JPH07128637A - Optical element - Google Patents
Optical elementInfo
- Publication number
- JPH07128637A JPH07128637A JP27692793A JP27692793A JPH07128637A JP H07128637 A JPH07128637 A JP H07128637A JP 27692793 A JP27692793 A JP 27692793A JP 27692793 A JP27692793 A JP 27692793A JP H07128637 A JPH07128637 A JP H07128637A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- electrode
- potential
- light
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 39
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 81
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 238000000149 argon plasma sintering Methods 0.000 abstract description 36
- 239000000463 material Substances 0.000 description 12
- 230000005684 electric field Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000011282 treatment Methods 0.000 description 9
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000004988 Nematic liquid crystal Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 2
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 2
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 2
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- KCHFMTRVJWKQAC-UHFFFAOYSA-N n-(4-butylphenyl)-1-(4-methylphenyl)methanimine Chemical compound C1=CC(CCCC)=CC=C1N=CC1=CC=C(C)C=C1 KCHFMTRVJWKQAC-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- -1 p-substituted phenyl Chemical group 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ソフトフォーカス画像
を容易に形成できる光学素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element capable of easily forming a soft focus image.
【0002】[0002]
【従来の技術】従来、写真の分野でソフトフォーカス写
真を作成するには、撮影時にカメラにソフトフォーカス
フィルタを装着して撮影時に画像を加工している。ま
た、撮影済みのネガフィルムの画像をソフトフォーカス
加工して印画紙に焼き付けることもできる。このような
写真プリント以外の分野でも、ソフトフォーカス画像を
形成する要望があり、アナログ光による複写装置でも容
易にソフトフォーカス画像を形成できることが望まれて
いる。2. Description of the Related Art Conventionally, in order to create a soft focus photograph in the field of photography, a soft focus filter is attached to a camera at the time of photographing to process the image at the time of photographing. It is also possible to soft-focus an image of a negative film that has been taken and print it on photographic paper. There is also a demand for forming a soft focus image in fields other than such photographic printing, and it is desired that a soft focus image can be easily formed even in a copying machine using analog light.
【0003】複写装置で原画の内容を複写する際にソフ
トフォーカス加工を施すには、原画と感光材料との間に
ソフトフォーカスフィルタを配置してソフトフォーカス
フィルタを通過した原画の散乱光で感光材料を所定時間
露光する。ソフトフォーカスフィルタは光を散乱させる
機能を有し、ソフトフォーカス加工は散乱光を利用して
行われる。このようなソフトフォーカスフィルタを用い
ずに散乱光を得るには、例えば光を散乱させる機能を有
する液晶を用いればよく、液晶に電場を印加して液晶の
光散乱状態を生じさせることができる。そして光散乱状
態を生じさせた液晶を通した光で感光材料を露光すれ
ば、感光材料上での結像をぼかすことができる。To perform soft focus processing when copying the contents of an original image with a copying apparatus, a soft focus filter is arranged between the original image and the photosensitive material, and the photosensitive material is scattered by the original image that has passed through the soft focus filter. Is exposed for a predetermined time. The soft focus filter has a function of scattering light, and the soft focus processing is performed using scattered light. In order to obtain scattered light without using such a soft focus filter, for example, a liquid crystal having a function of scattering light may be used, and an electric field may be applied to the liquid crystal to cause a light scattering state of the liquid crystal. Then, if the light-sensitive material is exposed to light that has passed through the liquid crystal causing the light-scattering state, the image formation on the light-sensitive material can be blurred.
【0004】液晶を用いて結像をぼかす技術として、特
公昭64−10819号公報、特開昭61−16982
3号公報、特開平1−257820号公報、特開昭62
−220926号公報に記載のものがある。特公昭64
−10819号公報には、マトリクス電極を用いて所定
領域ごとに光散乱状態を生じさせる技術が開示されてい
る。特開昭61−169823号公報には、セグメント
電極を用いて所定領域ごとに光散乱状態を生じさせて、
所定領域のみにソフトフォーカス加工を施す技術が開示
されている。特開平1−257820号公報には、撮影
用カメラ等で被写体と感光材料との間に位置するように
液晶部材を配置して、液晶部材の光散乱状態を部分的に
制御して、感光材料に露光される画像にぼかし処理を施
すことが記載されている。特開昭62−220926号
公報には、画素単位で電位勾配を生じさせて光散乱状態
を生じさせる技術が開示されている。As a technique for blurring an image by using a liquid crystal, Japanese Patent Publication No. Sho 64-10819 and Japanese Patent Laid-Open No. Sho 61-16982.
No. 3, JP-A-1-257820, and JP-A-62.
-220926 has a thing as described. Japanese Examiner Sho 64
Japanese Patent Laid-Open No. 10819 discloses a technique in which a matrix electrode is used to generate a light scattering state for each predetermined region. In Japanese Patent Laid-Open No. 61-169823, a segment electrode is used to generate a light scattering state in each predetermined region,
A technique for performing soft focus processing only on a predetermined area is disclosed. Japanese Patent Laid-Open No. 1-257820 discloses a photosensitive material in which a liquid crystal member is arranged so as to be located between a subject and a photosensitive material in a photographing camera or the like, and the light scattering state of the liquid crystal member is partially controlled. It is described that the blurring process is applied to the image exposed to the. Japanese Unexamined Patent Publication No. 62-220926 discloses a technique in which a potential gradient is generated in pixel units to generate a light scattering state.
【0005】[0005]
【発明が解決しようとする課題】前記特公昭64−10
819号公報、前記特開昭61−169823号公報、
前記特開平1−257820号公報に記載の技術は、マ
トリクス電極やセグメント電極により所定エリアの光透
過制御を行うものであり、そのための回路構成が複雑に
なるという問題がある。また、マトリクス電極やセグメ
ント電極の形状で光散乱領域が設定されるので、電極の
間のブラックマトリクス等の部分が画素の境界となり、
これがマスクとなってしまい、画像にノイズが生じて画
質が低下する問題がある。また、前記特開昭62−22
0926号公報の技術は、各画素内で電位勾配を生じさ
せて光散乱状態を制御するので、各画素を構成する電極
の回路構成に加えて、各画素で電位勾配を生じさせる回
路構成が必要であるので、回路構成が更に複雑になる。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
819, the above-mentioned JP-A-61-169823,
The technique disclosed in Japanese Patent Laid-Open No. 1-257820 controls the light transmission of a predetermined area by means of the matrix electrode and the segment electrode, and there is a problem that the circuit configuration for that purpose becomes complicated. Moreover, since the light scattering region is set by the shape of the matrix electrode or the segment electrode, the portion such as the black matrix between the electrodes becomes the boundary of the pixel,
This becomes a mask, and there is a problem that noise is generated in the image and the image quality is deteriorated. Further, the above-mentioned JP-A-62-22
Since the technique of Japanese Patent No. 0926 controls the light scattering state by generating a potential gradient in each pixel, a circuit configuration that generates a potential gradient in each pixel is required in addition to the circuit configuration of the electrodes that configure each pixel. Therefore, the circuit configuration becomes more complicated.
【0006】本発明の目的は、上記従来の問題を解決す
ることにあり、複雑な回路を必要とせずに、ノイズの生
じないソフトフォーカス画像を容易に形成できる光学素
子を提供することにある。An object of the present invention is to solve the above-mentioned conventional problems, and to provide an optical element that can easily form a noise-free soft focus image without requiring a complicated circuit.
【0007】[0007]
【課題を解決するための手段】本発明の上記目的は、下
記構成により達成される。 (1) 対向配置した電極間に液晶を挟装して一方の電
極と他方の電極との間に印加する電位に勾配を生じさせ
て、液晶の光透過状態をエリア制御する光学素子。The above object of the present invention can be achieved by the following constitutions. (1) An optical element in which a liquid crystal is sandwiched between opposed electrodes to generate a gradient in a potential applied between one electrode and the other electrode to control the light transmission state of the liquid crystal in an area.
【0008】(2) 長手状の両端部に同レベルの高電
位を印加され前記両端部の間に低電位用接点を有する一
方の電極と、該電極と液晶を介して対向配置した他方の
電極とを有し、両電極間に電位差を生じさせかつ前記接
点に低電位を設定して、前記一方の電極の前記両端部と
前記接点との間に電位勾配を生じさせて、液晶の光透過
状態をエリア制御する光学素子。(2) One electrode having a high potential of the same level applied to both ends of the longitudinal shape and having a contact for low potential between the both ends, and the other electrode arranged to face the electrode via a liquid crystal. And a potential difference is generated between both electrodes and a low potential is set to the contact to generate a potential gradient between the both ends of the one electrode and the contact, thereby transmitting light of liquid crystal. An optical element that controls the state of the area.
【0009】(3) 面状の周縁部に同レベルの高電位
を印加され前記周縁部に囲まれた部分に低電位用接点を
有する一方の電極と、該電極と液晶を介して対向配置し
た他方の電極とを有し、両電極間に電位差を生じさせか
つ前記接点に低電位を設定して、前記一方の電極の前記
周縁部と前記接点との間に電位勾配を生じさせて、液晶
の光透過状態をエリア制御する光学素子。(3) A high potential of the same level is applied to the peripheral edge of the sheet, and one electrode having a contact for low potential in a portion surrounded by the peripheral edge is arranged opposite to the electrode via a liquid crystal. A liquid crystal having the other electrode, causing a potential difference between both electrodes, and setting a low potential at the contact to generate a potential gradient between the peripheral portion of the one electrode and the contact. An optical element that controls the light transmission state of the area.
【0010】[0010]
【作用】対向電極間の電位を一定にせずに電位勾配を生
じさせて、対向電極間に挟装した液晶の光透過状態を制
御することにより、液晶の配向状態が変わる閾値と前記
電位勾配との関係で液晶の配向状態が変わる領域が決ま
り、光学素子に画素を設定せずにエリア制御できるの
で、複雑な回路構成を必要とせずに、光の透過状態をエ
リア制御することができる。また、光学素子には特に画
素が設定されていないので、画素設定用のブラックマト
リクス等、光を遮るものがなく不要なマスクが防止さ
れ、ノイズのない画像を形成することができる。By controlling the light transmission state of the liquid crystal sandwiched between the counter electrodes by generating a potential gradient without keeping the potential between the counter electrodes constant, the threshold value and the potential gradient at which the alignment state of the liquid crystal changes. The area in which the alignment state of the liquid crystal changes is determined based on the above relationship, and the area can be controlled without setting pixels in the optical element. Therefore, the area in which the light is transmitted can be controlled without requiring a complicated circuit configuration. Further, since no pixel is set in the optical element, there is no black matrix for pixel setting or the like that does not block light and an unnecessary mask is prevented, and a noise-free image can be formed.
【0011】電位勾配を生じさせるには、電極に均一に
電圧を印加した上で電極の一部に低電位を設定すればよ
い。また電極に電圧を均一に印加するためには、電極形
状は低抵抗部が高抵抗部を挟むか又は囲んだ形状が好ま
しく、低抵抗部を介して高抵抗部に電圧を印加すること
が好ましい。光学素子がスリット露光用の場合、光学素
子はスリット光と同方向に延びる長手状に形成されるの
が好ましい。この場合、一方の電極は長手状の両端部に
低抵抗部を有し両低抵抗部の間に高抵抗部を有するよう
に構成され、高抵抗部の長側辺に低電位用の接点を設け
る。低電位用接点を長手状の長側辺の一方に設けること
により、この低電位用接点と両端の低抵抗部(高電位用
接点)との間に電位勾配を形成することができる。In order to generate a potential gradient, it is sufficient to apply a voltage uniformly to the electrodes and then set a low potential to a part of the electrodes. Further, in order to uniformly apply a voltage to the electrodes, it is preferable that the low resistance portion sandwiches or surrounds the high resistance portion in the electrode shape, and it is preferable to apply the voltage to the high resistance portion via the low resistance portion. . When the optical element is for slit exposure, the optical element is preferably formed in a longitudinal shape extending in the same direction as the slit light. In this case, one of the electrodes is configured to have a low resistance portion at both longitudinal end portions and a high resistance portion between both low resistance portions, and a contact for low potential is provided on the long side of the high resistance portion. Set up. By providing the low potential contact on one of the long sides of the longitudinal shape, a potential gradient can be formed between the low potential contact and the low resistance portions (high potential contacts) at both ends.
【0012】ここで、低電位用の接点は長側辺の一方に
あることから、電位勾配は両端の低抵抗部から低電位用
接点に向かう。また、電極の低抵抗部の短辺方向の両端
部から低電位用接点までの距離が異なることから、電位
勾配の傾斜角度も変わる。そのため、光の透過状態が変
わる閾値電位の領域は、スリット露光の副走査方向に対
して斜めに交差するようになる。したがって、閾値電位
が副走査方向に対して斜めの領域をスリット光が通る
と、この部分では液晶により調整された光と何ら調整さ
れない光とによる合成光とで露光され、調光部と非調光
部との境界が目立たなくなる。Since the contact for low potential is on one of the long sides, the potential gradient goes from the low resistance portion at both ends to the contact for low potential. Further, since the distance from both ends of the low resistance part of the electrode in the short side direction to the contact for low potential is different, the inclination angle of the potential gradient is also changed. Therefore, the region of the threshold potential where the light transmission state changes intersects obliquely with the sub-scanning direction of slit exposure. Therefore, when the slit light passes through a region where the threshold potential is oblique to the sub-scanning direction, this portion is exposed by the light adjusted by the liquid crystal and the combined light of the light that is not adjusted at all, and is not adjusted by the dimming unit. The boundary with the light section becomes inconspicuous.
【0013】また、面露光用には、一方の電極が所定の
大きさの面状の高抵抗部の周縁に低抵抗部を一体に有
し、他方の対向電極との間に液晶を挟装して光学素子を
構成する。そして、高抵抗部に低電位用接点を設けるこ
とにより、この接点と周縁の低抵抗部との間に電位勾配
を生じさせることができる。低電位用接点の周囲には、
ほぼ放射状に広がる電位勾配が生じるので、閾値電位は
閉曲線になりこの閉曲線の内外で異なる光の透過状態が
得られる。For surface exposure, one electrode integrally has a low resistance portion on the periphery of a planar high resistance portion having a predetermined size, and a liquid crystal is sandwiched between the other electrode and the opposite electrode. Then, an optical element is configured. By providing a low potential contact in the high resistance part, a potential gradient can be generated between this contact and the low resistance part at the periphery. Around the contact for low potential,
Since a potential gradient that spreads almost radially occurs, the threshold potential becomes a closed curve, and different transmission states of light are obtained inside and outside this closed curve.
【0014】本発明に用いることのできる液晶の種類と
しては、電場無印加で透明であり電場印加で散乱状態と
なるものでもよく、逆に電場無印加で散乱状態であり電
場印加で透明となるものでもよい。本発明では液晶とし
て、DSM(ダイナミックスキャタリングモード、動的
散乱モード)、PC(フェイズチェンジモード、相転移
モード)、PDLC(ポリマー分散型液晶)を用いるこ
とができる。透明時のことを考えると、DSMが最も透
明であるので好ましい。The type of liquid crystal that can be used in the present invention may be transparent without application of an electric field and in a scattering state when an electric field is applied, or conversely, it is in a scattering state when no electric field is applied and becomes transparent when an electric field is applied. It may be one. In the present invention, DSM (dynamic scattering mode, dynamic scattering mode), PC (phase change mode, phase transition mode), PDLC (polymer dispersed liquid crystal) can be used as the liquid crystal. Considering the time of transparency, DSM is the most transparent and is therefore preferable.
【0015】まず動的散乱型液晶について説明する。動
的散乱型(DSM:Dymanic ScatteringMode) と呼ばれる液
晶デバイスについては、ビレンドラ・バハドゥール編
「リクイド・クリスタルズ・アプリケーションズ・アン
ド・ユーセズ」(1990年、ワールド・サイエンティ
フィック社刊)の195頁〜230頁、及びその引用文
献に記載がある。動的散乱型液晶は、透明電極とその上
に配向処理を施した2枚の透明基板でネマティック液晶
を挟持したものである。そこに封入される液晶化合物又
は組成物は、通常、誘電率の異方性が負で、1010オー
ムセンチメートル程度かそれ以下のやや低い抵抗率を有
し、導電率の異方性(分子長軸方向の導電率から、これ
と直交する方向の導電率を引いた差)が正である。更
に、通常は、イオン性の化合物(以下、ドーパントと略
す)が10乃至1000ppm添加される。First, the dynamic scattering type liquid crystal will be described. For liquid crystal devices called Dynamic Scattering Modes (DSM), pages 195 to 230 of “Liquid Crystals Applications and Uses” (1990, World Scientific) edited by Vilendra Bahadur. It is described in the page and the references cited therein. The dynamic scattering type liquid crystal has a nematic liquid crystal sandwiched between a transparent electrode and two transparent substrates on which an alignment treatment is applied. The liquid crystal compound or composition enclosed therein usually has a negative anisotropy of dielectric constant, has a rather low resistivity of about 10 10 ohm cm or less, and has anisotropy of conductivity (molecular weight). The difference obtained by subtracting the conductivity in the direction orthogonal to the conductivity in the major axis direction) is positive. Further, usually, an ionic compound (hereinafter abbreviated as a dopant) is added at 10 to 1000 ppm.
【0016】動的散乱動作を示す化合物として公知のも
のは1980年以前に知られていた化合物が多く、例え
ばN−p−メチルベンジリデン−p−ブチルアニリンに
代表されるシッフ塩基、p−置換フェニル、p−置換安
息香酸エステルを使用することができる。この他に動的
散乱動作を示すネマティック液晶はすべて用いることが
できる。Many known compounds exhibiting dynamic scattering action were known before 1980, for example, Schiff bases represented by N-p-methylbenzylidene-p-butylaniline and p-substituted phenyl. , P-substituted benzoic acid esters can be used. In addition to this, all nematic liquid crystals exhibiting dynamic scattering operation can be used.
【0017】液晶デバイスの配向処理として、垂直配向
処理と水平配向処理が知られており、動的散乱モードに
はこれら両方が用いられる。したがって、本発明の目的
に適合するように、電圧無印加状態で液晶の光散乱が極
微であれば、本発明においては、本質的にいかなる配向
処理も利用可能である。それらの中で、垂直配向処理を
施したセルは、電圧無印加状態の透過率が高いこと、及
び光拡散の立体的対称性が良いので、他の配向法より有
利である。配向処理方法としては、例えばシランカップ
リング剤処理、ポリイミドなどのポリマーコート処理な
どが用いることができ、必要に応じてラビングを施すこ
とが好ましい。ドーパントとしては、臭化テトラブチル
アンモニウムなどの4級有機アンモニウム塩が代表的に
用いられる。ここで、対アニオンとしてカルボキシレー
トを用いてもよい。また、テトラシアノキノジメタン
(TCNQ)とテトラチアフルバレン(TTF)に代表
される電荷移動錯体も利用できる。Vertical alignment treatment and horizontal alignment treatment are known as alignment treatments for liquid crystal devices, and both of them are used for the dynamic scattering mode. Therefore, in order to meet the object of the present invention, essentially any alignment treatment can be used in the present invention as long as the light scattering of the liquid crystal is extremely small in the absence of applied voltage. Among them, the cell subjected to the vertical alignment treatment is advantageous over other alignment methods because it has high transmittance in the absence of applied voltage and good three-dimensional symmetry of light diffusion. As the orientation treatment method, for example, treatment with a silane coupling agent, treatment with a polymer such as polyimide, or the like can be used, and rubbing is preferably performed as necessary. As the dopant, a quaternary organic ammonium salt such as tetrabutylammonium bromide is typically used. Here, carboxylate may be used as the counter anion. Further, charge transfer complexes represented by tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) can also be used.
【0018】動的散乱型液晶は直流でも交流でも駆動可
能であるが、素子寿命の観点からは交流駆動が好まし
い。その際、好適な周波数と電圧は液晶組成物、ドーパ
ントの種類と濃度、温度に大きく依存する。動的散乱型
液晶は、基板上の電極にある電圧(閾電圧)以下の電圧
が印加されているときには、液晶層を通過する光を散乱
しない。閾電圧以上の電圧を印加すると、液晶層を通過
する光は散乱する。散乱の程度は、液晶材料、配向膜の
作成条件、セル厚、印加電圧などの要因によって変化す
る。Although the dynamic scattering type liquid crystal can be driven by direct current or alternating current, alternating current driving is preferable from the viewpoint of device life. At that time, the suitable frequency and voltage largely depend on the liquid crystal composition, the kind and concentration of the dopant, and the temperature. The dynamic scattering type liquid crystal does not scatter light passing through the liquid crystal layer when a voltage equal to or lower than a voltage (threshold voltage) applied to the electrodes on the substrate is applied. When a voltage higher than the threshold voltage is applied, the light passing through the liquid crystal layer is scattered. The degree of scattering changes depending on factors such as the liquid crystal material, the alignment film forming conditions, the cell thickness, and the applied voltage.
【0019】動的散乱型液晶のこのような性質は、原画
をソフトフォーカス加工して複写しようとする本発明の
目的に極めて好適である。すなわち、光拡散能が角度半
値幅で5°から30°以上であり、ソフトフォーカスプ
リント用途としては十分である。しかも拡散の程度を印
加電圧によって制御できるので、拡散能の固定した拡散
板などを用いるよりも柔軟性に富んだシステムを作るこ
とが可能となる。Such a property of the dynamic scattering type liquid crystal is extremely suitable for the purpose of the present invention in which the original image is subjected to soft focus processing to be copied. That is, the light diffusing ability is 5 ° to 30 ° or more in the half width of the angle, which is sufficient for soft focus printing. Moreover, since the degree of diffusion can be controlled by the applied voltage, it is possible to make a system having more flexibility than using a diffusion plate having a fixed diffusing ability.
【0020】次に相転移型液晶(Phase Change Mode Liq
uid Crystal)について説明する。相転移型液晶は相変化
型液晶とも言う。相転移型液晶は螺旋構造の分子配列を
持つコレステリック(Ch)相から垂直配向構造のネマ
チック(N)相、又はこの逆のN相からCh相への相変
化は電界の強弱により生じる。電界が弱い場合は、螺旋
構造のCh相をとるが、電界が強い場合には螺旋構造が
解けてN相へ変化する。Ch相はフォーカルコニック組
織を形成し光を散乱するがN相は光を散乱せずこのとき
素子は透明化する。相転移型液晶はこの電気光学効果を
利用した素子であるが光の散乱を利用するために偏光板
を必要とせず明るい素子が得られる。これらについて
は、下記文献に記載されている。J. J. Wysocki et a
l., Phys. Rov. Lett., 20, 1024 (1968) 、G. H. Heil
meier and L. A. Zanoni, Appl. Phys. Lett., 13, 91
(1968)、H. Malchior et al., Appl. Phys. Lett., 21,
392 (1972) 。Next, a phase change type liquid crystal (Phase Change Mode Liq
uid Crystal) is explained. The phase transition type liquid crystal is also called a phase change type liquid crystal. In the phase transition type liquid crystal, a phase change from a cholesteric (Ch) phase having a helical molecular arrangement to a vertically aligned nematic (N) phase or vice versa is caused by the strength of an electric field. When the electric field is weak, the Ch phase having a spiral structure is taken, but when the electric field is strong, the spiral structure is dissolved and the phase changes to the N phase. The Ch phase forms a focal conic structure and scatters light, but the N phase does not scatter light and the element becomes transparent at this time. The phase transition type liquid crystal is an element utilizing this electro-optical effect, but since it utilizes the scattering of light, a polarizing element is not required and a bright element can be obtained. These are described in the following documents. JJ Wysocki et a
l., Phys. Rov. Lett., 20, 1024 (1968), GH Heil
meier and LA Zanoni, Appl. Phys. Lett., 13, 91
(1968), H. Malchior et al., Appl. Phys. Lett., 21,
392 (1972).
【0021】次に高分子分散型液晶について説明する。
高分子分散型液晶は、高分子マトリクスにネマチック液
晶滴が完全又は部分的に包囲された構造を有している。
ここで液晶の常光屈折率と高分子の屈折率とが一致する
ように組み合わせると、素子に電界を印加した場合には
液晶が電界方向に配向し液晶と高分子の屈折率とが一致
するので透明になり、一方、電界を印加しない場合には
液晶が高分子からの配向規制力によってランダムに配向
するため液晶と高分子の屈折率が一致せず光を散乱す
る。Next, the polymer dispersed liquid crystal will be described.
The polymer dispersed liquid crystal has a structure in which a nematic liquid crystal droplet is completely or partially surrounded by a polymer matrix.
Here, if the ordinary refractive index of the liquid crystal and the refractive index of the polymer are combined so that when the electric field is applied to the device, the liquid crystal is oriented in the direction of the electric field and the refractive indices of the liquid crystal and the polymer match. On the other hand, when the liquid crystal is transparent, when the electric field is not applied, the liquid crystal is randomly aligned due to the alignment regulating force from the polymer, so that the refractive index of the liquid crystal and the polymer do not match and light is scattered.
【0022】このような高分子分散型液晶を用いた液晶
調光部材は、偏光板が不要で明るい画面が得られる。ま
た、フィルム状で連続成形が可能であり、セル化や大面
積化が容易である。高分子分散型液晶は、その分散形態
等の違いにより下記のように各種呼称があり、これらを
本発明に用いることができる。A liquid crystal light control member using such a polymer-dispersed liquid crystal does not require a polarizing plate and can obtain a bright screen. In addition, since it can be continuously formed into a film, it is easy to make cells and have a large area. The polymer-dispersed liquid crystal has various names as described below depending on the dispersion form and the like, and these can be used in the present invention.
【0023】NCAP(Nematic Courvilinear Alligned
Phase):液晶をマイクロカプセル化して樹脂に入れて固
めたことに特徴がある。商品名「UMU」(日本板硝子
社製)。(特公平3−52843号、米国特許出願番号
第302,780号、J. L.Fergason, 1985, SID Dig.
Tech. Papers 68p)PDLC(Polymer Dispersed Liquid
Crystal): 液晶と高分子との相分離を用いて形成する
ことに特徴がある。(J. W. Doane et al., Appl, Phys.
Lett., 48(4), 269 (1986))PNLC(Polymer Network
Liquid Crystal): 高分子マトリクスが紫外線重合化合
物で三次元網目構造を有することに特徴がある。大日本
インキ化学工業が開発。(竹内他、第15回液晶討論会
206(1989))NCAP (Nematic Courvilinear Alligned)
Phase): The feature is that the liquid crystal is microencapsulated and put into a resin and hardened. Product name "UMU" (manufactured by Nippon Sheet Glass Co., Ltd.). (Japanese Patent Publication No. 3-52843, U.S. Patent Application No. 302,780, JL Fergason, 1985, SID Dig.
Tech. Papers 68p) PDLC (Polymer Dispersed Liquid)
Crystal): Characterized by forming by using phase separation between liquid crystal and polymer. (JW Doane et al., Appl, Phys.
Lett., 48 (4), 269 (1986)) PNLC (Polymer Network
Liquid Crystal): The polymer matrix is characterized by being a UV polymer compound and having a three-dimensional network structure. Developed by Dainippon Ink and Chemicals. (Takeuchi et al., 15th Liquid Crystal Conference 206 (1989))
【0024】[0024]
【実施例】以下、添付図面を参照して本発明の第1実施
例を説明する。図1は液晶を用いた本発明の光学素子の
原理図である。光学素子は一対の透明対向電極の間に液
晶が挟装された構成であるが、図1には対向電極のみ示
してある。この光学素子1はスリット露光に用いる調光
フィルタであり、両電極3、5はスリット光の主走査方
向に延びる長手状に形成されている。第1の電極3は長
手方向の両端部に低抵抗部7を有し、両低抵抗部7の間
が高抵抗部9になっている。第2の電極5は、全面の抵
抗が均一なベタ電極である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a principle diagram of an optical element of the present invention using liquid crystal. The optical element has a structure in which a liquid crystal is sandwiched between a pair of transparent counter electrodes, but only the counter electrode is shown in FIG. The optical element 1 is a light control filter used for slit exposure, and both electrodes 3, 5 are formed in a long shape extending in the main scanning direction of slit light. The first electrode 3 has a low resistance portion 7 at both ends in the longitudinal direction, and a high resistance portion 9 is provided between the both low resistance portions 7. The second electrode 5 is a solid electrode having a uniform resistance on the entire surface.
【0025】一方の電極3の高抵抗部9は透明であるこ
とが必要であり、例えばITOを用いることができる。
また、低抵抗部7としては同じくITOでもよく、汎用
されている金属電極でもよい。また、他方の対向電極5
も透明であることが必要であり、例えばITOを用いる
ことができる。低抵抗部7は高抵抗部9に均一に電圧を
印加するためのものであるが、これを省略して高抵抗部
9の両端に電圧を直接印加してもよい。The high resistance portion 9 of one electrode 3 needs to be transparent, and ITO, for example, can be used.
Further, the low resistance portion 7 may also be ITO, or a commonly used metal electrode. In addition, the other counter electrode 5
Also needs to be transparent, for example ITO can be used. The low resistance portion 7 is for uniformly applying a voltage to the high resistance portion 9, but it may be omitted and the voltage may be directly applied to both ends of the high resistance portion 9.
【0026】光学素子1の断面構造は、図2に示すよう
に、2枚の配向膜の間に液晶化合物を保持し、配向膜
(例えばポリイミド)の外側に更に絶縁膜(例えばSi
O2 )、透明電極、ガラス基板、反射防止膜を順次層設
したものである。これらの一対の透明対向電極3、5の
間には液晶が挟装され、これらは一体に露光ガラス等に
固着される。電極3、5間に挟装される液晶としては、
電圧の印加により透明状態から光散乱状態になるもの、
あるいは電圧の印加により光散乱状態から透明状態にな
るものなどを用いることができるが、本実施例では電圧
印加により光散乱状態になるものを用いることとする。
このような特性の液晶としては、誘電率の異方性が負の
ネマチック液晶、例えばメルク(E.Merck)社製
のZLI−4330、ZLI−2806、ZLI−45
18、ZLI−4318などを用いることができる。As shown in FIG. 2, the optical element 1 has a sectional structure in which a liquid crystal compound is held between two alignment films, and an insulating film (for example, Si) is provided outside the alignment film (for example, polyimide).
O 2 ), a transparent electrode, a glass substrate, and an antireflection film are sequentially layered. A liquid crystal is sandwiched between the pair of transparent counter electrodes 3 and 5, and these are integrally fixed to the exposure glass or the like. As the liquid crystal sandwiched between the electrodes 3 and 5,
Those that change from a transparent state to a light scattering state by applying a voltage,
Alternatively, a material that changes from a light-scattering state to a transparent state by applying a voltage can be used, but in this embodiment, a material that changes to a light-scattering state by applying a voltage is used.
As the liquid crystal having such characteristics, a nematic liquid crystal having a negative dielectric anisotropy, for example, ZLI-4330, ZLI-2806, ZLI-45 manufactured by E. Merck.
18, ZLI-4318 and the like can be used.
【0027】第1の電極3の両端の低抵抗部7と、第2
の電極5との間には所定の電圧が印加され、電圧が印加
された部分の液晶は配向状態が変わり、光散乱状態とな
る。このとき、第1の電極3は第2の電極5よりも高電
位になるように電圧が印加される。第1の電極3の高抵
抗部9の一辺には、1又は複数の接点11が設けられ
る。この接点11は、両端の低抵抗部7の電位よりも低
い電位に設定されるものであり、図示の場合、接点11
a〜11gは複数設けられ、各接点11a〜11gは独
立に接地されることができ電位を0Vにすることができ
る。なお、図示の例では低電位用接点11の電位は0V
に設定されるが、低電位用接点11の電位は両端の低抵
抗部7の電位よりも低ければよい。The low resistance portions 7 on both ends of the first electrode 3 and the second
A predetermined voltage is applied between the electrode 5 and the electrode 5, and the liquid crystal in the portion to which the voltage is applied changes its alignment state and becomes a light scattering state. At this time, a voltage is applied to the first electrode 3 so as to have a higher potential than that of the second electrode 5. One or a plurality of contacts 11 are provided on one side of the high resistance portion 9 of the first electrode 3. The contact 11 is set to a potential lower than the potential of the low resistance portions 7 at both ends.
A plurality of a to 11g are provided, and the contacts 11a to 11g can be grounded independently and the potential can be set to 0V. In the illustrated example, the potential of the low potential contact 11 is 0V.
However, the potential of the low potential contact 11 may be lower than the potentials of the low resistance portions 7 at both ends.
【0028】第1の電極3と第2の電極5との間に所定
電位差が生じるように電圧が印加されると、両電極3、
5の間の液晶はこの所定電位差により配向状態が変わり
光散乱状態になる。したがって、第1の電極3と第2の
電極5との間が全面にわたって所定電位差が生じれば、
全面が光散乱状態となる。しかし、第1の電極3の一辺
に設けてある接点11a〜11gのうち、1又は複数の
接点11a〜11gを低電位にすることにより、この接
点11a〜11gの近傍では設定された所定電位差が生
じなくなる。設定された所定電位差が生じないと液晶の
配向状態も光散乱を起こすまでには変化せず、この部分
の液晶は光透過状態になる。When a voltage is applied between the first electrode 3 and the second electrode 5 so as to generate a predetermined potential difference, both electrodes 3,
The liquid crystal between 5 changes its alignment state due to this predetermined potential difference and becomes a light scattering state. Therefore, if a predetermined potential difference is generated across the entire surface between the first electrode 3 and the second electrode 5,
The entire surface is in a light scattering state. However, by setting one or a plurality of contacts 11a to 11g among the contacts 11a to 11g provided on one side of the first electrode 3 to a low potential, the set predetermined potential difference is generated in the vicinity of the contacts 11a to 11g. It will not occur. If the predetermined potential difference that has been set does not occur, the alignment state of the liquid crystal does not change until light scattering occurs, and the liquid crystal in this portion is in the light transmitting state.
【0029】したがって、接点11を適当に選択して接
地することにより、所定電位差が生じない領域を設定す
ることができ、光散乱状態にある光学素子1中での透明
部分の領域を設定することができる。このように、上記
構成の光学素子1は、電圧印加部分では液晶の配向状態
が変わって液晶が光散乱状態となるので、液晶への電圧
印加領域を低電位用接点の選択により制御することによ
って、光散乱領域をエリア制御することができる。Therefore, by appropriately selecting the contact 11 and grounding it, it is possible to set a region in which a predetermined potential difference does not occur, and to set a transparent region in the optical element 1 in the light scattering state. You can As described above, in the optical element 1 having the above-described configuration, the alignment state of the liquid crystal changes in the voltage application portion and the liquid crystal becomes a light scattering state. Therefore, by controlling the voltage application region to the liquid crystal by selecting the low potential contact. The area of the light scattering area can be controlled.
【0030】以下に上記構成の光学素子1における光散
乱領域のエリア制御について説明する。図3(A)に示
すように、電極3、5の長手方向の中央の接点11dに
低電位部を設定すると、対向電極3、5との間には、図
3(B)に示すような電位勾配V1が生じる。光学素子
1の両端の低抵抗部7には所定電圧が印加されているの
で電位差が大きいが、中央のC点に向かって対向電極
3、5との間の電位差が徐々に少なくなって行き、中央
のC点近傍で電位差は0になる。なお、高電位部から低
電位部に向かう過程の勾配は直線的であるが、低電位部
に近づくほど電位の低下率は曲線的に大きくなり、この
結果、低電位用接点11dだけが0Vになるのではな
く、低電位用接点11dの近傍も0Vになる。The area control of the light scattering area in the optical element 1 having the above structure will be described below. As shown in FIG. 3A, when a low potential portion is set at the contact 11d at the center of the electrodes 3 and 5 in the longitudinal direction, a low potential portion is formed between the electrodes 3 and 5 as shown in FIG. 3B. A potential gradient V1 is generated. Since a predetermined voltage is applied to the low resistance portions 7 at both ends of the optical element 1, the potential difference is large, but the potential difference between the counter electrodes 3 and 5 gradually decreases toward the center point C, The potential difference becomes 0 near the center point C. Although the gradient of the process from the high potential portion to the low potential portion is linear, the rate of decrease of the potential increases in a curve toward the low potential portion, and as a result, only the low potential contact 11d becomes 0V. Instead, the vicinity of the low potential contact 11d also becomes 0V.
【0031】対向電極3、5の電位差が所定閾値電位S
H1(図3(B)に点線で示す)より低いと光の散乱は
生じないので、光学素子1は電位差が閾値電位SH1よ
り低い中央近傍の領域では透明状態となる。これに対
し、電位差が閾値電位SH1より高い両端の領域では、
液晶の配向状態が変わって光散乱状態が生じ、図3
(A)に示すように、長手方向中央近傍の透明部の両側
に光散乱部が生じるようになる。The potential difference between the counter electrodes 3 and 5 is a predetermined threshold potential S.
Light scattering does not occur below H1 (shown by the dotted line in FIG. 3B), so that the optical element 1 is in a transparent state in a region near the center where the potential difference is lower than the threshold potential SH1. On the other hand, in the regions at both ends where the potential difference is higher than the threshold potential SH1,
The alignment state of the liquid crystal is changed and a light scattering state is generated.
As shown in (A), light scattering portions are formed on both sides of the transparent portion near the center in the longitudinal direction.
【0032】上記のように電圧を印加した光学素子1
を、長手方向をスリット露光時のスリット光の主走査方
向に一致させて配置し、光学素子1を透過させたスリッ
ト光で走査露光を行うと、主走査の両端近傍では散乱光
が得られ、この部分に対応した感光材料ではソフトフォ
ーカス露光が行われる。すなわち、感光材料は長手方向
両端近傍では散乱光により露光されぼやけた画像が形成
され、中央近傍では何ら調光されない光で露光されシャ
ープな画像が形成される。Optical element 1 to which voltage is applied as described above
Is arranged with the longitudinal direction aligned with the main scanning direction of the slit light at the time of slit exposure, and scanning exposure is performed with the slit light transmitted through the optical element 1, scattered light is obtained in the vicinity of both ends of the main scanning, Soft-focus exposure is performed on the photosensitive material corresponding to this portion. That is, the photosensitive material is exposed to scattered light in the vicinity of both ends in the longitudinal direction to form a blurred image, and is exposed to light in the vicinity of the center with light that is not dimmed to form a sharp image.
【0033】図3において、接点11dを左右の他の接
点に変更すれば透明領域及び光散乱領域も接点の変更に
従って変わる。この場合、低電位用接点11a〜11g
を複数同時に設定して透明と光散乱領域を制御すること
ができる。複数の低電位用接点を設定すれば、これらの
接点の間の領域はかならず透明になる。また、低電位用
接点11を固定した上で、低抵抗部7に印加する電圧を
増減して図3(B)に想像線で示すような電位勾配V
2,V3を形成してエリア制御することもできる。また
同様に、閾値電位を変更して図3(B)に想像線で示す
閾値電位SH2,SH3にすることによってもエリア制
御することができる。更に、低電位用接点11の電位を
増減することによってもエリア制御することができる。In FIG. 3, if the contact 11d is changed to another contact on the left and right, the transparent region and the light scattering region also change according to the change of the contact. In this case, the low potential contacts 11a to 11g
Can be set simultaneously to control the transparent and light scattering regions. If multiple low potential contacts are set, the area between these contacts will always be transparent. In addition, after fixing the contact 11 for low potential, the voltage applied to the low resistance portion 7 is increased or decreased to change the potential gradient V as shown by an imaginary line in FIG.
2, V3 can be formed to control the area. Similarly, the area control can be performed by changing the threshold potential to set the threshold potentials SH2 and SH3 indicated by phantom lines in FIG. Further, the area can be controlled by increasing or decreasing the potential of the low potential contact 11.
【0034】上記の構成は、複数の低電位用接点11a
〜11gが独立に設けられているが、低電位用接点とし
て高抵抗部9の長側辺に接する摺動子を設けることによ
り、任意の位置に低電位用接点を設定することもでき
る。このようなソフトフォーカスのエリア制御にあって
は、画素単位での制御や、セグメント単位での制御がな
いので、複雑な回路構成が不要であり、簡単な構成でソ
フトフォーカス加工のエリア制御を行うことができる。The above structure has a plurality of low potential contacts 11a.
11g are independently provided, but a low potential contact can be set at an arbitrary position by providing a slider contacting the long side of the high resistance portion 9 as a low potential contact. In such soft focus area control, since there is no control in pixel units or in segment units, a complicated circuit configuration is not required, and soft focus area control is performed with a simple configuration. be able to.
【0035】なお、前述のように、低電位用接点を0V
にすると、その近傍の所定範囲までが0Vになる。平面
内でのこの電位分布状態を図4に示すと、低電位用接点
の近傍の半円形の領域が0Vになる。一方、両端の低抵
抗部7の各点7a〜7dと低電位用接点11dとの電位
差は等しいので、等電位部分は低電位用接点11dを中
心に放射状に広がり、等電位線は円弧となる。したがっ
て、液晶の配向状態が変わる閾値電位SH1も円弧とな
ることから、光透過部分と光散乱部分との境界線も円弧
となる。スリット露光にあっては、矢印D方向に副走査
するので、幅Wの領域では透明部分を透過した光と光散
乱部分を透過した光との合成光で感光材料を露光する。
したがって、形成された画像はシャープな画像とソフト
フォーカス画像との境界が鮮明にならず、シャープ画像
とソフトフォーカス画像の境界がグラデーション状態に
なるという効果がある。As described above, the low potential contact is set to 0V.
When it is set to 0V, a predetermined range in the vicinity thereof becomes 0V. When this potential distribution state in the plane is shown in FIG. 4, the semicircular region in the vicinity of the low potential contact has 0V. On the other hand, since the potential differences between the points 7a to 7d of the low resistance portion 7 at both ends and the low potential contact 11d are equal, the equipotential portion spreads radially around the low potential contact 11d, and the equipotential line becomes an arc. . Therefore, since the threshold potential SH1 that changes the alignment state of the liquid crystal is also an arc, the boundary line between the light transmitting portion and the light scattering portion is also an arc. In slit exposure, since sub-scanning is performed in the direction of arrow D, in the area of width W, the photosensitive material is exposed with the combined light of the light transmitted through the transparent portion and the light transmitted through the light scattering portion.
Therefore, the formed image has an effect that the boundary between the sharp image and the soft focus image is not clear, and the boundary between the sharp image and the soft focus image is in a gradation state.
【0036】次に、図5を参照して光学素子の第2の実
施例について説明する。図5(A)は第2の実施例の原
理図である。この光学素子21は対向配置した一対の円
形電極23,25からなり、第1の電極23は周縁部が
低抵抗部27で、低抵抗部27以外の中央寄りの他の部
分が高抵抗部29となっている。第2の電極25は全面
が均一抵抗のベタ電極である。第1の電極23の高抵抗
部29には、1又は複数の低電位用の接点31を設ける
ことができ、図5(A)に示す例では、中央に1つの接
点31が設けられている。Next, a second embodiment of the optical element will be described with reference to FIG. FIG. 5A is a principle diagram of the second embodiment. The optical element 21 is composed of a pair of circular electrodes 23 and 25 arranged so as to face each other. The first electrode 23 has a low resistance portion 27 at its peripheral portion and a high resistance portion 29 at other portions near the center other than the low resistance portion 27. Has become. The second electrode 25 is a solid electrode having a uniform resistance on the entire surface. The high resistance portion 29 of the first electrode 23 can be provided with one or a plurality of low potential contacts 31, and in the example shown in FIG. 5A, one contact 31 is provided in the center. .
【0037】第1の電極23の低抵抗部27と第2の電
極25との間に、液晶が光散乱状態となる所定電位差が
生じるような電圧を印加することにより、光学素子21
の全面を光散乱状態にすることができる。ここで、第1
の電極23の低電位用接点31の電位を、周縁の低抵抗
部27よりも低くすることにより、低電位用接点31の
近傍と第2の電極25との間には、光散乱状態が生じる
ための設定された電位差が生じなくなる。したがって、
光学素子21の中央近傍では光散乱状態が生じなく透明
状態となり、これに対し周縁近傍では光散乱状態が生
じ、周縁近傍だけのソフトフォーカス加工を行うことが
できる。By applying a voltage between the low resistance portion 27 of the first electrode 23 and the second electrode 25 such that a predetermined potential difference that causes the liquid crystal to be in a light scattering state is applied, the optical element 21
The entire surface of can be made into a light scattering state. Where the first
By setting the potential of the low potential contact 31 of the electrode 23 of the electrode 23 lower than that of the low resistance portion 27 at the peripheral edge, a light scattering state occurs between the vicinity of the low potential contact 31 and the second electrode 25. Therefore, the set potential difference is not generated. Therefore,
In the vicinity of the center of the optical element 21, a light scattering state does not occur and the optical element 21 is in a transparent state, whereas in the vicinity of the peripheral edge, a light scattering state occurs, and soft focus processing can be performed only in the vicinity of the peripheral edge.
【0038】この第2の実施例において、低電位用接点
31の数及び位置は図5(A)に示す位置に限らず、任
意に設定することができる。低電位用接点31は、第1
の電極23に対して同心に設けてもよく偏心させて設け
てもよい。第2の実施例においても、低電位用接点31
の位置、低電位用接点31の電位、低抵抗部27への印
加電圧、液晶が光散乱状態を生じるための閾値電位、等
を制御することにより、電極23、25面内での光散乱
状態をエリア制御することができる。In the second embodiment, the number and positions of the low potential contacts 31 are not limited to the positions shown in FIG. 5A, but can be set arbitrarily. The low potential contact 31 is the first
The electrode 23 may be provided concentrically or eccentrically. Also in the second embodiment, the low potential contact 31
By controlling the position, the potential of the low potential contact 31, the voltage applied to the low resistance portion 27, the threshold potential for causing the liquid crystal to generate the light scattering state, and the like. Area can be controlled.
【0039】この第2の実施例の光学素子21は、横断
面が円形の光束を加工するのに好適であり、この光学素
子21を写真カメラ、ビデオカメラ等の撮影装置に内蔵
して用いると、容易にソフトフォーカス撮影することが
できる。特に、所定領域だけをソフトフォーカスにする
場合であっても、そのための画素制御やセグメント制御
が不要であり、低電位用接点31の制御だけでよいの
で、複雑な回路構成は不要である。したがって、簡単な
構成でソフトフォーカス加工を行うことができる。な
お、第2の実施例の電極形状は円形であるが、電極は矩
形等の形状であってもよく、用途に応じていかなる形状
にしてもよい。The optical element 21 of the second embodiment is suitable for processing a light flux having a circular cross section, and when the optical element 21 is used by being incorporated in a photographing device such as a photographic camera or a video camera. , You can easily take soft focus. In particular, even when soft focus is applied only to a predetermined area, pixel control and segment control for that purpose are unnecessary, and since only the control of the low potential contact 31 is required, a complicated circuit configuration is unnecessary. Therefore, soft focus processing can be performed with a simple configuration. Although the electrode shape of the second embodiment is circular, the electrode may be rectangular or the like, and may have any shape according to the application.
【0040】上記各実施例の光学素子の駆動は、直流又
は交流のいずれによってもよく、交流の場合はサイン波
でも三角波でもよい。上記各実施例の構成において、液
晶としてメルク社製の液晶ZLI−4318にテトラブ
チルアンモニウムブロマイドを0.04wt%加えたも
のを用い、50Hzの交流サイン波で、第1の電極と第
2の電極との間に波高値0V〜±70Vを印加し、低電
位用接点を接地したところ、所定領域のみ光散乱状態が
生じ、光散乱部をエリア制御できた。The optical element of each of the above embodiments may be driven by direct current or alternating current, and in the case of alternating current, sine wave or triangular wave may be used. In each of the configurations of the above-described examples, a liquid crystal ZLI-4318 manufactured by Merck & Co., in which 0.04 wt% of tetrabutylammonium bromide is added, is used as a liquid crystal, and an alternating sine wave of 50 Hz is used for the first electrode and the second electrode When a crest value of 0 V to ± 70 V was applied between and, and the contact for low potential was grounded, a light scattering state occurred only in a predetermined region, and the light scattering portion could be area controlled.
【0041】[0041]
【発明の効果】本発明によれば、対向電極間の電位を一
定にせずに電位勾配を生じさせて、対向電極間に挟装し
た液晶の光透過状態を制御することにより、光学素子に
画素を設定せずにエリア制御できるので、画素単位で制
御する場合やセグメント単位で制御する場合のような複
雑な回路構成を必要とせずに、簡単な構成で光の透過状
態をエリア制御することができる。しかも、本発明は画
素を設定しないので、従来のように画素の境界がマスク
となることを防止でき、ノイズのない画像を形成するこ
とができる。According to the present invention, a potential gradient is generated without making the potential between the opposing electrodes constant, and the light transmission state of the liquid crystal sandwiched between the opposing electrodes is controlled, whereby the pixel is formed in the optical element. Since the area can be controlled without setting, it is possible to control the area of the light transmission state with a simple structure without the need for a complicated circuit configuration such as when controlling in pixel units or in segment units. it can. Moreover, since the present invention does not set pixels, it is possible to prevent the boundary between pixels from becoming a mask as in the conventional case, and it is possible to form an image without noise.
【図1】本発明の光学素子の原理図である。FIG. 1 is a principle diagram of an optical element of the present invention.
【図2】本発明の光学素子の断面図である。FIG. 2 is a sectional view of an optical element of the present invention.
【図3】本発明の光学素子の第1実施例の作動説明図で
あり、(A)は原理図、(B)は電位勾配と閾値との関
係を表すグラフである。3A and 3B are operation explanatory views of the first embodiment of the optical element of the present invention, FIG. 3A is a principle diagram, and FIG. 3B is a graph showing a relationship between a potential gradient and a threshold value.
【図4】電位の平面分布状態図である。FIG. 4 is a plane distribution state diagram of a potential.
【図5】本発明の光学素子の第2の実施例の作動説明図
であり、(A)は原理図、(B)は電位勾配と閾値との
関係を表すグラフである。5A and 5B are operation explanatory diagrams of a second embodiment of the optical element of the present invention, FIG. 5A is a principle diagram, and FIG. 5B is a graph showing a relationship between a potential gradient and a threshold value.
1、21 光学素子 3、23 第1の電極 5、25 第2の電極 7、27 低抵抗部 9、29 高抵抗部 11、31 低電位用接点 1, 21 Optical element 3, 23 First electrode 5, 25 Second electrode 7, 27 Low resistance part 9, 29 High resistance part 11, 31 Low potential contact
───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢野 充 静岡県富士宮市大中里200番地 富士写真 フイルム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuru Sawano 200 Onakazato, Fujinomiya-shi, Shizuoka Prefecture Fuji Photo Film Co., Ltd.
Claims (3)
方の電極と他方の電極との間に印加する電位に勾配を生
じさせて、液晶の光透過状態をエリア制御する光学素
子。1. An optical element for controlling an area of a light transmission state of liquid crystal by sandwiching liquid crystal between electrodes arranged to face each other to generate a gradient in a potential applied between one electrode and the other electrode.
加され前記両端部の間に低電位用接点を有する一方の電
極と、該電極と液晶を介して対向配置した他方の電極と
を有し、両電極間に電位差を生じさせかつ前記接点に低
電位を設定して、前記一方の電極の前記両端部と前記接
点との間に電位勾配を生じさせて、液晶の光透過状態を
エリア制御する光学素子。2. One electrode having a high potential of the same level applied to both ends of the longitudinal shape and having a low potential contact between the both ends, and the other electrode opposed to the electrode via a liquid crystal. And a potential difference between both electrodes is generated and a low potential is set at the contact to generate a potential gradient between the both ends of the one electrode and the contact, so that the liquid crystal light transmission state is obtained. An optical element that controls the area.
され前記周縁部に囲まれた部分に低電位用接点を有する
一方の電極と、該電極と液晶を介して対向配置した他方
の電極とを有し、両電極間に電位差を生じさせかつ前記
接点に低電位を設定して、前記一方の電極の前記周縁部
と前記接点との間に電位勾配を生じさせて、液晶の光透
過状態をエリア制御する光学素子。3. One electrode having a low potential contact in a portion surrounded by the peripheral portion and having a high potential applied to the planar peripheral portion, and the other electrode opposed to the electrode via a liquid crystal. Of the liquid crystal to generate a potential difference between the electrodes and to set a low potential to the contact to generate a potential gradient between the peripheral portion of the one electrode and the contact. An optical element that controls the area of light transmission.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27692793A JPH07128637A (en) | 1993-11-05 | 1993-11-05 | Optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27692793A JPH07128637A (en) | 1993-11-05 | 1993-11-05 | Optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07128637A true JPH07128637A (en) | 1995-05-19 |
Family
ID=17576345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27692793A Pending JPH07128637A (en) | 1993-11-05 | 1993-11-05 | Optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07128637A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081989A1 (en) * | 2007-12-26 | 2009-07-02 | Asahi Glass Co., Ltd. | Projection display device |
US12032170B2 (en) | 2018-09-14 | 2024-07-09 | Magic Leap, Inc. | Systems and methods for external light management |
-
1993
- 1993-11-05 JP JP27692793A patent/JPH07128637A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081989A1 (en) * | 2007-12-26 | 2009-07-02 | Asahi Glass Co., Ltd. | Projection display device |
JPWO2009081989A1 (en) * | 2007-12-26 | 2011-05-06 | 旭硝子株式会社 | Projection display |
US12032170B2 (en) | 2018-09-14 | 2024-07-09 | Magic Leap, Inc. | Systems and methods for external light management |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7771799B2 (en) | Liquid crystal-soluble particle, method for manufacturing the same and liquid crystal device element | |
US6501524B1 (en) | Liquid crystal display device | |
KR0149471B1 (en) | Liquid crystal display device manufacturing method thereof and system using such liquid crystal device | |
TWI294980B (en) | Liquid crystal display device and electronic apparatus | |
EP0543658B1 (en) | Liquid-crystal color display device | |
JPH11149096A (en) | Reflective type liquid crystal display device | |
JPH07253578A (en) | Liquid crystal display | |
JP3147447B2 (en) | Liquid crystal element and light intensity adjustment mechanism | |
JP2961677B2 (en) | Photosensitive material exposure equipment | |
JPH07128637A (en) | Optical element | |
JP4551230B2 (en) | Manufacturing method of liquid crystal display device | |
JPH03288823A (en) | Liquid crystal electrooptical element | |
KR20010065169A (en) | Liquid crystal display device | |
JP4639457B2 (en) | Manufacturing method of color filter for MVA-LCD | |
JPH047518A (en) | liquid crystal electro-optical element | |
JP2004163746A (en) | Liquid crystal display | |
JPH07120764A (en) | Liquid crystal display panel and its production | |
Lu et al. | Bending angle effects on the multi-domain in-plane-switching liquid crystal displays | |
JPH06110068A (en) | Liquid crystal display device | |
JPH0854629A (en) | Liquid crystal display element and its production | |
JPH06235931A (en) | Reflection type liquid crystal display device | |
JP3115819B2 (en) | Color filter substrate, method of manufacturing the same, and liquid crystal display device using the same | |
JPH0667185A (en) | Liquid crystal display element | |
US20060103780A1 (en) | Polarizer, panel for a liquid crystal display, and liquid crystal display, including a scattering layer | |
JPH09113904A (en) | Liquid crystal display device and its diffusion plate |