤濃度センサ−、 13…演算制御装置 14…冷媒導管 15A…冷媒タンク、15B…混合冷媒タンク 16…吸い込み管 17…冷媒導管 18…冷媒スプレ−ダクト、 19…ポンプ 20…冷却熱交換手段 21…冷蔵倉庫、 22…空気ブライン熱交換器、 23…ヒ−トパイプ 24…濃液導管 25…希溶液導管 26…溶液導管、 27…ポンプサクション管 28…冷媒ブロ−管、 29…ブライン温度センサ−、 30…冷凍機制御盤 31…高温再生器、 32…低温再生器、 33…高温熱交換器、 34…冷媒スプレ−装置、 35…液冷媒跳ね返り防止装置、 36…液表面積拡大手段、 37…エリミネ−タ、 38…冷媒液面スイッチ、 39…循環冷媒温度センサ− 40…冷媒導管 41…冷媒散布流量制御弁、 51…液滴下装置、 52…受け皿、 53…抽気管ヘッダ、53A…抽気管、 54…抽気吸収器、 56…気液混合管、 57…気液分離器、 58…気液混合管、 60…抽気タンク 61…再生室、 62…吸収室、 63、64、65…吸収液輸送手段、 70…真空蓄熱槽、 71…冷媒流量制御弁、 72…低温熱交換器、 73…撹拌器。 1 ... Regenerator, 2 ... Condenser, 3 ... Evaporator, 3A ... 1st evaporator, 3B ... 2nd evaporator, 4 ... Absorber, 4A ... 1st absorber, 4B ... 2nd absorber, 5 ... Solution heat exchanger, 6 ... Solution circulation pump, 7, 7A, 7B ... Refrigerant spray pump, 8 ... Solution spray pump, 9 ... Absorbent mixing means, 10 ... Flow control valve, 11 ... Blow amount control valve, 12 ... Absorbent concentration sensor, 13 ... Arithmetic control device 14 ... Refrigerant conduit 15A ... Refrigerant tank, 15B ... Mixed refrigerant tank 16 ... Suction tube 17 ... Refrigerant conduit 18 ... Refrigerant spray duct, 19 ... Pump 20 ... Cooling heat exchange Means 21 ... Refrigerator warehouse, 22 ... Air brine heat exchanger, 23 ... Heat pipe 24 ... Concentrated liquid conduit 25 ... Dilute solution conduit 26 ... Solution conduit, 27 ... Pump suction pipe 28 ... Refrigerant blower pipe, 29 ... Brine temperature Sensor, 0 ... Refrigerator control panel 31 ... High temperature regenerator, 32 ... Low temperature regenerator, 33 ... High temperature heat exchanger, 34 ... Refrigerant spray device, 35 ... Liquid refrigerant rebound prevention device, 36 ... Liquid surface area expanding means, 37 ... Elimine -38, ... Refrigerant liquid level switch, 39 ... Circulating refrigerant temperature sensor-40 ... Refrigerant conduit 41 ... Refrigerant distribution flow rate control valve, 51 ... Droplet lowering device, 52 ... Pan, 53 ... Bleed pipe header, 53A ... Bleed pipe, 54 ... Bleed air absorber, 56 ... Gas-liquid mixing pipe, 57 ... Gas-liquid separator, 58 ... Gas-liquid mixing pipe, 60 ... Bleed tank 61 ... Regeneration chamber, 62 ... Absorption chamber, 63, 64, 65 ... Absorption liquid transportation Means, 70 ... Vacuum heat storage tank, 71 ... Refrigerant flow rate control valve, 72 ... Low temperature heat exchanger, 73 ... Stirrer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 功刀 能文 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 久島 大資 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤居 達郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobufumi Kousou, Inventor No. 502, Jinritsu-cho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. Inside the Tsuchiura Plant (72) Inventor Taiji Hisashima 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. In-house
Claims (12)
器、凝縮器、溶液循環ポンプ、冷媒スプレ−ポンプを接
続する配管を備え、塩類水溶液を吸収剤とする吸収冷凍
機において、前記蒸発器の伝熱管群に吸収剤を混入した
冷媒を散布するよう構成したことを特徴とする吸収冷凍
機。1. An absorption refrigerating machine, which comprises an evaporator having a heat transfer tube group, an absorber, a regenerator, a condenser, a solution circulation pump, and a pipe for connecting a refrigerant spray pump, and uses an aqueous salt solution as an absorbent. An absorption refrigerator, which is configured to spray a refrigerant mixed with an absorbent onto a heat transfer tube group of an evaporator.
手段を配置するとともに、散布混合冷媒の吸収剤濃度検
出手段を配置したことを特徴とする請求項1記載の吸収
冷凍機。2. The absorption refrigerating machine according to claim 1, wherein the absorbent mixing means is arranged in the middle of the refrigerant spray pipe to the evaporator, and the absorbent concentration detecting means of the spray mixed refrigerant is arranged.
2吸収器、再生器、凝縮器、溶液循環ポンプ、冷媒スプ
レ−ポンプを動作的に接続した配管を備え、塩類水溶液
を吸収剤とする吸収冷凍機において、前記第1蒸発器で
前記第2吸収器を冷却する熱交換関係に配置するととも
に、前記第2蒸発器で蒸発した冷媒蒸気が前記第2吸収
器に導入され、前記第1蒸発器で蒸発した冷媒蒸気が冷
却水で冷却される前記第1吸収器に導入され、前記第2
蒸発器に吸収剤混合手段を配置して、散布冷媒が混合冷
媒で熱媒体と熱交換させることを特徴とする吸収冷凍
機。3. A first evaporator, a second evaporator, a first absorber, a second absorber, a regenerator, a condenser, a solution circulation pump, a pipe for operatively connecting a refrigerant spray pump, and a salt. In an absorption refrigerator using an aqueous solution as an absorbent, the first evaporator is arranged in a heat exchange relationship for cooling the second absorber, and the refrigerant vapor evaporated in the second evaporator is transferred to the second absorber. The refrigerant vapor introduced and evaporated in the first evaporator is introduced into the first absorber cooled by cooling water, and the second vapor is introduced into the second absorber.
An absorption refrigerating machine, characterized in that absorbent mixing means is arranged in the evaporator, and the sprayed refrigerant exchanges heat with the heat medium in the mixed refrigerant.
2吸収器、再生器、凝縮器、液熱交換器、溶液循環ポン
プ、冷媒スプレ−ポンプを動作的に接続した配管を備
え、塩類水溶液を吸収剤とする吸収冷凍機において、前
記第1蒸発器の液冷媒で前記第2吸収器を冷却する熱交
換関係に配置するとともに、前記第2蒸発器で蒸発した
冷媒蒸気が前記第2吸収器に導入され、前記第1蒸発器
で蒸発した冷媒蒸気が冷却水で冷却される前記第1吸収
器に導入され、前記第1蒸発器から、前記第2蒸発器に
送られる液冷媒流路に吸収剤混合手段を配置して、前記
第2蒸発器の散布冷媒が混合冷媒で熱媒体と熱交換させ
ることを特徴とする吸収冷凍機。4. A first evaporator, a second evaporator, a first absorber, a second absorber, a regenerator, a condenser, a liquid heat exchanger, a solution circulation pump, and a refrigerant spray pump are operably connected. In an absorption refrigerator having a pipe and using an aqueous salt solution as an absorbent, the refrigerant is placed in a heat exchange relationship for cooling the second absorber with the liquid refrigerant of the first evaporator, and the refrigerant evaporated in the second evaporator. The vapor is introduced into the second absorber, the refrigerant vapor evaporated in the first evaporator is introduced into the first absorber that is cooled by cooling water, and the first evaporator is introduced into the second evaporator. An absorption refrigerating machine characterized in that an absorbent mixing means is arranged in a liquid refrigerant flow path to be sent so that the sprayed refrigerant of the second evaporator exchanges heat with a heat medium by the mixed refrigerant.
2吸収器、高温再生器、低温再生器、凝縮器、液熱交換
器、溶液循環ポンプ、冷媒スプレ−ポンプを動作的に接
続した配管を備え、塩類水溶液を吸収剤とする吸収冷凍
機において、前記第1蒸発器からは冷水を生成させ、前
記第2蒸発器からは前記第1蒸発器で生成されるよりも
低温のブラインを生成させ、2つの温度のことなる冷水
を負荷側に接続することを特徴とする吸収冷凍機。5. A first evaporator, a second evaporator, a first absorber, a second absorber, a high temperature regenerator, a low temperature regenerator, a condenser, a liquid heat exchanger, a solution circulation pump and a refrigerant spray pump. In an absorption refrigerator having an operatively connected pipe and using an aqueous salt solution as an absorbent, cold water is generated from the first evaporator, and cold water is generated from the second evaporator from the second evaporator. An absorption chiller characterized in that cold water of different temperatures is connected to the load side to generate cold brine.
2吸収器、高温再生器、低温再生器、凝縮器、液熱交換
器、溶液循環ポンプ、冷媒スプレ−ポンプを動作的に接
続した配管を備え、塩類水溶液を吸収剤とする吸収冷凍
機において、前記第1蒸発器の液冷媒または冷水で前記
第2吸収器を冷却する熱交換関係に配置するとともに、
前記第2蒸発器で蒸発した冷媒蒸気が前記第2吸収器に
導入され、前記第1蒸発器で蒸発した冷媒蒸気が冷却水
で冷却される前記第1吸収器に導入される構成にし、前
記第1蒸発器から前記第2蒸発器に送られる液冷媒流路
に吸収剤混合手段を配置して、前記第2蒸発器の散布冷
媒が混合冷媒で熱媒体と熱交換させ、前記第1蒸発器か
らは冷水を生成させ、前記第2蒸発器からは前記第1蒸
発器で生成されるよりも低温のブラインを生成させるこ
とを特徴とする吸収冷凍機。6. A first evaporator, a second evaporator, a first absorber, a second absorber, a high temperature regenerator, a low temperature regenerator, a condenser, a liquid heat exchanger, a solution circulation pump, and a refrigerant spray pump. In an absorption refrigerator having an operatively connected pipe and using an aqueous salt solution as an absorbent, while being arranged in a heat exchange relationship for cooling the second absorber with the liquid refrigerant of the first evaporator or cold water,
Refrigerant vapor evaporated in the second evaporator is introduced into the second absorber, and refrigerant vapor evaporated in the first evaporator is introduced into the first absorber cooled with cooling water. Absorbent mixing means is arranged in the liquid refrigerant flow path sent from the first evaporator to the second evaporator, and the sprayed refrigerant of the second evaporator causes the mixed refrigerant to exchange heat with the heat medium, thereby performing the first evaporation. An absorption refrigerating machine, wherein cold water is produced from a vessel, and brine having a temperature lower than that produced by the first evaporator is produced from the second evaporator.
る吸収剤混合量を混合冷媒の吸収剤濃度検出手段の信号
でコントロ−ルすることを特徴とする請求項4記載の吸
収冷凍機。7. An absorption refrigerating machine according to claim 4, wherein the amount of the adsorbent mixed by the adsorbent mixing means to the sprayed refrigerant of the evaporator is controlled by the signal of the absorbent concentration detecting means of the mixed refrigerant. .
吸収剤混合量を、フォトダイオ−ドと光ファイバ−と受
光素子と演算素子とを備え、前記光ファイバ−の一端が
混合冷媒中に浸漬され混合冷媒との屈折率差で反射光量
の変化を検出して混合冷媒の吸収剤濃度を算出して信号
を発生する混合冷媒の吸収剤濃度検出手段の信号でコン
トロ−ルすることを特徴とする請求項4記載の吸収冷凍
機。8. An admixture amount of the adsorbent mixed with the evaporator-dispersed refrigerant is provided by a photodiode, an optical fiber, a light receiving element and an arithmetic element, and one end of the optical fiber is in the mixed refrigerant. Is controlled by the signal of the absorbent concentration detecting means of the mixed refrigerant which detects the change in the amount of reflected light by the refractive index difference with the mixed refrigerant and calculates the absorbent concentration of the mixed refrigerant to generate a signal. The absorption refrigerator according to claim 4, wherein the absorption refrigerator is a refrigerator.
も2個有し、その内の1台は凝縮器に連通し、該再生器
の流出溶液を再加熱する再生器は濃縮用吸収器群に接続
されていることを特徴とする請求項4記載の吸収冷凍
機。9. A regenerator group having at least two regenerator groups for recovering heat from an exhaust heat source, one of which communicates with a condenser, and a regenerator for reheating a solution flowing out of the regenerator is a concentration absorber. The absorption refrigerator according to claim 4, wherein the absorption refrigerator is connected to the group.
とも2個以上有し、その内の1台は凝縮器に連通し、該
再生器の流出溶液を再加熱する再生器は濃縮用吸収器群
に接続されているとともに、蒸発器に送られる液冷媒流
路に吸収剤混合手段を配置して、該蒸発器の散布冷媒が
混合冷媒で熱媒体と熱交換させることを特徴とする請求
項4記載の吸収冷凍機。10. A regenerator group for recovering heat from an exhaust heat source has at least two regenerators, one of which communicates with a condenser, and a regenerator for reheating a solution flowing out of the regenerator is a concentration absorber. An adsorbent mixing means is arranged in the liquid refrigerant flow path that is connected to the evaporator group and is sent to the evaporator, and the sprayed refrigerant of the evaporator causes heat exchange with the heat medium by the mixed refrigerant. Item 4. The absorption refrigerator according to item 4.
収器管群列とを交互に配置したことを特徴とする請求項
4記載の吸収冷凍機。11. The absorption refrigerator according to claim 4, wherein the evaporator tube group row and the absorber tube group row in which the mixed refrigerant is dispersed are alternately arranged.
合蒸発冷媒を集めて配管で溶液ポンプ吸入管部に接続す
ることを特徴とする請求項3もしくは4記載の吸収冷凍
機。12. The absorption refrigerating machine according to claim 3 or 4, wherein the unmixed evaporated refrigerant of the second evaporator to which the mixed refrigerant is scattered is collected and connected to the solution pump suction pipe section through a pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5283025A JP3013673B2 (en) | 1993-11-12 | 1993-11-12 | Absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5283025A JP3013673B2 (en) | 1993-11-12 | 1993-11-12 | Absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07139844A true JPH07139844A (en) | 1995-06-02 |
JP3013673B2 JP3013673B2 (en) | 2000-02-28 |
Family
ID=17660253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5283025A Expired - Lifetime JP3013673B2 (en) | 1993-11-12 | 1993-11-12 | Absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3013673B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6233968B1 (en) | 1998-03-19 | 2001-05-22 | Hitachi, Ltd. | Absorption refrigerating machine |
JP2004150776A (en) * | 2002-11-01 | 2004-05-27 | Ebara Corp | Absorption refrigerating machine and its operation method |
JP2007271165A (en) * | 2006-03-31 | 2007-10-18 | Daikin Ind Ltd | Absorption refrigeration system |
JP2007278573A (en) * | 2006-04-05 | 2007-10-25 | Daikin Ind Ltd | Absorption refrigeration system |
JP2008095976A (en) * | 2006-10-06 | 2008-04-24 | Hitachi Appliances Inc | 2-stage absorption refrigerator |
JP2009068816A (en) * | 2007-09-18 | 2009-04-02 | Hitachi Appliances Inc | Absorption refrigerator |
JP2009168358A (en) * | 2008-01-17 | 2009-07-30 | Hitachi Appliances Inc | Chilled water generation system and absorption refrigerator |
WO2012114456A1 (en) * | 2011-02-22 | 2012-08-30 | 株式会社日立製作所 | Two-stage absorption refrigerating machine and method for manufacturing same |
JP2013529280A (en) * | 2010-04-20 | 2013-07-18 | エボニック デグサ ゲーエムベーハー | Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt |
JP2013543965A (en) * | 2010-11-08 | 2013-12-09 | エボニック デグサ ゲーエムベーハー | Working medium for absorption heat pump |
EP2803923A3 (en) * | 2013-05-15 | 2015-04-01 | Ago Ag Energie + Anlagen | Absorption process and machine |
WO2019021636A1 (en) * | 2017-07-27 | 2019-01-31 | 株式会社日立製作所 | Liquid composition measurement device and liquid composition measurement method for absorption refrigerator |
CN113623890A (en) * | 2020-05-08 | 2021-11-09 | 中国科学院理化技术研究所 | Absorption type refrigerating device and supercooled water ice making system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101972542B1 (en) * | 2017-12-08 | 2019-04-26 | 한국에너지기술연구원 | Absorption refrigeration system |
-
1993
- 1993-11-12 JP JP5283025A patent/JP3013673B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100363982B1 (en) * | 1998-03-19 | 2002-12-11 | 가부시끼가이샤 히다치 세이사꾸쇼 | Absorption refrigerating machine |
US6233968B1 (en) | 1998-03-19 | 2001-05-22 | Hitachi, Ltd. | Absorption refrigerating machine |
JP2004150776A (en) * | 2002-11-01 | 2004-05-27 | Ebara Corp | Absorption refrigerating machine and its operation method |
JP2007271165A (en) * | 2006-03-31 | 2007-10-18 | Daikin Ind Ltd | Absorption refrigeration system |
JP2007278573A (en) * | 2006-04-05 | 2007-10-25 | Daikin Ind Ltd | Absorption refrigeration system |
JP2008095976A (en) * | 2006-10-06 | 2008-04-24 | Hitachi Appliances Inc | 2-stage absorption refrigerator |
JP2009068816A (en) * | 2007-09-18 | 2009-04-02 | Hitachi Appliances Inc | Absorption refrigerator |
JP2009168358A (en) * | 2008-01-17 | 2009-07-30 | Hitachi Appliances Inc | Chilled water generation system and absorption refrigerator |
JP2013529280A (en) * | 2010-04-20 | 2013-07-18 | エボニック デグサ ゲーエムベーハー | Absorption heat pump having an absorbent containing lithium chloride and an organic chloride salt |
JP2013543965A (en) * | 2010-11-08 | 2013-12-09 | エボニック デグサ ゲーエムベーハー | Working medium for absorption heat pump |
WO2012114456A1 (en) * | 2011-02-22 | 2012-08-30 | 株式会社日立製作所 | Two-stage absorption refrigerating machine and method for manufacturing same |
JP5489143B2 (en) * | 2011-02-22 | 2014-05-14 | 株式会社日立製作所 | Two-stage absorption refrigerator and manufacturing method thereof |
EP2803923A3 (en) * | 2013-05-15 | 2015-04-01 | Ago Ag Energie + Anlagen | Absorption process and machine |
WO2019021636A1 (en) * | 2017-07-27 | 2019-01-31 | 株式会社日立製作所 | Liquid composition measurement device and liquid composition measurement method for absorption refrigerator |
JP2019027627A (en) * | 2017-07-27 | 2019-02-21 | 学校法人八戸工業大学 | Liquid composition measuring device and liquid composition measuring method in absorption refrigerator |
CN113623890A (en) * | 2020-05-08 | 2021-11-09 | 中国科学院理化技术研究所 | Absorption type refrigerating device and supercooled water ice making system |
Also Published As
Publication number | Publication date |
---|---|
JP3013673B2 (en) | 2000-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100363982B1 (en) | Absorption refrigerating machine | |
JP3013673B2 (en) | Absorption refrigerator | |
JPH05172437A (en) | Method and device for cooling fluid, particularly air by two separated absorption cooling system | |
JP2829080B2 (en) | Absorption heat pump | |
JPH08159594A (en) | Multiple effect absorption refrigerator | |
KR100981672B1 (en) | Two-stage driven hot water absorption chiller | |
JP2012068019A (en) | Absorption refrigerating machine | |
JP3397164B2 (en) | Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method | |
JP2007333342A (en) | Multi-effect absorption refrigerating machine | |
KR101127521B1 (en) | Single-effect, double stage generator, hot water driven absorption chiller | |
KR101972542B1 (en) | Absorption refrigeration system | |
JP5260895B2 (en) | Absorption refrigerator | |
JP2580275B2 (en) | Air conditioning system using absorption refrigerator | |
JP3715157B2 (en) | 2-stage double-effect absorption refrigerator | |
JP3889655B2 (en) | Absorption refrigerator | |
JP3312549B2 (en) | Absorption refrigerator | |
JP2004169988A (en) | Two-stage/single-stage switchable absorption refrigerator and refrigerating system | |
KR102144935B1 (en) | absorption chiller using non-heat type recycling process | |
CN211120100U (en) | Integrated refrigerated lithium bromide refrigerator | |
JPS5832301B2 (en) | absorption refrigerator | |
JP3484142B2 (en) | 2-stage double-effect absorption refrigerator | |
JP3451237B2 (en) | 2-stage double effect absorption refrigerator | |
JP3486382B2 (en) | Absorption refrigerator | |
JP2853439B2 (en) | Absorption type ice machine | |
JP2865305B2 (en) | Absorption refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20071217 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20071217 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20071217 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20081217 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20111217 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20131217 |
|
EXPY | Cancellation because of completion of term |