JPH05262512A - Silicon refining method - Google Patents
Silicon refining methodInfo
- Publication number
- JPH05262512A JPH05262512A JP4060093A JP6009392A JPH05262512A JP H05262512 A JPH05262512 A JP H05262512A JP 4060093 A JP4060093 A JP 4060093A JP 6009392 A JP6009392 A JP 6009392A JP H05262512 A JPH05262512 A JP H05262512A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- iron
- aluminum
- plasma
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
(57)【要約】
【目的】 冶金用シリコンを原料として、ボロン、鉄、
アルミニウムの含有量の低い太陽電池用高純度シリコン
を一工程で安価に製造する精製方法の提供。
【構成】 溶融した金属シリコンの上部から水蒸気と塩
化水素を添加したプラズマガスを照射するか、必要によ
りプラズマガスに塩化ナトリウム粉末をさらに添加し、
さらに必要により処理後のシリコンを一方向凝固させ
る。
(57) [Abstract] [Purpose] Boron, iron,
A refining method for inexpensively producing high-purity silicon for a solar cell having a low aluminum content in one step. [Composition] Irradiating plasma gas with water vapor and hydrogen chloride added from above molten metal silicon, or adding sodium chloride powder to the plasma gas if necessary,
If necessary, the treated silicon is unidirectionally solidified.
Description
【0001】[0001]
【産業上の利用分野】本発明は、太陽電池の製造に用い
る高純度シリコンの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity silicon used for producing solar cells.
【0002】[0002]
【従来の技術】太陽電池の製造に用いるシリコン中の
B、P、C、Fe、Al、Ti等の不純物元素は、所要の半導
体特性を確保するため、1ppmw以下の低い濃度にする必
要がある。このため、現在の太陽電池製造用原料として
のシリコンには、半導体製造用に過度に精製されたシリ
コンが用いられている。しかし、半導体用に比べ単体当
りのシリコンの使用量が多い太陽電池には、このシリコ
ンは高価なため、太陽電池の一般への普及の妨げとなっ
ていた。また、太陽電池用のシリコンを安価に製造する
ため、冶金用の安価な金属シリコンを原料として、これ
を精製する方法が提案されているが、シリコン中のボロ
ン、鉄、アルミニウムの同時除去は難しく、いくつかの
精製工程を順次行っているのが現状である。2. Description of the Related Art Impurity elements such as B, P, C, Fe, Al, and Ti in silicon used for manufacturing solar cells must have a low concentration of 1 ppmw or less in order to secure required semiconductor characteristics. .. Therefore, as the current silicon as a raw material for solar cell production, excessively refined silicon is used for semiconductor production. However, since silicon is expensive for solar cells in which the amount of silicon used per unit is larger than that for semiconductors, this has hindered the popularization of solar cells. In order to manufacture silicon for solar cells at low cost, a method of refining it using inexpensive metal silicon for metallurgy as a raw material has been proposed, but it is difficult to simultaneously remove boron, iron, and aluminum in silicon. The current situation is that several purification steps are carried out in sequence.
【0003】ボロンの除去に関しては、例えば特開昭63
-218506 号公報には、シリカの容器に保持された溶融シ
リコンに高温のプラズマを照射することによって、容器
からシリコン中に供給される酸素とボロンが反応してボ
ロン酸化物として蒸発除去する方法が開示されている。
また、これには、さらにプラズマガス中に酸素を添加す
ると、シリコン浴中の酸素ポテンシャルが高くなり、ボ
ロンの除去速度が大きくなることも開示されている。し
かし、鉄およびアルミニウムの酸化物の蒸気圧は低いた
め、鉄、アルミニウムに対しての精製効果はほとんどな
かった。Regarding the removal of boron, for example, Japanese Patent Laid-Open No. 63-63
-218506 discloses a method of irradiating molten silicon held in a silica container with high temperature plasma so that oxygen supplied from the container into silicon reacts with boron to evaporate and remove boron oxide. It is disclosed.
It is also disclosed therein that when oxygen is further added to the plasma gas, the oxygen potential in the silicon bath is increased and the boron removal rate is increased. However, since the vapor pressures of oxides of iron and aluminum are low, there was almost no refining effect on iron and aluminum.
【0004】鉄、アルミニウムの除去に関しては、一般
にシリコンの固相不純物濃度より液相不純物の濃度が高
いことを利用した一方向凝固を行い、凝固偏析で鉄、ア
ルミニウムが高濃度化した部分を切断、排除している。
しかし、この方法ではボロンの凝固偏析係数が小さいた
め、シリコンの最終凝固部分に高濃度化できず、ボロン
除去がほとんど行えなかった。また、鉄、アルミニウム
等の不純物を高濃度に偏析させたシリコンの一部を排除
するため、シリコンの精製歩留りが低くなるという問題
がある。Regarding the removal of iron and aluminum, generally, unidirectional solidification is performed by utilizing the fact that the concentration of liquid phase impurities is higher than the concentration of solid phase impurities of silicon, and the portion where the concentration of iron and aluminum is increased by solidification segregation is cut. , Have eliminated.
However, in this method, since the solidification segregation coefficient of boron was small, it was not possible to increase the concentration in the final solidified portion of silicon, and boron could hardly be removed. Further, since a part of silicon in which impurities such as iron and aluminum are segregated to a high concentration is excluded, there is a problem that the purification yield of silicon is reduced.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、ボロン、鉄、アルミニウムの含有
量の低い高純度のシリコンを一工程で安価に製造する精
製方法を提供することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a refining method for producing high-purity silicon having a low content of boron, iron, and aluminum in one step at low cost. The purpose is that.
【0006】[0006]
【課題を解決するための手段】本発明は、上記問題を解
決するために、溶融したシリコン表面に熱プラズマを照
射するときに、プラズマガスに水蒸気および塩化水素を
添加するシリコンの精製方法であり、さらに場合により
前記プラズマガスにさらに塩化ナトリウム粉末を添加す
るシリコンの精製方法であり、またさらに必要により上
記精製後の溶融シリコンをそのまま一方向凝固処理を行
うシリコンの精製方法である。In order to solve the above problems, the present invention is a method for purifying silicon in which steam and hydrogen chloride are added to plasma gas when a molten silicon surface is irradiated with thermal plasma. Further, it is a silicon refining method in which sodium chloride powder is further added to the plasma gas as the case may be, and a silicon refining method in which the refined molten silicon is subjected to unidirectional solidification treatment as it is, if necessary.
【0007】[0007]
【作用】本発明では、シリカあるいはシリカを主成分と
する容器内に溶融シリコンを保持し、その上部からシリ
コン液面に、水蒸気および塩化水素を添加した不活性ガ
スの熱プラズマを照射するので、ボロンは酸化物および
水酸化物として、また鉄およびアルミニウムは塩化物と
して、容易に蒸発除去させることができる。In the present invention, the molten silicon is held in silica or a container containing silica as a main component, and the silicon liquid surface is irradiated from above with a thermal plasma of an inert gas containing water vapor and hydrogen chloride. Boron can be easily evaporated as oxides and hydroxides, and iron and aluminum as chlorides.
【0008】また、上記方法において水蒸気および塩化
水素とともに塩化ナトリウム粉末をプラズマガス中に添
加することより、鉄、アルミニウムをより多く含むシリ
コンに対して効率よく鉄およびアルミニウムを除去させ
ることができる。さらに、鉄およびアルミニウムを高濃
度に含むシリコンに対しては、上記処理後に溶融シリコ
ンを炉外に序々に引き出して、一方向凝固させることに
より、凝固偏析により高純度のシリコンを容易に得るこ
とができる。In the above method, by adding sodium chloride powder to the plasma gas together with water vapor and hydrogen chloride, iron and aluminum can be efficiently removed from silicon containing more iron and aluminum. Further, for silicon containing iron and aluminum at a high concentration, it is possible to easily obtain high-purity silicon by solidification segregation by gradually drawing the molten silicon out of the furnace after the above treatment and unidirectionally solidifying. it can.
【0009】本発明によれば、前述したようにシリコン
浴面の熱プラズマを照射した高温部に水蒸気および塩化
水素を供給したため、一般の炉では得にくい数千Kの高
温でボロンと酸素かつ/または水素、鉄と塩素、アルミ
ニウムと塩素を反応させることができるとともに、反応
で生成したボロン酸化物、ボロン水酸化物、鉄の塩化物
およびアルミニウムの塩化物を熱プラズマの高温で蒸発
除去できるようになる。According to the present invention, as described above, since steam and hydrogen chloride are supplied to the high temperature portion irradiated with the thermal plasma on the silicon bath surface, boron, oxygen and / or oxygen can be generated at a high temperature of several thousand K, which is difficult to obtain in a general furnace. Alternatively, hydrogen, iron and chlorine, aluminum and chlorine can be reacted, and boron oxide, boron hydroxide, iron chloride and aluminum chloride produced by the reaction can be removed by evaporation at high temperature of thermal plasma. become.
【0010】ただし、水蒸気を10%を超えてプラズマ中
に添加すると、溶融シリコンのプラズマの照射される溶
湯面上にSiO2膜が生成するため、シリコンへの水蒸気お
よび塩化水素の供給が阻害され、ボロン酸化物、ボロン
水酸化物、鉄の塩化物およびアルミニウムの塩化物の生
成反応が停止または抑制されるので好ましくない。ま
た、塩化水素を5%を超えてプラズマ中に添加すると、
溶融シリコンの塩化物が多量に生成するため、シリコン
中の鉄およびアルミニウムの塩化物、生成・蒸発除去と
ともにシリコン自体が塩化物として蒸発・減少すること
となり、生産性が著しく低下するので好ましくない。However, when water vapor is added to the plasma in an amount of more than 10%, a SiO 2 film is formed on the surface of the molten silicon irradiated with the plasma, so that the supply of water vapor and hydrogen chloride to the silicon is hindered. It is not preferable because the reaction for forming boron oxide, boron hydroxide, iron chloride and aluminum chloride is stopped or suppressed. Moreover, if hydrogen chloride is added to the plasma in an amount of more than 5%,
Since a large amount of molten silicon chloride is generated, the chloride of iron and aluminum in the silicon, and the silicon itself is evaporated / reduced as a chloride as it is generated / evaporated and removed, which is not preferable because the productivity is significantly reduced.
【0011】また、鉄およびアルミニウムをより多く含
むシリコンに対しては、水蒸気および塩化水素ととも
に、塩化ナトリウム粉末をプラズマガス中に添加するよ
うにしたため、熱プラズマを照射したシリコン浴面の高
温部へ供給するプラズマガス中の塩素イオン濃度が高く
なり、鉄およびアルミニウムの塩化物生成が促進され、
鉄およびアルミニウムの精製速度が速くなる。For silicon containing more iron and aluminum, sodium chloride powder was added to the plasma gas together with water vapor and hydrogen chloride, so that the high temperature portion of the silicon bath surface irradiated with thermal plasma was heated. The chlorine ion concentration in the supplied plasma gas becomes high, and the chloride generation of iron and aluminum is promoted,
Higher iron and aluminum purification rates.
【0012】さらに、鉄およびアルミニウムを高い濃度
で含むシリコンに対しては、上記精製後の溶融状態のシ
リコンを1mm/min 程度以下の速度で炉外に序々に引き
出して一方向凝固させることが好ましい。引き出し速度
が遅いほど凝固偏析によりシリコン中に含有する鉄およ
びアルミニウムは、シリコンの最終凝固部に高濃度に偏
析させることができる。そして最終的にこの偏析部を切
断・排除することでシリコン中の鉄およびアルミニウム
を低濃度まで精製できるようになる。Further, for silicon containing high concentrations of iron and aluminum, it is preferable to gradually pull out the molten silicon after the above refining to the outside of the furnace at a rate of about 1 mm / min or less to unidirectionally solidify. .. As the drawing speed is slower, the iron and aluminum contained in silicon due to solidification segregation can be segregated to a higher concentration in the final solidification part of silicon. Finally, by cutting and eliminating this segregated portion, iron and aluminum in silicon can be purified to a low concentration.
【0013】[0013]
【実施例】図1に本発明のシリコン精製方法を実施する
にあたり使用したシリコン精製装置の縦断面概念図の1
例を示す。図1において溶融シリコン1は、石英ルツボ
2内に保持され、高周波加熱コイル3によって加熱され
た黒鉛筒4内に置かれている。溶融シリコン1上方には
非移送型のプラズマトーチ5が備えられており、アルゴ
ンガス6をプラズマガスとしてプラズマフレーム7が溶
融シリコン1の浴面11に当てられている。プラズマトー
チ5のプラズマ出口8の近くにはプラズマフレーム7に
向けて水蒸気および塩化水素の混合気体9およびアルゴ
ンガスで搬送される塩化ナトリウム粉末が供給できるテ
フロン製のノズル12が備えられている。また石英ルツボ
2は上下可動式のルツボ台13の上に置かれており、ルツ
ボ降下装置14により黒鉛筒4の中から下方へ一定速度で
降下できるようになっている。EXAMPLE FIG. 1 is a vertical cross-sectional conceptual view of a silicon refining apparatus used for carrying out the silicon refining method of the present invention.
Here is an example: In FIG. 1, molten silicon 1 is held in a quartz crucible 2 and placed in a graphite cylinder 4 heated by a high frequency heating coil 3. A non-transfer type plasma torch 5 is provided above the molten silicon 1, and a plasma flame 7 is applied to a bath surface 11 of the molten silicon 1 by using an argon gas 6 as a plasma gas. Near the plasma outlet 8 of the plasma torch 5, there is provided a nozzle 12 made of Teflon capable of supplying a mixed gas 9 of water vapor and hydrogen chloride and sodium chloride powder carried by argon gas toward the plasma flame 7. Further, the quartz crucible 2 is placed on a vertically movable crucible table 13 and can be lowered from the inside of the graphite cylinder 4 at a constant speed by a crucible lowering device 14.
【0014】これら全体を囲む雰囲気15はアルゴンガス
雰囲気に保持され、排気は排気口16から系外に排出して
いる。上記シリコンの精製装置を用い、冶金用のシリコ
ン3kgを高周波加熱により石英ルツボ内で1580℃で溶解
し、15kW出力でプラズマフレームをシリコン浴面に当て
た。プラズマガスには、アルゴンガス20l/min を用い、
これに水蒸気を0〜10%、塩化水素を0〜5%添加し
た。原料に用いた冶金用シリコンA、B、C中のボロ
ン、鉄、アルミニウムの含有量はそれぞれ表1に示すと
おりで、プラズマによる精製時間は6時間、凝固精製を
行った場合の凝固速度は1mm/min で凝固後の切断・排
除分のシリコンはインゴット高さで上部20%である。The atmosphere 15 that surrounds all of these is maintained in an argon gas atmosphere, and the exhaust gas is discharged from the exhaust port 16 to the outside of the system. Using the above silicon refining apparatus, 3 kg of metallurgical silicon was melted at 1580 ° C. in a quartz crucible by high frequency heating, and a plasma flame was applied to the silicon bath surface at an output of 15 kW. Argon gas 20l / min was used as plasma gas,
0 to 10% of steam and 0 to 5% of hydrogen chloride were added thereto. The contents of boron, iron, and aluminum in the metallurgical silicon A, B, and C used for the raw materials are as shown in Table 1, and the purification time by plasma is 6 hours, and the solidification rate when solidification and purification is 1 mm. The silicon of the cut / excluded portion after solidification at / min is the upper 20% of the ingot height.
【0015】表2に比較例および実施例におけるシリコ
ン精製後のシリコン中のボロン、鉄、アルミニウム濃度
を示す。Table 2 shows the concentrations of boron, iron and aluminum in the silicon after the silicon purification in Comparative Examples and Examples.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】比較例1〜5 比較例1〜3は実施例と同一装置で、プラズマガスに水
蒸気だけを添加して精製した結果で、比較例1は水蒸気
添加0%、比較例2は5%、比較例3は10%である。比
較例4、5は実施例と同一装置で1580℃でシリコンを溶
解した後、プラズマによる精製を行わず、一方向凝固精
製だけを行った後、インゴット高さで上部20%を切断・
排除した結果である。Comparative Examples 1 to 5 Comparative Examples 1 to 3 are the same apparatus as the Examples, and are the results of refining by adding only steam to the plasma gas. Comparative Example 1 is 0% steam addition, and Comparative Example 2 is 5%. Comparative Example 3 is 10%. In Comparative Examples 4 and 5, after melting silicon at 1580 ° C. in the same apparatus as that of Example, only the directional solidification refining was performed without purifying by plasma, and the upper 20% was cut at the ingot height.
This is the result of exclusion.
【0019】実施例1、2 溶融シリコン浴面に水蒸気を実施例1は5%、実施例2
は10%添加し、塩化水素を実施例1は1%、実施例2は
5%添加したプラズマ精製を行い、処理後は自然冷却で
凝固させた結果である。比較例1〜3で精製できなかっ
た鉄やアルミニウムが除去できており、比較例4、5で
精製できなかったボロンの除去ができている。Examples 1 and 2 Water vapor was applied to the molten silicon bath surface in Example 1 at 5%, Example 2
Is the result of plasma refining with 10% added, hydrogen chloride added with 1% in Example 1 and 5% added in Example 2, and solidified by natural cooling after the treatment. Iron and aluminum that could not be purified in Comparative Examples 1 to 3 could be removed, and boron that could not be purified in Comparative Examples 4 and 5 could be removed.
【0020】実施例3、4 溶融シリコン浴面に水蒸気を実施例3は5%、実施例4
は10%添加し、塩化水素を実施例3は1%、実施例4は
5%添加するとともに、実施例3には1g/ min、実施例
4は2g/ minの供給速度で塩化ナトリウム粉末を添加し
た。実施例3、4ともに処理後のシリコンは自然冷却で
凝固させた結果である。Examples 3, 4 Water vapor was applied to the surface of the molten silicon bath in Example 3 at 5%, Example 4
Is added 10%, hydrogen chloride is added 1% in Example 3 and 5% in Example 4, and sodium chloride powder is added at a feed rate of 1 g / min in Example 3 and 2 g / min in Example 4. Was added. In each of Examples 3 and 4, the treated silicon is the result of solidification by natural cooling.
【0021】実施例5、6 実施例5、6はそれぞれ実施例2、4と同一の条件で処
理した後1mm/minの凝固速度で一方向凝固精製を行い、
インゴット高さで上部20%を切断・排除した結果であ
る。実施例3、4は実施例1、2に比べ、シリコン中の
鉄とアルミニウムの除去速度が速くなっており、実施例
5、6ではシリコン中の鉄とアルミニウムの濃度がより
低い濃度まで除去できている。Examples 5 and 6 Examples 5 and 6 were treated under the same conditions as Examples 2 and 4, respectively, and then unidirectionally solidified and refined at a solidification rate of 1 mm / min.
This is the result of cutting and removing the upper 20% of the ingot height. In Examples 3 and 4, the removal rates of iron and aluminum in silicon were faster than those in Examples 1 and 2, and in Examples 5 and 6, the concentrations of iron and aluminum in silicon could be reduced to lower levels. ing.
【0022】[0022]
【発明の効果】本発明は、溶融した金属シリコンの上部
から水蒸気と塩化水素を添加したプラズマガスを照射す
るとともに、鉄およびアルミニウム含有濃度が高い場合
にはさらにプラズマガスに塩化ナトリウム粉末を添加し
たり、処理後のシリコンを一方向凝固できるようにした
ため、ボロン、鉄、アルミニウムを多く含む金属シリコ
ンを出発原料としてボロン、鉄およびアルミニウム含有
量の低い太陽電池製造用のシリコンを一工程で製造でき
るようになった。また、この方法によれば従来太陽電池
製造に用いていた高価な半導体用シリコンが、安価な冶
金用シリコンから精製したシリコンに変更できるため、
太陽電池発電システム全体のコストを低減できる。INDUSTRIAL APPLICABILITY According to the present invention, a plasma gas added with water vapor and hydrogen chloride is irradiated from above molten metal silicon, and when the iron and aluminum content is high, sodium chloride powder is further added to the plasma gas. Alternatively, since the treated silicon can be unidirectionally solidified, silicon for producing solar cells having a low boron, iron and aluminum content can be produced in one step by using metallic silicon containing a large amount of boron, iron and aluminum as a starting material. It became so. In addition, according to this method, since expensive semiconductor silicon that has been conventionally used for manufacturing a solar cell can be changed from inexpensive metallurgical silicon to purified silicon,
The cost of the entire solar cell power generation system can be reduced.
【図1】本発明を実施するにあたり、使用したシリコン
精製装置の一例を示す縦断面概念図である。FIG. 1 is a vertical cross-sectional conceptual view showing an example of a silicon refining apparatus used in carrying out the present invention.
1 溶融シリコン 2 石英ルツボ 3 高周波加熱コイル 4 黒鉛筒 5 プラズマトーチ 6 アルゴンガス 7 プラズマフレーム 8 プラズマ出口 9 水蒸気および塩化水素の混合気体 10 塩化ナトリウム粉末 11 溶融シリコン浴面 12 ノズル 13 ルツボ台 14 ルツボ降下装置 15 雰囲気 16 排気口 1 Molten Silicon 2 Quartz Crucible 3 High Frequency Heating Coil 4 Graphite Tube 5 Plasma Torch 6 Argon Gas 7 Plasma Flame 8 Plasma Outlet 9 Mixed Gas of Steam and Hydrogen Chloride 10 Sodium Chloride Powder 11 Molten Silicon Bath Surface 12 Nozzle 13 Crucible Stand 14 Crucible Fall Device 15 Atmosphere 16 Exhaust port
Claims (3)
射するときに、プラズマガスに水蒸気および塩化水素を
添加することを特徴とするシリコンの精製方法。1. A method for purifying silicon, which comprises adding steam and hydrogen chloride to a plasma gas when irradiating a molten silicon surface with thermal plasma.
化ナトリウム粉末を添加することを特徴とするシリコン
の精製方法。2. A method for purifying silicon, further comprising adding sodium chloride powder to the plasma gas according to claim 1.
法において、その精製後そのまま一方向凝固を行うこと
を特徴とするシリコンの精製方法。3. The method for purifying silicon according to claim 1 or 2, wherein the unidirectional solidification is performed as it is after the purification.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4060093A JPH05262512A (en) | 1992-03-17 | 1992-03-17 | Silicon refining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4060093A JPH05262512A (en) | 1992-03-17 | 1992-03-17 | Silicon refining method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05262512A true JPH05262512A (en) | 1993-10-12 |
Family
ID=13132133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4060093A Pending JPH05262512A (en) | 1992-03-17 | 1992-03-17 | Silicon refining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05262512A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024310A1 (en) * | 2008-08-29 | 2010-03-04 | 信越化学工業株式会社 | Method for purifying silicon |
JP2010269992A (en) * | 2009-05-25 | 2010-12-02 | Wonik Materials Co Ltd | Method and apparatus for refining metallic silicon |
US7858063B2 (en) * | 2001-07-23 | 2010-12-28 | Invensil | High purity metallurgical silicon and method for preparing same |
JP2011032158A (en) * | 2009-07-07 | 2011-02-17 | Tohoku Univ | Method for purifying silicon |
WO2011100578A3 (en) * | 2010-02-12 | 2011-12-29 | Masahiro Hoshino | Apparatus and method for purifying metallurgical silicon for solar cells |
US8236266B2 (en) | 2010-07-21 | 2012-08-07 | Masahiro Hoshino | Method and apparatus for purifying metallurgical silicon for solar cells |
US8257492B2 (en) | 2009-11-16 | 2012-09-04 | Masahiro Hoshino | Methods for purifying metallurgical silicon |
CN102834935A (en) * | 2010-08-16 | 2012-12-19 | 星野政宏 | Apparatus and method for purifying metallurgical silicon for solar cells |
JP2013159550A (en) * | 2012-02-02 | 2013-08-19 | E & E Corp | Silicon processing apparatus and use thereof |
EP2320715A3 (en) * | 2009-11-06 | 2014-03-26 | Korea Institute of Industrial Technology | System for refining UMG Si using steam plasma torch |
KR101854257B1 (en) * | 2017-03-27 | 2018-05-03 | 한국생산기술연구원 | Silicon refining apparatus for solar cell and its method |
-
1992
- 1992-03-17 JP JP4060093A patent/JPH05262512A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7858063B2 (en) * | 2001-07-23 | 2010-12-28 | Invensil | High purity metallurgical silicon and method for preparing same |
WO2010024310A1 (en) * | 2008-08-29 | 2010-03-04 | 信越化学工業株式会社 | Method for purifying silicon |
JP2010269992A (en) * | 2009-05-25 | 2010-12-02 | Wonik Materials Co Ltd | Method and apparatus for refining metallic silicon |
JP2011032158A (en) * | 2009-07-07 | 2011-02-17 | Tohoku Univ | Method for purifying silicon |
US8790584B2 (en) | 2009-11-06 | 2014-07-29 | Korea Institute Of Industrial Technology | System for refining UMG Si using steam plasma torch |
EP2320715A3 (en) * | 2009-11-06 | 2014-03-26 | Korea Institute of Industrial Technology | System for refining UMG Si using steam plasma torch |
JP2013510794A (en) * | 2009-11-16 | 2013-03-28 | 政宏 星野 | Method for purifying metallic silicon |
US8257492B2 (en) | 2009-11-16 | 2012-09-04 | Masahiro Hoshino | Methods for purifying metallurgical silicon |
US8673073B2 (en) | 2009-11-16 | 2014-03-18 | Masahiro Hoshino | Methods for purifying metallurgical silicon |
US8236265B2 (en) | 2010-02-12 | 2012-08-07 | Masahiro Hoshino | Method for purifying metallurgical silicon for solar cells |
US8461487B2 (en) | 2010-02-12 | 2013-06-11 | Masahiro Hoshino | Apparatus for purifying metallurgical silicon for solar cells |
WO2011100578A3 (en) * | 2010-02-12 | 2011-12-29 | Masahiro Hoshino | Apparatus and method for purifying metallurgical silicon for solar cells |
US8524188B2 (en) | 2010-02-12 | 2013-09-03 | Masahiro Hoshino | Method for purifying metallurgical silicon for solar cells |
US8236266B2 (en) | 2010-07-21 | 2012-08-07 | Masahiro Hoshino | Method and apparatus for purifying metallurgical silicon for solar cells |
US8501140B2 (en) | 2010-07-21 | 2013-08-06 | Masahiro Hoshino | Method and apparatus for purifying metallurgical silicon for solar cells |
CN102834935A (en) * | 2010-08-16 | 2012-12-19 | 星野政宏 | Apparatus and method for purifying metallurgical silicon for solar cells |
JP2013159550A (en) * | 2012-02-02 | 2013-08-19 | E & E Corp | Silicon processing apparatus and use thereof |
KR101854257B1 (en) * | 2017-03-27 | 2018-05-03 | 한국생산기술연구원 | Silicon refining apparatus for solar cell and its method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3325900B2 (en) | Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell | |
US7682585B2 (en) | Silicon refining process | |
JP4523274B2 (en) | High purity metallic silicon and its smelting method | |
JP3000109B2 (en) | Manufacturing method of high purity silicon ingot | |
US4837376A (en) | Process for refining silicon and silicon purified thereby | |
US8329133B2 (en) | Method and apparatus for refining metallurgical grade silicon to produce solar grade silicon | |
US9567227B2 (en) | Process for producing silicon, silicon, and panel for solar cells | |
CN102126725A (en) | A method and equipment for purifying polysilicon by electron beam shallow molten pool smelting | |
US4676968A (en) | Melt consolidation of silicon powder | |
SE1150277A1 (en) | Process and system for producing silicon and silicon carbide | |
JPH05262512A (en) | Silicon refining method | |
JPH10245216A (en) | Method for producing silicon for solar cells | |
JP4788925B2 (en) | Method for purifying metallic silicon | |
EP2172424A1 (en) | Method of solidifying metallic silicon | |
JP5513389B2 (en) | Silicon purification method | |
JP2005255417A (en) | Silicon purification method | |
JP5277654B2 (en) | Method for producing boron-doped silicon | |
US9352970B2 (en) | Method for producing silicon for solar cells by metallurgical refining process | |
JPH1149510A (en) | Metal Si purification method and apparatus | |
JPH10139415A (en) | Solidification purification method of molten silicon | |
JP2000327488A (en) | Method of manufacturing silicon substrate for solar cell | |
JPS6350308A (en) | Method of removing carbon from fused silicon | |
KR20100099396A (en) | Apparatus and method for refining of high purity silicon | |
JP2010173911A (en) | Method for purifying silicon | |
RU2588627C1 (en) | Method of refining metallurgical silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20071017 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20081017 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20091017 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20101017 |
|
LAPS | Cancellation because of no payment of annual fees |