JPH07126771A - Production of beryllium block having high purity and no blow hole - Google Patents
Production of beryllium block having high purity and no blow holeInfo
- Publication number
- JPH07126771A JPH07126771A JP27448393A JP27448393A JPH07126771A JP H07126771 A JPH07126771 A JP H07126771A JP 27448393 A JP27448393 A JP 27448393A JP 27448393 A JP27448393 A JP 27448393A JP H07126771 A JPH07126771 A JP H07126771A
- Authority
- JP
- Japan
- Prior art keywords
- beryllium
- melting
- torr
- blow hole
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高純度無気孔ベリリウ
ムブロックおよびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high purity non-porous beryllium block and a method for producing the same.
【0002】[0002]
【従来の技術】従来より、ベリリウムの精製において、
溶解室内の残留ガス除去のために真空引きを行い、その
後不活性ガスを充填させ、前述の粗金属ベリリウムの溶
解を開始し、溶解終了後、無冷却鋳型に鋳造する処理を
2回繰り返して行うことにより揮発性不純物を除去する
方法が知られている。2. Description of the Related Art Conventionally, in the purification of beryllium,
A vacuum is drawn to remove the residual gas in the melting chamber, then an inert gas is filled, the above-mentioned crude metal beryllium is started to be melted, and after the melting is completed, the process of casting in an uncooled mold is repeated twice. Therefore, a method of removing volatile impurities is known.
【0003】[0003]
【発明が解決しようとする課題】ところが、この従来の
ベリリウムの精製方法において、前記の真空溶解を2回
繰り返すためベリリウム精製は高価なものとなってい
る。また、この方法では溶解バッチが大きいため、得ら
れるベリリウムインゴット中に径が20mm程度の気孔
が多く含まれるため、このようなベリリウムインゴット
を真空蒸着の原料として用いる場合、真空蒸着時に突沸
が多発する傾向にある。However, in the conventional method for purifying beryllium, the refining of beryllium is expensive because the vacuum melting is repeated twice. Further, in this method, since the dissolution batch is large, the resulting beryllium ingot contains many pores with a diameter of about 20 mm. Therefore, when such a beryllium ingot is used as a material for vacuum deposition, bumping frequently occurs during vacuum deposition. There is a tendency.
【0004】また、真空溶解を1回行なう方法によって
精製されるベリリウムは、揮発性不純物が多く、真空蒸
着中に突沸が多発するため、蒸着用原料としては適さな
い。さらに、ベリリウムの蒸気圧が高い故に溶解時の圧
力をあまり低下できないという問題もある。本発明は、
このような問題を解決するためになされたもので、低コ
ストで突沸の原因となる揮発性不純物の除去と気孔の発
生を抑制した高純度無気孔ベリリウムブロックの製造方
法を提供することを目的とする。Further, beryllium, which is purified by the method of performing vacuum melting once, has many volatile impurities, and bumping frequently occurs during vacuum vapor deposition, so that it is not suitable as a raw material for vapor deposition. Further, there is a problem that the pressure during melting cannot be lowered so much because the vapor pressure of beryllium is high. The present invention is
In order to provide a method for producing a high-purity non-porous beryllium block that suppresses the generation of pores and the removal of volatile impurities that cause bumping at low cost. To do.
【0005】[0005]
【課題を解決するための手段】前記目的を達成するため
の本発明の高純度無気孔ベリリウムブロックの製造方法
は、減圧した不活性ガス雰囲気下で粗金属ベリリウムを
加熱溶解して所定時間溶融状態に保持する工程と、この
溶解物を非酸化雰囲気下で一方向凝固させてインゴット
とする工程とを含む。The method for producing a high-purity non-porous beryllium block of the present invention for achieving the above-mentioned object is to melt a crude metal beryllium under a depressurized inert gas atmosphere and melt it for a predetermined time. And a step of unidirectionally solidifying the melted product in a non-oxidizing atmosphere to form an ingot.
【0006】この場合、一方向凝固させてインゴットと
する工程の非酸化雰囲気が、不活性ガス雰囲気であるこ
とが好ましい。前記不活性ガス雰囲気の圧力レベルは、
100Torr以下が適当であり、望ましくは50Torr以
下、更に望ましくは30Torr以下の範囲である。この圧
力レベルは、例えばX線窓用部材としては、X線を吸収
する不純物の量が問題になるため、100Torr以下が選
択され、さらに良好な圧延性が要求される高純度インゴ
ットとしては50Torr以下が選択され、またさらに蒸着
振動板用原料としては揮発性不純物を除去する必要から
30Torr以下が選択される。In this case, the non-oxidizing atmosphere in the step of unidirectionally solidifying into an ingot is preferably an inert gas atmosphere. The pressure level of the inert gas atmosphere is
100 Torr or less is suitable, preferably 50 Torr or less, and more preferably 30 Torr or less. This pressure level is selected as 100 Torr or less for an X-ray window member, for example, because the amount of impurities that absorb X-rays becomes a problem, and is 50 Torr or less for a high-purity ingot that requires better rolling properties. In addition, as the material for the vapor deposition vibration plate, 30 Torr or less is selected because it is necessary to remove volatile impurities.
【0007】本発明の高純度無気孔ベリリウムブロック
の製造方法は、例えば、溶解室内を真空引きした後、こ
の溶解室内に不活性ガスを充填する工程と、溶解室内を
真空引きして圧力を10〜20Torrの範囲に保持する工
程と、圧力が10〜20Torrの溶解室内で粗金属ベリリ
ウムを加熱溶解して所定時間溶融状態に保持する工程
と、圧力を10〜20Torrの範囲に保持した溶解室内で
一方向凝固させてインゴットを製造する工程とからな
る。The method for producing a high-purity non-porous beryllium block of the present invention includes, for example, a step of evacuating the melting chamber and then filling the melting chamber with an inert gas, and a vacuum of the melting chamber to a pressure of 10 In a melting chamber having a pressure of 10 to 20 Torr, in a melting chamber having a pressure of 10 to 20 Torr, for melting and refining crude metal beryllium in a melting state for a predetermined time. Unidirectionally solidifying to produce an ingot.
【0008】[0008]
【作用および発明の効果】本発明の高純度無気孔ベリリ
ウムブロックの製造方法によると、突沸の原因となる揮
発性不純物の除去と気孔の発生を抑制した高純度の無気
孔ベリリウムブロックを低コストで製造することができ
るという効果がある。According to the method for producing a high-purity non-porous beryllium block of the present invention, a high-purity non-porous beryllium block that suppresses the removal of volatile impurities causing bumping and the generation of pores can be produced at low cost. There is an effect that it can be manufactured.
【0009】[0009]
【実施例】以下、本発明の実施例について説明する。例
えば図1に示すようにチャンバー1内には、粗金属ベリ
リウムの組成としては、 ベリリウム(Be) :98 重量% マグネシウム(Mg): 0.5 重量% フッ素(F) : 0.25重量% であるマグネシウム還元した粗金属ベリリウムを満たし
た坩堝6を備えている。そして(1) 高純度のベリリウム
インゴットを製造するため、前記溶解室1内を圧力1×
10-5Torr以下まで減圧例えば真空引きすることで、残
留ガスを十分に除去する。真空引きは、真空ポンプ7に
て行なわれる。(2) 次に、不活性ガスとしてアルゴンガ
スを充填した後10Torrになるまで溶解室1内を真空引
きする。(3) そして、坩堝6内の粗金属ベリリウムに対
して高周波真空溶解を開始する。このとき、図2に溶解
時間と圧力の関係を図示したように従来例では、溶解に
伴い揮発性不純物であるマグネシウム、フッ素が気化す
るために、溶解室1内の圧力が上がる。(4) そこで、図
3に示すように実施例では溶解室1内の雰囲気圧力を1
0Torrに調整し、さらに10〜20Torrに保持するよう
に管理して前記揮発性不純物を除去する。溶解が長時間
に及ぶと、ベリリウムの損失が大きいので本実施例の高
周波加熱では1時間以内という短時間で溶解する。ま
た、溶解温度は、1350℃とする。(5) 次いで、溶解
金属を一方向凝固させる。EXAMPLES Examples of the present invention will be described below. For example, as shown in FIG. 1, in the chamber 1, the composition of the crude metal beryllium is beryllium (Be): 98 wt% magnesium (Mg): 0.5 wt% fluorine (F): 0.25 wt%. It comprises a crucible 6 filled with a magnesium-reduced crude metal beryllium. And (1) In order to produce a high-purity beryllium ingot, the pressure inside the melting chamber 1 is set to 1 ×.
The residual gas is sufficiently removed by reducing the pressure to 10 −5 Torr or less, for example, vacuuming. Vacuuming is performed by the vacuum pump 7. (2) Next, the interior of the melting chamber 1 is evacuated to 10 Torr after being filled with argon gas as an inert gas. (3) Then, high frequency vacuum melting is started for the crude metal beryllium in the crucible 6. At this time, as shown in the relationship between the melting time and the pressure in FIG. 2, in the conventional example, the pressure in the melting chamber 1 rises because volatile impurities such as magnesium and fluorine are vaporized along with the melting. (4) Therefore, as shown in FIG. 3, in the embodiment, the atmospheric pressure in the melting chamber 1 is set to 1
The volatile impurities are removed by adjusting the pressure to 0 Torr and maintaining it at 10 to 20 Torr. Since the loss of beryllium is large when the melting takes a long time, the high-frequency heating of this embodiment causes the beryllium to melt within a short time of less than one hour. The melting temperature is 1350 ° C. (5) Next, the molten metal is unidirectionally solidified.
【0010】図3には、実施例における圧力とベリリウ
ムの溶解歩留の関係を示している。前述の圧力10〜2
0Torrでは、歩留80〜85%となっている。圧力が上
がるほどベリリウムの歩留が大きくなるが、マグネシウ
ム、フッ素の残存量も増大している。また、図4では、
粗金属ベリリウム中のマグネシウム,フッ素の含有量と
蒸着の試行回数に対する突沸発生頻度の関係を示してい
るが、マグネシウム,フッ素の含有量が多いほど突沸頻
度も増大することが分かる。従って、ベリリウムの溶解
歩留、マグネシウム、フッ素の残存量との関係から、突
沸発生頻度が最も抑えられる圧力の範囲は10〜20To
rrの範囲が望ましい。なお、フッ化ベリリウムの融点:
803℃、沸点:1159℃、フッ化マグネシウムの融
点:1263℃、沸点:2260℃である。FIG. 3 shows the relationship between the pressure and the dissolution yield of beryllium in the example. The above pressure 10-2
At 0 Torr, the yield is 80 to 85%. The yield of beryllium increases as the pressure increases, but the residual amounts of magnesium and fluorine also increase. In addition, in FIG.
The relationship between the content of magnesium and fluorine in the crude metal beryllium and the occurrence frequency of bumping with respect to the number of trials of vapor deposition is shown. It can be seen that the bumping frequency increases as the content of magnesium and fluorine increases. Therefore, from the relationship between the dissolution yield of beryllium and the residual amounts of magnesium and fluorine, the pressure range in which the occurrence frequency of bumping is most suppressed is 10 to 20 To.
The range of rr is desirable. The melting point of beryllium fluoride:
803 ° C., boiling point: 1159 ° C., melting point of magnesium fluoride: 1263 ° C., boiling point: 2260 ° C.
【0011】次に図5に示すように、溶解したベリリウ
ム5を坩堝6より黒鉛からなる鋳型2に注湯し、銅ハー
ス3を管4に水を通して水冷することにより、矢印Aの
示す方向に下方から順次冷却され、気孔のないインゴッ
トを製造することが可能となった。また、比較例とし
て、従来例に基づいて真空中での溶解後、無冷却鋳型に
よる鋳造という真空溶解を2回繰り返し、かつ真空溶解
中のチャンバ−内の圧力調整を行わない方法での実験結
果を本実施例の結果とともに表1にまとめる。Next, as shown in FIG. 5, molten beryllium 5 is poured from a crucible 6 into a mold 2 made of graphite, and a copper hearth 3 is passed through a tube 4 to cool the water in a direction indicated by an arrow A. It was possible to manufacture ingots without pores by cooling from the bottom. In addition, as a comparative example, an experimental result by a method based on the conventional example, in which a vacuum melting of casting with a non-cooled mold is repeated twice after melting in a vacuum and the pressure in the chamber during vacuum melting is not adjusted. Are summarized in Table 1 together with the results of this example.
【0012】[0012]
【表1】 本実施例によると、真空溶解1回だけでベリリウム蒸着
用原料を製造することで、短い製造工程となり、低コス
ト化が計れる。また、溶解室1内の圧力を常に10〜2
0Torrに保持することで、揮発性不純物を効率良く、十
分に除去できる。さらに、水冷銅ハースを用いて一方向
凝固させることにより、気孔のないインゴットを製造で
きる。したがって、ベリリウムの蒸着時に問題になって
いた突沸現象の原因である揮発性不純物の除去と気孔の
発生の抑制により、突沸現象の発生頻度の極めて低い蒸
着を実現するという効果が得られる。[Table 1] According to the present embodiment, the raw material for beryllium vapor deposition is manufactured only once by vacuum melting, resulting in a short manufacturing process and cost reduction. Moreover, the pressure in the melting chamber 1 is always 10 to 2
By holding at 0 Torr, volatile impurities can be efficiently and sufficiently removed. Further, by unidirectionally solidifying with a water-cooled copper hearth, it is possible to manufacture an ingot without pores. Therefore, by removing the volatile impurities that are the cause of the bumping phenomenon that has been a problem during the vapor deposition of beryllium and suppressing the generation of pores, it is possible to achieve vapor deposition in which the occurrence frequency of the bumping phenomenon is extremely low.
【0013】本実施例の高純度ベリリウム蒸着用インゴ
ットの製造工程において、前記の減圧した不活性雰囲気
下における加熱溶解を1回のみとし、溶解室内の圧力を
10〜20Torrと一定に保持するように管理すること
で、効率良く不純物を除去し高純度の無気孔ベリリウム
インゴットが得られる。In the manufacturing process of the high-purity beryllium vapor deposition ingot of the present embodiment, the heating and melting under the above-mentioned reduced pressure inert atmosphere is performed only once, and the pressure in the melting chamber is kept constant at 10 to 20 Torr. By controlling, impurities can be efficiently removed and a high-purity non-porous beryllium ingot can be obtained.
【図1】本発明の実施例による真空溶解炉の装置を示す
模式図である。FIG. 1 is a schematic view showing an apparatus of a vacuum melting furnace according to an embodiment of the present invention.
【図2】本発明の実施例における溶解時間と圧力の関係
を示す図である。FIG. 2 is a diagram showing a relationship between dissolution time and pressure in an example of the present invention.
【図3】本発明の実施例における圧力とベリリウムの溶
解歩留および溶解後のマグネシウムおよびフッ素の残存
量との関係を示す図である。FIG. 3 is a diagram showing the relationship between the pressure, the dissolution yield of beryllium, and the residual amounts of magnesium and fluorine after dissolution in the example of the present invention.
【図4】本発明の実施例におけるマグネシウムとフッ素
の含有量と突沸発生頻度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the content of magnesium and fluorine and the occurrence frequency of bumping in the example of the present invention.
【図5】本発明の実施例における気孔のないインゴット
の製造装置を示す図である。FIG. 5 is a view showing an apparatus for producing an ingot having no pores in the example of the present invention.
1 溶解室 2 黒鉛鋳型 3 銅ハース 4 水冷用管 5 ベリリウム溶湯 6 坩堝 7 真空ポンプ 8 ベリリウム溶湯 1 Melting Chamber 2 Graphite Template 3 Copper Hearth 4 Water Cooling Tube 5 Beryllium Melt 6 Crucible 7 Vacuum Pump 8 Beryllium Melt
Claims (2)
リリウムを加熱溶解して所定時間溶融状態に保持する工
程と、この溶解物を非酸化雰囲気下で一方向凝固させて
インゴットとする工程とを含むことを特徴とする高純度
無気孔ベリリウムブロックの製造方法。1. A step of heating and melting a crude metal beryllium in a reduced pressure inert gas atmosphere to hold it in a molten state for a predetermined time, and a step of unidirectionally solidifying the melted material into an ingot in a non-oxidizing atmosphere. A method for producing a high-purity non-porous beryllium block, which comprises:
ンゴットとする工程の非酸化雰囲気が、不活性ガス雰囲
気であることを特徴とする高純度無気孔ベリリウムブロ
ックの製造方法。2. The method for producing a high purity non-porous beryllium block according to claim 1, wherein the non-oxidizing atmosphere in the step of unidirectionally solidifying into an ingot is an inert gas atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5274483A JP2731105B2 (en) | 1993-11-02 | 1993-11-02 | Manufacturing method of high purity non-porous beryllium block |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5274483A JP2731105B2 (en) | 1993-11-02 | 1993-11-02 | Manufacturing method of high purity non-porous beryllium block |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126771A true JPH07126771A (en) | 1995-05-16 |
JP2731105B2 JP2731105B2 (en) | 1998-03-25 |
Family
ID=17542324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5274483A Expired - Fee Related JP2731105B2 (en) | 1993-11-02 | 1993-11-02 | Manufacturing method of high purity non-porous beryllium block |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2731105B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195356A (en) * | 2014-04-15 | 2014-12-10 | 西北稀有金属材料研究院 | Smelting and purification method of beryllium beads used for casting pure beryllium ingots |
CN115533082A (en) * | 2022-10-10 | 2022-12-30 | 河北钢研德凯科技有限公司 | Method for solidification of investment casting magnesium alloy and investment casting method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293124A (en) * | 1987-05-26 | 1988-11-30 | Hitachi Cable Ltd | Method for refining copper |
JPH01299758A (en) * | 1988-05-26 | 1989-12-04 | Daido Steel Co Ltd | Vacuum induction melting/casting method |
-
1993
- 1993-11-02 JP JP5274483A patent/JP2731105B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63293124A (en) * | 1987-05-26 | 1988-11-30 | Hitachi Cable Ltd | Method for refining copper |
JPH01299758A (en) * | 1988-05-26 | 1989-12-04 | Daido Steel Co Ltd | Vacuum induction melting/casting method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195356A (en) * | 2014-04-15 | 2014-12-10 | 西北稀有金属材料研究院 | Smelting and purification method of beryllium beads used for casting pure beryllium ingots |
CN115533082A (en) * | 2022-10-10 | 2022-12-30 | 河北钢研德凯科技有限公司 | Method for solidification of investment casting magnesium alloy and investment casting method |
Also Published As
Publication number | Publication date |
---|---|
JP2731105B2 (en) | 1998-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104114303B (en) | High-purity titanium ingot, its manufacture method and titanium sputtering target | |
CN107164639A (en) | A method for preparing superalloys by electron beam layered solidification technology | |
JPH06264232A (en) | Ta sputtering target and its production | |
EP2172424A1 (en) | Method of solidifying metallic silicon | |
JPH0717704A (en) | Method for refining silicon by dissolution with electron beam | |
JP3725620B2 (en) | Method and apparatus for producing high purity copper single crystal | |
JPH05262512A (en) | Purification of silicon | |
JPH07126771A (en) | Production of beryllium block having high purity and no blow hole | |
JP5277654B2 (en) | Method for producing boron-doped silicon | |
JP4963271B2 (en) | Silicon melting method and silicon purification method | |
US4877596A (en) | Process for the production of low carbon silicon | |
JP3673919B2 (en) | High-purity titanium recovery method | |
CN111979435B (en) | Smelting method for preparing copper-phosphorus alloy by using copper-phosphorus intermediate alloy | |
CN110484742B (en) | A method for preparing Fe-W master alloy with high purification by electron beam melting | |
JPH04218626A (en) | Production of high purity ingot of refractory material | |
JP3125394B2 (en) | Casting method of titanium-aluminum alloy casting | |
US8668895B2 (en) | Purifying method for metallic silicon and manufacturing method of silicon ingot | |
JP3125393B2 (en) | Casting method of titanium-aluminum alloy casting | |
JPH10139415A (en) | Solidification and purification of molten silicon | |
JP2702649B2 (en) | Manufacturing method of high purity rare earth metal | |
CN117721334B (en) | Preparation method of TiZrNb-series refractory multi-principal element alloy with uniform equiaxed fine grain structure | |
CN114657421B (en) | Ce-Zn alloy, production method thereof and application of smelting vessel | |
JP3123696B2 (en) | Method for manufacturing quartz glass crucible | |
JPH05147918A (en) | Refining method for metal silicon | |
RU2034071C1 (en) | Method of metallic scandium preparing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20091219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20101219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |