[go: up one dir, main page]

JPH07118421A - Hydrophilic fluorine resin molded product - Google Patents

Hydrophilic fluorine resin molded product

Info

Publication number
JPH07118421A
JPH07118421A JP26596493A JP26596493A JPH07118421A JP H07118421 A JPH07118421 A JP H07118421A JP 26596493 A JP26596493 A JP 26596493A JP 26596493 A JP26596493 A JP 26596493A JP H07118421 A JPH07118421 A JP H07118421A
Authority
JP
Japan
Prior art keywords
gas
water
film
molded product
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26596493A
Other languages
Japanese (ja)
Other versions
JP3338875B2 (en
Inventor
Atsushi Okada
淳 岡田
Yuichi Shimizu
雄一 清水
Shunichi Kasai
俊一 河西
Masanobu Nishii
正信 西井
Shunichi Sugimoto
俊一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHASEN SHIYOUSHIYA SHINKO KYOKAI
Gunze Ltd
Japan Atomic Energy Agency
Original Assignee
HOSHASEN SHIYOUSHIYA SHINKO KYOKAI
Gunze Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHASEN SHIYOUSHIYA SHINKO KYOKAI, Gunze Ltd, Japan Atomic Energy Research Institute filed Critical HOSHASEN SHIYOUSHIYA SHINKO KYOKAI
Priority to JP26596493A priority Critical patent/JP3338875B2/en
Priority to US08/192,285 priority patent/US5419968A/en
Publication of JPH07118421A publication Critical patent/JPH07118421A/en
Application granted granted Critical
Publication of JP3338875B2 publication Critical patent/JP3338875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7148Blood bags, medical bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

(57)【要約】 【目的】 本発明は、フッ素系樹脂から成る成型品の表
面が改質された親水性フッ素系樹脂成型品を提供するも
のである。 【構成】 フッ素系樹脂成型品の少なくとも1部分に、
水素ガス、窒素ガス等のガスを導入してなるガス処理水
等を接触せしめた状態で、400nm以下の波長を有す
る紫外レーザー光を照射することによって、前記フッ素
系樹脂成型品の少なくとも1部分の表面を親水性に改質
する。こうすることによって、例えば優れた抗血栓性の
人工血管、改質による変色のないコンタクトレンズの素
材等に好適なものであり、更に機能性を生かし、広範囲
での用途も期待できる。
(57) [Summary] [Object] The present invention provides a hydrophilic fluororesin molded article in which the surface of a fluororesin molded article is modified. [Structure] At least a part of the fluororesin molded product,
By irradiating an ultraviolet laser beam having a wavelength of 400 nm or less with a gas-treated water obtained by introducing a gas such as hydrogen gas or nitrogen gas in contact, The surface is modified to be hydrophilic. By doing so, for example, it is suitable for an artificial blood vessel having an excellent antithrombotic property, a material for a contact lens that does not discolor due to modification, etc. Further, it can be expected to be used in a wide range by utilizing the functionality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フッ素系樹脂成型品を
親水性に改質してなる親水性フッ素系樹脂成型品に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrophilic fluororesin molded product obtained by modifying a fluororesin molded product to be hydrophilic.

【0002】[0002]

【従来の技術】一般に、フッ素系樹脂からなる成型品は
表面が不活性であるが故に、場合によっては親水性や接
着性が不足し、自から用途が制限されているのが実状で
ある。このため従来より、フッ素系樹脂からなる成型品
表面を改質するには、アルカリ金属溶液中で処理する方
法、プラズマによる方法、B(CH3 3 ガスやB2
6 とNH3 との混合ガス等の雰囲気中に置かれたフッ素
系フィルム等の表面にエキシマレーザー照射によってF
基をCH3 基、NH2 基に置換して改質する方法(特開
平2−196834号公報)等が知られていた。
2. Description of the Related Art In general, a molded article made of a fluororesin has an inactive surface, and in some cases, lacks hydrophilicity or adhesiveness, and its use is limited by itself. Therefore, conventionally, in order to modify the surface of a molded product made of a fluororesin, a method of treating in an alkali metal solution, a method of using plasma, B (CH 3 ) 3 gas or B 2 H
The surface of a fluorine-based film or the like placed in an atmosphere of a mixed gas of 6 and NH 3 or the like is irradiated with F by excimer laser irradiation.
A method of substituting a group with a CH 3 group or an NH 2 group for modification (Japanese Patent Laid-Open No. 2-196834) has been known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
各種改質方法では、フッ素系樹脂表面の構造変化が伴な
い、改質の制御が困難であった。例えば、アルカリ金属
溶液中で処理する方法では、引火の危険性や処理液の不
安定さがある上に、改質された部分が太陽光線や高熱に
弱いという問題点があった。プラズマによる方法では、
ポリエチレン等のフッ素を含まない樹脂に比べて表面改
質効果が著しく低いという問題点があった。また、B
(CH3 3 やB2 6 とNH3 との混合ガス等の雰囲
気下でエキシマレーザーを照射する方法では、該方法に
使用する装置を実用化するのにコストを要するばかりで
なく、毒性の強い特殊ガスの使用、減圧操作等の熟練を
要する操作が必要になるという問題点を有していた。
However, in the above-mentioned various reforming methods, it is difficult to control the reforming due to the structural change of the surface of the fluororesin. For example, in the method of treating in an alkali metal solution, there are problems that there is a risk of ignition and instability of the treatment liquid, and that the modified portion is vulnerable to sunlight and high heat. In the plasma method,
There is a problem that the effect of surface modification is significantly lower than that of a resin containing no fluorine such as polyethylene. Also, B
The method of irradiating an excimer laser in an atmosphere such as (CH 3 ) 3 or a mixed gas of B 2 H 6 and NH 3 requires not only cost for putting the apparatus used for the method into practical use but also toxicity. However, there is a problem in that it requires skillful operations such as the use of a strong special gas and decompression operation.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために種々検討を続けた結果、特定条件下に
400nm(ナノメーター)以下の波長を有する紫外レ
ーザー光を用いることにより、容易に親水性フッ素系樹
脂成型品が得られることを見い出し、ついに本発明を完
成するに至った。
As a result of various studies to solve the above problems, the present inventors have found that by using an ultraviolet laser beam having a wavelength of 400 nm (nanometer) or less under specific conditions. It has been found that a hydrophilic fluororesin molded product can be easily obtained, and finally the present invention has been completed.

【0005】即ち、本発明は、フッ素系樹脂成型品の少
なくとも1部分に、水素ガス、窒素ガス及び周期律表第
0族に属する希ガス類から選ばれた少なくとも1種のガ
スを導入してなるガス処理水並びにアンモニウムイオン
を含む水溶液のいずれか一方の液体又は双方の混合液を
接触せしめた状態で、400nm以下の波長を有する紫
外レーザー光を照射することによって、前記フッ素系樹
脂成型品の少なくとも1部分の表面が親水性に改質され
てなる親水性フッ素系樹脂成型品に係る。
That is, the present invention is a gas obtained by introducing hydrogen gas, nitrogen gas, and at least one gas selected from rare gases belonging to Group 0 of the periodic table into at least a portion of a fluororesin molded article. At least one of the above fluororesin molded articles is obtained by irradiating an ultraviolet laser beam having a wavelength of 400 nm or less in a state in which one of the treated water and the aqueous solution containing ammonium ions or a mixed solution of both of them is brought into contact with each other. The present invention relates to a hydrophilic fluororesin molded article in which the surface of a part is modified to be hydrophilic.

【0006】本発明で用いられる400nm以下の波長
を有する紫外レーザーとしては、紫外光を発振できるも
のであればよく、特に制限はない。具体的には、ArF
エキシマレーザー(波長193nm)、KrFエキシマ
レーザー(同248nm)、XeClエキシマレーザー
(同308nm)、XeFエキシマレーザー(同351
nm)、F2 エキシマレーザー(同157nm)等の各
種エキシマレーザー、色素レーザー、自由電子レーザー
等を例示でき、就中エキシマレーザーが好適なものとし
て例示できる。本発明に係る紫外レーザー光のフルエン
ス(エネルギー密度)は、特に制限はないが、1〜20
0mJ/cm2 /pulse(ミリジュール/平方セン
チメートル/パルス)程度が好ましい値として例示でき
る。斯かる紫外レーザー光の波長は前記した通り400
nm以下が必要であり、好ましくは120〜380nm
程度である。紫外レーザー光の波長が400nmを超え
ると親水性に改質され難くなるという不都合が生ずる。
The ultraviolet laser having a wavelength of 400 nm or less used in the present invention is not particularly limited as long as it can emit ultraviolet light. Specifically, ArF
Excimer laser (wavelength 193 nm), KrF excimer laser (248 nm), XeCl excimer laser (308 nm), XeF excimer laser (351)
nm), various excimer lasers such as F 2 excimer laser (157 nm), dye lasers, free electron lasers, and the like, and excimer lasers are particularly preferable. The fluence (energy density) of the ultraviolet laser light according to the present invention is not particularly limited, but is 1 to 20.
A preferable value is about 0 mJ / cm 2 / pulse (millijoule / square centimeter / pulse). The wavelength of the ultraviolet laser light is 400 as described above.
nm or less is necessary, and preferably 120 to 380 nm
It is a degree. If the wavelength of the ultraviolet laser light exceeds 400 nm, there is a problem that it becomes difficult to modify it to be hydrophilic.

【0007】フッ素系樹脂成型品の表面を親水性に改質
するには、該成型品表面のフッ素樹脂であることに由来
する例えば、C−F結合、C−C結合、C−O結合等、
好ましくはC−F結合を少なくとも部分的に切断するこ
とが望ましいと推定されるが、確かでない面もある。そ
の条件としては、切断するのに用いる400nm以下の
波長を有する紫外レーザーの発振波長の吸収がフッ素系
樹脂の紫外吸収スペクトルの範囲内にあり、且つエキシ
マレーザー光の光子エネルギーがフッ素系樹脂の上記結
合の結合エネルギーより大きいことが望ましい。しかし
ながらこのことは特に制限はなく、例えば1光子のエネ
ルギーが結合エネルギーより小さい紫外レーザー光の場
合も多光子吸収を起こさせることにより切断が可能にな
るものと推定されるが、確かなことは不明である。
To modify the surface of a fluororesin molded article to be hydrophilic, for example, a C--F bond, a C--C bond, a C--O bond or the like derived from the fluororesin on the surface of the molded product is used. ,
It is presumed that it is preferable to at least partially cleave the C—F bond, but there are uncertain aspects. The condition is that the absorption of the oscillation wavelength of an ultraviolet laser having a wavelength of 400 nm or less used for cutting is within the range of the ultraviolet absorption spectrum of the fluororesin, and the photon energy of the excimer laser light is that of the fluororesin described above. It is desirable that the bond energy be larger than the bond energy. However, this is not particularly limited, and it is presumed that even in the case of an ultraviolet laser beam in which the energy of one photon is smaller than the binding energy, cutting can be achieved by causing multiphoton absorption, but the fact is not clear. Is.

【0008】例えば上記条件を満足してフッ素系樹脂の
上記結合が切断されると、本発明に係る特定のガスが導
入されたガス処理水を用いるときは、その部分が該ガス
処理水に起因するH基、OH基、COOH基、CO基等
で置換され親水性に改質されると推定されるが、確かな
ことは不明であり、また、本発明に係るアンモニウムイ
オンを含む水溶液を用いるときは、その部分が本発明に
係る該水溶液に起因するNH2 基、H基、OH基、CO
OH基、CO基等で置換され親水性に改質されると推定
されるが、確かなことは不明である。
For example, when the above bond of the fluororesin is broken to satisfy the above conditions, when using the gas-treated water into which the specific gas according to the present invention is introduced, that portion is caused by the gas-treated water. It is presumed that it will be replaced with an H group, an OH group, a COOH group, a CO group or the like to be modified to be hydrophilic, but it is not clear that this is the case, and the aqueous solution containing ammonium ion according to the present invention is used. In that case, the portion is NH 2 group, H group, OH group, CO derived from the aqueous solution according to the present invention.
It is presumed that it is replaced with an OH group, a CO group, or the like to be modified to be hydrophilic, but the fact is not clear.

【0009】本発明に係る特定のガスを導入してなるガ
ス処理水を用いる場合、上記切断遊離したFは、特定の
ガスを導入してなるガス処理水に起因するHと結合して
除去されるものと推定されるが確かなことは不明であ
る。更に、紫外レーザー光が該ガス処理水とフッ素系樹
脂成型品表面との双方を活性化せしめ、特に該ガスがエ
ネルギー移動剤的に働いて活性化せしめることにより成
型品表面に極性基が生成し、効果が現れるものとも推定
される面もあるが、これも確かなことは不明である。
When the gas-treated water prepared by introducing the specific gas according to the present invention is used, the cut-off F is combined with H resulting from the gas-treated water prepared by introducing the specific gas and removed. It is presumed to be one, but it is uncertain. Further, the ultraviolet laser light activates both the gas-treated water and the surface of the fluororesin molded article, and in particular, the gas acts as an energy transfer agent to activate and form a polar group on the molded article surface. , There are some aspects that are supposed to have an effect, but this is not certain.

【0010】更に本発明に係るアンモニウムイオンを含
む水溶液を用いる場合、上記切断遊離したFは、該水溶
液に起因するHと結合して除去されるものと推定され、
この際その結合する理由としては、例えばHFの結合エ
ネルギーは135Kcal/モルであり、C−Fの結合
エネルギー129Kcal/モルより大きいため、C−
Fより結合し易く、この状態で安定し、再びFを遊離し
ないものと推定されるが、確かなことは不明である。
Further, when the aqueous solution containing ammonium ions according to the present invention is used, it is presumed that the above-mentioned cleaved and released F is bound to H resulting from the aqueous solution and removed.
At this time, the reason for the binding is, for example, that the binding energy of HF is 135 Kcal / mol, which is larger than the binding energy of C-F 129 Kcal / mol, so that C-
It is presumed that it binds more easily than F, stabilizes in this state, and does not release F again, but the fact is uncertain.

【0011】以上は全て推定で述べたが、これらのこと
は今後の研究により、いずれは解明されるものと思われ
る。
Although all of the above have been described by estimation, it is considered that these will eventually be elucidated by future research.

【0012】本発明で用いられる周期律表第0族に族す
る希ガス類とは、ヘリウムガス、ネオンガス、アルゴン
ガス、クリプトンガス及びキセノンガス等を例示でき
る。
Examples of rare gases belonging to Group 0 of the periodic table used in the present invention include helium gas, neon gas, argon gas, krypton gas and xenon gas.

【0013】本発明では、これら希ガス類、水素ガス及
び窒素ガスは、少なくとも1種、即ち1種単独で又は2
種以上混合して用いることができる。
In the present invention, these rare gases, hydrogen gas and nitrogen gas are at least one kind, that is, one kind alone or 2 kinds.
A mixture of two or more species can be used.

【0014】このようなガスを導入してガス処理水を作
成するには各種の方法が考えられ特に制限はないが、通
常では、前記ガスと後記する各種水とを接触させること
により作成される。接触させるに当っては、前記ガスを
水中に吹き込んでもよいし、前記ガス中に積極的に水を
加えてもよい。更に水面上に前記ガス相を設けてもよ
く、どのような形で接触させるかについては特に制限は
ない。こうして接触させることにより前記ガスは水に溶
解したり、水中に微細な気泡状で存在することになる。
但し、前記した水面上に前記ガス相を設けたガス処理水
は、水中に前記ガスが溶解したり、水中に気泡状で存在
しているか不明の点もあるが、このような場合も本発明
の所期の効果が発現されるので、斯かるガス処理水も本
発明の範囲である。以上の通り本発明では前記ガスが必
ずしも水に溶解していたり、水中で気泡状に存在する必
要はない。このようなガスが水中にある量は特に制限は
ないが、水中で溶解している場合は10-2〜10-5重量
%程度を例示できる。
Various methods are conceivable for preparing the gas-treated water by introducing such a gas, and there is no particular limitation. Usually, it is prepared by contacting the gas with various kinds of water described later. . Upon contact, the gas may be blown into water or water may be positively added to the gas. Further, the gas phase may be provided on the water surface, and there is no particular limitation on the contacting method. By bringing them into contact with each other in this manner, the gas is dissolved in water or exists in the form of fine bubbles in water.
However, the gas-treated water in which the gas phase is provided on the water surface has some points that it is unclear whether the gas is dissolved in water or exists in the water in the form of bubbles. Such gas-treated water is also within the scope of the present invention because the desired effect of (1) is exhibited. As described above, in the present invention, the gas does not necessarily have to be dissolved in water or exist as bubbles in water. The amount of such gas in water is not particularly limited, but when it is dissolved in water, it can be about 10 -2 to 10 -5 wt%.

【0015】本発明で用いられるアンモニウムイオンを
含む水溶液とは、水に溶解した状態でアンモニウムイオ
ン(NH4 +)を作り出す化合物を含有する水溶液のこ
とをいう。このような化合物としては、無機系のものと
して例えばアンモニア、水酸化アンモニウム、炭酸アン
モニウム、硫酸アンモニウム、硝酸アンモニウム、重炭
酸アンモニウム、チオシアン酸アンモニウム、塩化アン
モニウム、過硫酸アンモニウム等を例示でき、有機系の
ものとして例えばギ酸アンモニウム、シュウ酸アンモニ
ウム、クエン酸アンモニウム、酢酸アンモニウム等の有
機カルボン酸塩、各種アンモニウム錯塩等を例示でき
る。また、NH4 の水素原子を他の基で置換してなるメ
チルアンモニウム、ヒドロキシルアンモニウム等の化合
物も、本発明では前記した水に溶解した状態でアンモニ
ウムイオンを作り出す化合物の範疇に属する。本発明で
はこのような化合物を少なくとも1種、即ち1種単独で
又は2種以上を混合して用いることができる。斯かる化
合物の添加量は特に制限はないが、通常では水溶液中に
10重量%以下、好ましくは0.001〜10重量%程
度含有されるように添加するのがよい。
The aqueous solution containing ammonium ions used in the present invention means an aqueous solution containing a compound that produces ammonium ions (NH 4 + ) in a state of being dissolved in water. Examples of such compounds include inorganic compounds such as ammonia, ammonium hydroxide, ammonium carbonate, ammonium sulfate, ammonium nitrate, ammonium bicarbonate, ammonium thiocyanate, ammonium chloride and ammonium persulfate, and organic compounds such as Examples thereof include organic carboxylic acid salts such as ammonium formate, ammonium oxalate, ammonium citrate and ammonium acetate, and various ammonium complex salts. In addition, compounds such as methylammonium and hydroxylammonium obtained by substituting the hydrogen atom of NH 4 with another group also belong to the category of compounds that produce ammonium ions in the state of being dissolved in water as described above. In the present invention, at least one kind of such compounds, that is, one kind alone or a mixture of two or more kinds can be used. The amount of such a compound to be added is not particularly limited, but it is usually preferable to add it so as to be contained in the aqueous solution at 10% by weight or less, preferably about 0.001 to 10% by weight.

【0016】本発明は、フッ素系樹脂成型品の少なくと
も1部分に前記した特定のガスを導入してなるガス処理
水及び前記したアンモニウムイオンを含む水溶液のいず
れか一方の液体又は双方の混合液を接触せしめることが
必要である。この際、双方の混合液とは前記アンモニウ
ムイオンを含有する水溶液と前記ガス処理水とを予め作
成してから両者を混合せしめたものであってもよいし、
アンモニウムイオンを含有する水溶液中に特定のガスを
導入して混合状態としたものでもよく、またその逆にガ
ス処理水中に前記したアンモニウムイオンを作り出す化
合物を添加して混合状態としたものでもよいし、同時に
混合状態としたものであってもよく、その混合液の作成
方法については特に制限はない。更に、双方の液体を夫
々別々に二工程で接触せしめてもよいことは勿論であ
る。
According to the present invention, either one of the gas-treated water prepared by introducing the above-mentioned specific gas into at least a part of the fluororesin molded article and the above-mentioned aqueous solution containing ammonium ion, or a mixed solution of both of them. It is necessary to make contact. At this time, the mixed liquid of both may be a mixture of the aqueous solution containing the ammonium ion and the gas-treated water, which are prepared in advance, and then mixed.
It may be in a mixed state by introducing a specific gas into an aqueous solution containing ammonium ions, or conversely may be in a mixed state by adding the above-mentioned compound for producing ammonium ions into the gas-treated water. Alternatively, they may be in a mixed state at the same time, and the method for producing the mixed solution is not particularly limited. Further, it goes without saying that both liquids may be separately brought into contact in two steps.

【0017】このようなアンモニウムイオンを含有する
水溶液やガス処理水に必要ならば各種の第3成分を加え
ることは一向に差し支えない。斯かる第3成分として
は、具体的には周期律表第II族に属する金属元素を有す
る化合物、カルボン酸、水溶性高分子化合物、一酸化炭
素、二酸化炭素等を例示できる。
If necessary, various third components may be added to the aqueous solution containing ammonium ions or the gas-treated water. Specific examples of such a third component include compounds having a metal element belonging to Group II of the periodic table, carboxylic acids, water-soluble polymer compounds, carbon monoxide, carbon dioxide, and the like.

【0018】本発明で使用される液体(以下単に「液
体」という場合は混合液も含まれる)を作製するに当
り、使用する水は特に制限はなく、自然水、工業用水、
水道水、蒸留水、純水、イオン交換水その他適宜の水を
例示でき、このような水に前記した特定のガスを導入し
たり、アンモニウムイオンを作り出す化合物を混合した
り溶解することが望ましい。前記ガス処理水や前記水溶
液を調製するに当っては、上記の水に限らず、酸やアル
カリの水溶液に溶解しても一向に構わないし、またその
酸やアルカリの水溶液の濃度等についても特に制限はな
く、斯かる酸やアルカリの水溶液も前記した水の範疇に
包含される。しかしながら、水中における不必要な不純
物は極力除去することが望ましい。
In producing the liquid used in the present invention (hereinafter, the mixture is included when simply referred to as "liquid"), the water used is not particularly limited, and natural water, industrial water,
Examples of suitable water include tap water, distilled water, pure water, ion-exchanged water, and it is desirable to introduce the above-mentioned specific gas into such water or to mix or dissolve a compound that produces ammonium ions. In preparing the gas-treated water or the aqueous solution, it is not limited to the above-mentioned water, it may be dissolved in an aqueous solution of an acid or an alkali, and the concentration of the aqueous solution of the acid or the alkali is also particularly limited. However, aqueous solutions of such acids and alkalis are also included in the category of water described above. However, it is desirable to remove unnecessary impurities in water as much as possible.

【0019】上記した水について、通常の自然水、工業
用水、水道水等には自然界において極微量の各種ガス等
が含まれる場合もあるが、この量は極めて微量であり、
このような水は本発明でいうアンモニウムを含む水溶液
や、特定のガスを導入してなるガス処理水には該当しな
い。
Of the above-mentioned water, ordinary natural water, industrial water, tap water, etc. may contain a very small amount of various gases in the natural world, but this amount is extremely small,
Such water does not correspond to the aqueous solution containing ammonium referred to in the present invention or the gas-treated water obtained by introducing a specific gas.

【0020】本発明で用いられるアンモニウムイオンを
含む水溶液には水性懸濁液、水性分散液、乳化液等の各
種水を主成分とする液体が全て包含される。
The aqueous solution containing ammonium ions used in the present invention includes all liquids containing various kinds of water as a main component such as aqueous suspensions, aqueous dispersions and emulsions.

【0021】フッ素樹脂成型品を本発明の上記液体と接
触せしめるには、該成型品の少なくとも1部分、即ち部
分的又は全面に該液体を接触せしめればよい。また、そ
の接触方法については特に制限がなく、例えば該成型品
を液体中に浸漬したり、該成型品を液体表面に置いた
り、該成型品表面にスプレー等で液体を散布する等の方
法を挙げることができる。
In order to bring the fluororesin molded product into contact with the liquid of the present invention, it is sufficient to bring the liquid into contact with at least a part of the molded product, that is, partially or entirely. Further, the contact method is not particularly limited, and for example, a method such as immersing the molded product in a liquid, placing the molded product on the liquid surface, or spraying the liquid onto the molded product surface by spraying, etc. Can be mentioned.

【0022】本発明に係るフッ素系樹脂成型品は、その
表面の少なくとも1部分、即ち1部分又は全面を親水性
に改質せしめてなるものである。上記成型品表面の1部
分を改質するためには、本発明の上記液体を部分的に成
型品表面に接触させてもよいし、該液体を成型品表面全
面に接触させておいて特定の紫外レーザー光を部分的に
照射せしめてもよく、特に制限はない。また上記成型品
表面の全面を親水性に改質するには、特に制限はない
が、例えば上記したように該成型品を液体中に浸漬した
り、該成型品を液体表面に置いたり、該成型品表面にス
プレー等で液体を散布し、該レーザー光を全面に照射す
ればよい。この際、照射時間は特に制限はなく、紫外レ
ーザーの種類、照射条件等により適宜選択することがで
きるが、一応の目安としては入射エネルギー量(被照射
量)で約1〜3000J/cm2 (ジュール/平方セン
チメートル)になる程度の照射時間を例示できる。
The fluororesin molded article according to the present invention has at least one part of its surface, that is, one part or the whole surface, which is modified to be hydrophilic. In order to modify a part of the surface of the molded product, the liquid of the present invention may be partially brought into contact with the surface of the molded product, or the liquid may be brought into contact with the entire surface of the molded product, and then the specific surface may be removed. The ultraviolet laser light may be partially irradiated, and there is no particular limitation. Further, there is no particular limitation for modifying the entire surface of the molded product to be hydrophilic, but for example, as described above, the molded product may be immersed in a liquid, or the molded product may be placed on the liquid surface. The surface of the molded product may be sprayed with a liquid and the entire surface may be irradiated with the laser light. At this time, the irradiation time is not particularly limited and can be appropriately selected depending on the type of ultraviolet laser, irradiation conditions, etc., but as a rough guideline, the incident energy amount (irradiated amount) is about 1 to 3000 J / cm 2 ( An irradiation time of about joule / square centimeter) can be exemplified.

【0023】またフッ素樹脂成型品に紫外レーザー光を
照射するに当っては、特に制限はないが、照射に先立っ
て該成型品をアルコール等の各種洗浄剤で洗浄すること
が望ましい。洗浄剤で洗浄することにより、フッ素樹脂
成型品の表面に成型過程等で付着した油分・汚れを除去
でき、商品価値の高い商品を得ることができる。上記ア
ルコール等としては、特に制限はないが、改質に悪影響
を与えないためにも沸点が低いアルコールがより好まし
い。
Irradiation of the ultraviolet resin light to the fluororesin molded product is not particularly limited, but it is desirable to wash the molded product with various cleaning agents such as alcohol prior to irradiation. By washing with a cleaning agent, it is possible to remove oil and dirt attached to the surface of the fluororesin molded product during the molding process, etc., and it is possible to obtain a product with high commercial value. The alcohol or the like is not particularly limited, but an alcohol having a low boiling point is more preferable because it does not adversely affect the reforming.

【0024】本発明で処理されるフッ素系樹脂成型品の
素材となるフッ素系樹脂としては、特に制限はないが、
テトラフルオロエチレン−パーフルオロアルキルビニー
ルエーテル共重合体(PFA)、ポリテトラフルオロエ
チレン(PTFE)、テトラフルオロエチレン−ヘキサ
フルオロプロピレン共重合体(FEP)、エチレン−テ
トラフルオロエチレン共重合体(ETFE)、フッ化炭
素と有機シリコーンとから合成されるフルオロシリコー
ン重合体等やこれらの混合物等を例示できる。斯かるフ
ッ素系樹脂には、フッ素系樹脂の性質を大幅に改質しな
い範囲内で各種合成樹脂、フィラー等の適宜の第3成分
が添加されていても差し支えない。
There are no particular restrictions on the fluororesin used as the material for the fluororesin molded article treated in the present invention,
Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), Examples thereof include fluorosilicone polymers synthesized from fluorocarbon and organic silicone, and mixtures thereof. An appropriate third component such as various synthetic resins and fillers may be added to such a fluororesin within a range that does not significantly modify the properties of the fluororesin.

【0025】本発明におけるフッ素系樹脂成型品として
は、具体的にはフッ素系樹脂から成るフィルム、シー
ト、チューブ、スリーブ、テープ、フィラメント、編
物、織物、紐、棒、粉体等を例示できるが、これらに限
定されず、あらゆるフッ素系樹脂成型品が包含される。
このようなフッ素系樹脂成型品には、更に他の合成樹脂
等の成型品との複合化成型品、天然繊維、化学繊維、合
成繊維等との複合化成型品等の如くフッ素系樹脂成型品
が少しでも使用されている複合化物等が全て包含され
る。
Specific examples of the fluororesin molded article in the present invention include films, sheets, tubes, sleeves, tapes, filaments, knits, woven fabrics, strings, rods and powders made of fluororesins. However, the present invention is not limited to these and includes all fluororesin molded articles.
Such fluorocarbon resin molded products include fluorocarbon resin molded products such as composite molded products with other molded products such as synthetic resins, and composite molded products with natural fibers, chemical fibers, synthetic fibers, etc. Includes all complex compounds and the like used even in a small amount.

【0026】フッ素系樹脂成型品としてフィルムを用い
る場合、フィルムの厚みは、特に制限はないが、例え
ば、フィルムを上記液体上に置く場合、1mm以下程度
を例示でき、このような場合には、紫外レーザー光がフ
ィルム内を透過(例えば、透過率が95%以下、好まし
くは5〜50%)し、上記液体とフィルム裏面の接触界
面で改質されるという利点もある。
When a film is used as a fluororesin molded product, the thickness of the film is not particularly limited. For example, when the film is placed on the liquid, it can be about 1 mm or less. In such a case, There is also an advantage that the ultraviolet laser light passes through the film (for example, the transmittance is 95% or less, preferably 5 to 50%) and is modified at the contact interface between the liquid and the back surface of the film.

【0027】本発明のフッ素系樹脂成型品は、例えば各
種人工臓器の素材として好適であり、特に人工血管とし
て用いると優れた抗血栓性を有する人工血管を得ること
ができる。また、改質による変色がないので、例えばコ
ンタクトレンズ等の素材に利用でき、更に他の材料から
なる成型品との接着、組合わせ等による複合化材料の一
方としても利用できる。更に、これら以外にもあらゆる
分野で広範囲の用途も期待できるものであり、用途につ
いては特に制限はない。
The fluororesin molded article of the present invention is suitable, for example, as a material for various artificial organs, and particularly when used as an artificial blood vessel, an artificial blood vessel having excellent antithrombotic properties can be obtained. Further, since it does not discolor due to modification, it can be used as a material for contact lenses, for example, and can also be used as one of composite materials by adhesion with a molded product made of another material or combination. In addition to these, a wide range of applications can be expected in all fields, and the applications are not particularly limited.

【0028】[0028]

【実施例】次に実施例を掲げて本発明をより一層明らか
にするが、本発明はこれらに限定されるものではない。
以下の実施例については、紫外レーザーの1種であるエ
キシマレーザー照射装置の概略図を示した図1に基づき
説明する。尚、水との接触角とは、協和界面科学(株)
製のCA−A型測定機を使って水滴を滴下した時の、3
0秒後における接触角度の測定値であり、同一試料で3
回測定してその平均値を求めたものである。
EXAMPLES Next, the present invention will be further clarified with reference to examples, but the present invention is not limited to these.
The following examples will be described with reference to FIG. 1, which shows a schematic diagram of an excimer laser irradiation device that is one type of ultraviolet laser. The contact angle with water is Kyowa Interface Science Co., Ltd.
3 when using a CA-A type measuring machine manufactured by K.K.
It is the measured value of the contact angle after 0 seconds, and it is 3 for the same sample.
This is a value obtained by measuring twice and averaging the values.

【0029】実施例1 ステンレス製の反応セル〔5〕(シャーレーでもよい)
に、蒸留水中に10分間窒素ガスを吹き込んだガス処理
水を入れ、該水溶液〔6〕中にPFA樹脂から成るフィ
ルム(厚さ100μm、光線透過率7%)〔7〕を接触
させ(該水溶液面より5mm下の水中に置いて接触させ
た)、次いで金属製マスク〔3〕を通して成形したAr
Fエキシマレーザー(波長193nm)光〔1〕を凸レ
ンズ〔4〕で集束してフィルム表面に垂直に照射した。
この時の照射条件は、レーザーフルエンス13mJ/c
2 /pulse、ショット数16000ショット、周
波数50Hzとした。
Example 1 Reaction cell [5] made of stainless steel (a Petri dish may be used)
Into the above, gas-treated water obtained by blowing nitrogen gas into distilled water for 10 minutes was put, and a film (thickness 100 μm, light transmittance 7%) [7] made of PFA resin was brought into contact with the aqueous solution [6] (the aqueous solution). Placed in water 5 mm below the surface to make contact), then Ar formed through a metal mask [3]
A F-excimer laser (wavelength 193 nm) light [1] was focused by a convex lens [4] and irradiated perpendicularly to the film surface.
The irradiation conditions at this time were laser fluence 13 mJ / c.
m 2 / pulse, the number of shots was 16000, and the frequency was 50 Hz.

【0030】上記で処理されたPFA樹脂から成るフィ
ルム〔7〕は水との接触角が70度になり、未照射のフ
ィルムの接触角106度と比較して、フィルム表面が優
れた親水性を示した。
The film [7] made of the PFA resin treated as described above has a contact angle with water of 70 degrees, which is excellent in hydrophilicity on the film surface as compared with the contact angle of 106 degrees of the unirradiated film. Indicated.

【0031】実施例2 実施例1のガス処理水〔6〕の代りに蒸留水中に10分
間、水素ガスを吹き込んだガス処理水を用い、該水溶液
中にPFA樹脂から成るフィルム(厚さ100μm)
〔7〕を接触させ(該水溶液面より5mm下の水中に置
いて接触させた)、実施例1と同様のArFエキシマレ
ーザー光〔1〕を凸レンズ〔4〕で集束してフィルム表
面に垂直に照射した。照射条件は、レーザーフルエンス
13mJ/cm2 /pulse、ショット数16000
ショット、周波数50Hzとした。
Example 2 Instead of the gas-treated water [6] of Example 1, gas-treated water obtained by blowing hydrogen gas into distilled water for 10 minutes was used, and a film made of PFA resin (thickness: 100 μm) in the aqueous solution.
[7] was brought into contact (placed in water 5 mm below the surface of the aqueous solution and brought into contact), and the ArF excimer laser light [1] similar to that in Example 1 was focused by a convex lens [4] to be perpendicular to the film surface. Irradiated. Irradiation conditions are laser fluence 13 mJ / cm 2 / pulse, number of shots 16000
The shot has a frequency of 50 Hz.

【0032】処理されたPFA樹脂から成るフィルム
〔7〕は水との接触角が30度であり、フィルム表面が
優れた親水性を示した。
The film [7] made of the treated PFA resin had a contact angle with water of 30 °, and the film surface showed excellent hydrophilicity.

【0033】実施例3 実施例1のガス処理水〔6〕の代りに蒸留水中に10分
間、ヘリウムガスを吹き込んだガス処理水を用い、該混
合溶液中にPFA樹脂から成るフィルム(厚さ100μ
m)〔7〕を実施例1と同様に接触させ、実施例1と同
様のArFエキシマレーザー光〔1〕を凸レンズ〔4〕
で集束してフィルム表面に垂直に照射した。照射条件
は、レーザーフルエンス13mJ/cm2 /puls
e、ショット数16000ショット、周波数50Hzと
した。
Example 3 Instead of the gas-treated water [6] of Example 1, gas-treated water obtained by blowing helium gas into distilled water for 10 minutes was used, and a film made of PFA resin (thickness: 100 μm) was added to the mixed solution.
m) [7] is contacted in the same manner as in Example 1, and the same ArF excimer laser light [1] as in Example 1 is applied to the convex lens [4].
It was focused on and irradiated perpendicularly to the film surface. Irradiation conditions are laser fluence 13mJ / cm 2 / pulses
e, the number of shots was 16,000, and the frequency was 50 Hz.

【0034】処理されたPFA樹脂から成るフィルム
〔7〕は水との接触角が40度であり、フィルム表面が
優れた親水性を示した。
The film [7] made of the treated PFA resin had a contact angle with water of 40 degrees, and the film surface showed excellent hydrophilicity.

【0035】実施例4 蒸留水中に10分間、アルゴンガスを吹き込んだガス処
理水中にPFA樹脂から成るフィルム(厚さ100μ
m)〔7〕を実施例1と同様に接触させ、実施例1と同
様のArFエキシマレーザー光〔1〕を凸レンズ〔4〕
で集束してフィルム表面に垂直に照射した。照射条件
は、レーザーフルエンス13mJ/cm2 /puls
e、ショット数16000ショット、周波数50Hzと
した。
Example 4 A film made of PFA resin (thickness 100 μm) in gas-treated water in which argon gas was blown into distilled water for 10 minutes.
m) [7] is contacted in the same manner as in Example 1, and the same ArF excimer laser light [1] as in Example 1 is applied to the convex lens [4].
It was focused on and irradiated perpendicularly to the film surface. Irradiation conditions are laser fluence 13mJ / cm 2 / pulses
e, the number of shots was 16,000, and the frequency was 50 Hz.

【0036】処理されたPFA樹脂から成るフィルム
〔7〕は未処理のものと比較して、著しく親水性が増加
し、接触角は34度であった。
The film [7] made of the treated PFA resin had a significantly increased hydrophilicity as compared with the untreated one, and the contact angle was 34 degrees.

【0037】実施例5 蒸留水中に10分間、キセノンガスを吹き込んだガス処
理水中にPFA樹脂から成るフィルム(厚さ100μ
m)〔7〕を実施例1と同様に接触させ、実施例1と同
様のArFエキシマレーザー光〔1〕を凸レンズ〔4〕
で集束してフィルム表面に垂直に照射した。照射条件
は、レーザーフルエンス13mJ/cm2 /puls
e、ショット数16000ショット、周波数50Hzと
した。
Example 5 A film made of PFA resin (thickness: 100 μm) in gas-treated water in which xenon gas was blown into distilled water for 10 minutes.
m) [7] is contacted in the same manner as in Example 1, and the same ArF excimer laser light [1] as in Example 1 is applied to the convex lens [4].
It was focused on and irradiated perpendicularly to the film surface. Irradiation conditions are laser fluence 13mJ / cm 2 / pulses
e, the number of shots was 16,000, and the frequency was 50 Hz.

【0038】処理されたPFA樹脂から成るフィルム
〔7〕は水との接触角が53度であり、フィルム表面が
優れた親水性を示した。
The film [7] made of the treated PFA resin had a contact angle with water of 53 degrees, and the film surface showed excellent hydrophilicity.

【0039】実施例6 ステンレス製の反応セル〔5〕(シャーレーでもよい)
に、濃度が0.01重量%のアンモニウム水溶液を入
れ、該水溶液〔6〕中にPFA樹脂から成るフィルム
(厚さ100μm、光線透過率7%)〔7〕を接触させ
(該水溶液面上に置いて接触させた。この際フィルムの
表側の表面は該水溶液とは直接触れていなかった。)、
次いで金属製マスク〔3〕を通して成形したArFエキ
シマレーザー(波長193nm)光〔1〕を凸レンズ
〔4〕で集束してフィルム表面に垂直に照射した。この
時の照射条件は、レーザーフルエンス13mJ/cm2
/pulse、ショット数16000ショット、周波数
50Hzとした。
Example 6 A reaction cell [5] made of stainless steel (a Petri dish may be used).
An aqueous solution of ammonium having a concentration of 0.01% by weight is put into the solution, and a film (100 μm in thickness, light transmittance of 7%) [7] made of PFA resin is brought into contact with the aqueous solution [6] (on the surface of the aqueous solution). The surface of the film was not in direct contact with the aqueous solution.),
Then, an ArF excimer laser (wavelength 193 nm) light [1] formed through a metal mask [3] was focused by a convex lens [4] and vertically irradiated on the film surface. The irradiation conditions at this time were laser fluence 13 mJ / cm 2
/ Pulse, the number of shots was 16000, and the frequency was 50 Hz.

【0040】上記で処理されたPFA樹脂から成るフィ
ルム〔7〕は水との接触角が31度であり、フィルムの
裏側の表面が優れた親水性を示した。
The film [7] made of the PFA resin treated as described above had a contact angle with water of 31 degrees, and the surface on the back side of the film exhibited excellent hydrophilicity.

【0041】実施例7 実施例6の水溶液〔6〕の代りに0.10重量%のアン
モニア水溶液を用い、該水溶液中にPFA樹脂から成る
フィルム(厚さ100μm)〔7〕を接触させ(該水溶
液面上に置いて接触させ、接触状態は実施例6と同じで
あった)、実施例6と同様のArFエキシマレーザー光
〔1〕を凸レンズ〔4〕で集束してフィルム表面に垂直
に照射した。照射条件は、レーザーフルエンス13mJ
/cm2/pulse、ショット数16000ショッ
ト、周波数50Hzとした。
Example 7 A 0.10% by weight aqueous ammonia solution was used in place of the aqueous solution [6] of Example 6, and a film made of PFA resin (thickness 100 μm) [7] was brought into contact with the aqueous solution [(6)]. The film was placed on the surface of the aqueous solution and brought into contact therewith, and the contact state was the same as in Example 6), and the same ArF excimer laser light [1] as in Example 6 was focused by a convex lens [4] and irradiated perpendicularly to the film surface. did. Irradiation conditions are laser fluence 13mJ
/ Cm 2 / pulse, the number of shots was 16,000, and the frequency was 50 Hz.

【0042】処理されたPFA樹脂から成るフィルム
〔7〕は水との接触角が32度であり、フィルム裏側の
表面が優れた親水性を示した。
The film [7] made of the treated PFA resin had a contact angle with water of 32 degrees, and the surface on the back side of the film exhibited excellent hydrophilicity.

【0043】実施例8 実施例6の水溶液〔6〕の代りに0.01重量%の炭酸
アンモニウム水溶液を用い、該混合溶液中にPFA樹脂
から成るフィルム(厚さ100μm)〔7〕を実施例6
と同様に接触させ、実施例6と同様のArFエキシマレ
ーザー光〔1〕を凸レンズ〔4〕で集束してフィルム表
面に垂直に照射した。照射条件は、レーザーフルエンス
13mJ/cm2 /pulse、ショット数16000
ショット、周波数50Hzとした。
Example 8 A 0.01% by weight aqueous solution of ammonium carbonate was used in place of the aqueous solution [6] of Example 6, and a film (thickness 100 μm) [7] made of PFA resin was used in the mixed solution. 6
The same contact as in Example 6 was performed, and the same ArF excimer laser light [1] as in Example 6 was focused by the convex lens [4] and irradiated perpendicularly to the film surface. Irradiation conditions are laser fluence 13 mJ / cm 2 / pulse, number of shots 16000
The shot has a frequency of 50 Hz.

【0044】処理されたPFA樹脂から成るフィルム
〔7〕は水との接触角が57度であり、フィルム裏側の
表面が優れた親水性を示した。
The film [7] made of the treated PFA resin had a contact angle with water of 57 degrees, and the surface on the back side of the film exhibited excellent hydrophilicity.

【0045】比較例 窒素ガス雰囲気及びヘリウムガス雰囲気のそれぞれにP
FA樹脂から成るフィルム(厚さ100μm)〔7〕を
置き、ArFエキシマレーザー光〔1〕をフィルム表面
に垂直に照射した。照射条件は、レーザーフルエンス1
3mJ/cm2/pulse、ショット数16000シ
ョット、周波数50Hzとした。
Comparative Example P was added to each of the nitrogen gas atmosphere and the helium gas atmosphere.
A film (thickness 100 μm) [7] made of FA resin was placed, and the surface of the film was irradiated with ArF excimer laser light [1] vertically. Irradiation conditions are laser fluence 1
3 mJ / cm 2 / pulse, the number of shots was 16000, and the frequency was 50 Hz.

【0046】いずれの雰囲気中で処理されたPFA樹脂
から成るフィルム〔7〕も、未処理のものと比較して、
表面が波打ち状態になり、外観が損なわれたものであっ
た。また該フィルムと未処理フィルムでは水との接触角
において大差はなく、前者は110度、後者は107度
で親水性は改質されていなかった。
The film [7] made of PFA resin treated in any atmosphere was compared with the untreated one.
The surface was wavy and the appearance was impaired. Further, there was no great difference in the contact angle with water between the film and the untreated film, the former was 110 degrees and the latter was 107 degrees, and the hydrophilicity was not modified.

【0047】[0047]

【発明の効果】本発明によれば、従来の如く複雑な装置
や毒性の強いB2 6 ガス並びNH3ガス等を使用しな
いでも、取り扱いが容易な液体を用いるだけで、簡単な
装置によりしかも簡便な操作で優れた親水性を有するフ
ッ素系樹脂成型品を得ることができる。本発明で付与さ
れる親水性は極めて優れたものであり、またその親水性
は太陽光線や熱によっては変質される虞れのないもので
ある。本発明の親水性フッ素系樹脂成型品は、例えば優
れた抗血栓性を有する人工血管を始め、各種人工臓器
や、改質による変色がないのでコンタクトレンズ等の素
材としても好適である上に、他の成型品との複合化材料
等としても好適であり、更に優れた機能性を生かして今
後あらゆる分野での用途にも期待できるものである。
According to the present invention, it is possible to realize a simple device by using a liquid that is easy to handle without using a complicated device or a highly toxic B 2 H 6 gas or NH 3 gas as in the prior art. Moreover, it is possible to obtain a fluororesin molded article having excellent hydrophilicity by a simple operation. The hydrophilicity imparted by the present invention is extremely excellent, and the hydrophilicity is not likely to be altered by sunlight or heat. The hydrophilic fluororesin molded article of the present invention is, for example, an artificial blood vessel having excellent antithrombotic properties, various artificial organs, and since it does not discolor due to modification, it is also suitable as a material such as a contact lens. It is also suitable as a composite material with other molded products and can be expected to be used in various fields in the future by utilizing its excellent functionality.

【図面の簡単な説明】[Brief description of drawings]

【図1】エキシマレーザー照射装置の概略図の1例を示
す図面である。
FIG. 1 is a diagram showing an example of a schematic view of an excimer laser irradiation device.

【符号の説明】[Explanation of symbols]

1 エキシマレーザー光 2 ミラー 3 マスク 4 レンズ 5 反応セル 6 液体 7 フッ素系樹脂成型品(フィルム) 8 XY−ステージ 9 エキシマレーザー発振装置 1 Excimer Laser Light 2 Mirror 3 Mask 4 Lens 5 Reaction Cell 6 Liquid 7 Fluorine Resin Molded Product (Film) 8 XY-Stage 9 Excimer Laser Oscillator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 雄一 大阪府寝屋川市三井南町25番1号 日本原 子力研究所高崎研究所 大阪支所内 (72)発明者 河西 俊一 大阪府寝屋川市三井南町25番1号 日本原 子力研究所高崎研究所 大阪支所内 (72)発明者 西井 正信 大阪府寝屋川市三井南町25番1号 日本原 子力研究所高崎研究所 大阪支所内 (72)発明者 杉本 俊一 大阪府寝屋川市三井南町25番1号 日本原 子力研究所高崎研究所 大阪支所内 放射 線照射振興協会内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichi Shimizu 25-1 Mitsui Minamimachi, Neyagawa-shi, Osaka Prefecture Takasaki Research Institute, Japan Hara Research Institute Osaka Branch (72) Shunichi Kanishi 25, Miiminamimachi, Neyagawa-shi, Osaka Prefecture No. 1 Japan Hara Research Institute Takasaki Research Center Osaka Branch (72) Inventor Masanobu Nishii 25-1 Mitsui Minamimachi, Neyagawa City, Osaka Prefecture Japan Hara Research Center Takasaki Research Center Osaka Branch (72) Inventor Sugimoto Shunichi 25-1 Mitsuiminami-cho, Neyagawa-shi, Osaka Japan Hara Research Institute Takasaki Research Center Osaka Branch Radiation Irradiation Promotion Association

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ素系樹脂成型品の少なくとも1部分
に、水素ガス、窒素ガス及び周期律表第0族に属する希
ガス類から選ばれた少なくとも1種のガスを導入してな
るガス処理水並びにアンモニウムイオンを含む水溶液の
いずれか一方の液体又は双方の混合液を接触せしめた状
態で、400nm以下の波長を有する紫外レーザー光を
照射することによって、前記フッ素系樹脂成型品の少な
くとも1部分の表面が親水性に改質されてなる親水性フ
ッ素系樹脂成型品。
1. Gas-treated water and ammonium obtained by introducing at least one kind of gas selected from hydrogen gas, nitrogen gas and rare gases belonging to Group 0 of the periodic table into at least a part of a fluororesin molded article. By irradiating an ultraviolet laser beam having a wavelength of 400 nm or less in a state in which either one of the aqueous solutions containing ions or a mixed solution of both are brought into contact with each other, the surface of at least one part of the fluororesin molded article is A hydrophilic fluororesin molded product that has been modified to be hydrophilic.
【請求項2】 400nm以下の波長を有する紫外レー
ザー光がエキシマレーザー光である請求項1に記載の親
水性フッ素系樹脂成型品。
2. The hydrophilic fluororesin molded article according to claim 1, wherein the ultraviolet laser light having a wavelength of 400 nm or less is excimer laser light.
JP26596493A 1993-02-16 1993-10-25 Hydrophilic fluorinated resin molded product Expired - Fee Related JP3338875B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26596493A JP3338875B2 (en) 1993-10-25 1993-10-25 Hydrophilic fluorinated resin molded product
US08/192,285 US5419968A (en) 1993-02-16 1994-02-04 Surface-hydrophilized fluororesin moldings and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26596493A JP3338875B2 (en) 1993-10-25 1993-10-25 Hydrophilic fluorinated resin molded product

Publications (2)

Publication Number Publication Date
JPH07118421A true JPH07118421A (en) 1995-05-09
JP3338875B2 JP3338875B2 (en) 2002-10-28

Family

ID=17424502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26596493A Expired - Fee Related JP3338875B2 (en) 1993-02-16 1993-10-25 Hydrophilic fluorinated resin molded product

Country Status (1)

Country Link
JP (1) JP3338875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001287A1 (en) * 1994-07-01 1996-01-18 Daikin Industries, Ltd. Surface-modified fluororesin molded product
JPH09194615A (en) * 1996-01-22 1997-07-29 Agency Of Ind Science & Technol Method for modifying surface of molded polymer by using ultraviolet laser
US5721293A (en) * 1994-07-15 1998-02-24 Japan Atomic Energy Research Institute Of Tokyo Method of imparting organic functional groups to the surface of fluoropolymers by irradiation of carboxylic acids with ultraviolet light
JP2015122448A (en) * 2013-12-24 2015-07-02 住友電工プリントサーキット株式会社 Fluororesin base material, printed wiring board, biological information measurement device, and artificial organ
JP2015127660A (en) * 2013-12-27 2015-07-09 住友電工プリントサーキット株式会社 Printed wiring board for strain gauge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001287A1 (en) * 1994-07-01 1996-01-18 Daikin Industries, Ltd. Surface-modified fluororesin molded product
US5684065A (en) * 1994-07-01 1997-11-04 Daikin Industries, Ltd. Surface-modified fluorine-containing resin molded article
US5721293A (en) * 1994-07-15 1998-02-24 Japan Atomic Energy Research Institute Of Tokyo Method of imparting organic functional groups to the surface of fluoropolymers by irradiation of carboxylic acids with ultraviolet light
JPH09194615A (en) * 1996-01-22 1997-07-29 Agency Of Ind Science & Technol Method for modifying surface of molded polymer by using ultraviolet laser
JP2015122448A (en) * 2013-12-24 2015-07-02 住友電工プリントサーキット株式会社 Fluororesin base material, printed wiring board, biological information measurement device, and artificial organ
JP2015127660A (en) * 2013-12-27 2015-07-09 住友電工プリントサーキット株式会社 Printed wiring board for strain gauge

Also Published As

Publication number Publication date
JP3338875B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US5419968A (en) Surface-hydrophilized fluororesin moldings and method of producing same
JPH06192452A (en) Surface modification of fluoropolymer molding by using ultraviolet laser
US5098618A (en) Surface modification of plastic substrates
JP3012926B1 (en) Laser micromachining of transparent materials
KR100249920B1 (en) Modification of surface of molded article made of fluorocarbon resin
AU3867689A (en) Removal of surface contaminants by irradiation from a high-energy source
US4838989A (en) Laser-driven fusion etching process
JP3338875B2 (en) Hydrophilic fluorinated resin molded product
JP3004294B2 (en) Method for generating a smooth surface on an object made of a polymer of polyethylene, polypropylene, butadiene or polystyrene and an object made of HDPE
JP2740764B2 (en) Selective electroless plating method for polymer molded product surface
JP2935084B2 (en) Hydrophilic fluorinated resin molded product
US6689426B1 (en) Solid surface modification method and apparatus
JPH06279590A (en) Method and apparatus for modification of surface of fluororesin
JP3864211B2 (en) Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser
US5635257A (en) Process for hydrophilizing a porous material made of fluorine resin
JPH04353529A (en) Method for modifying surface of polyester
JPH07110904B2 (en) Hydrophilic fluorine film
JP2782595B2 (en) Surface modification method of fluoropolymer molded article using ultraviolet laser
JP3176740B2 (en) Surface modification method of fluororesin using ultraviolet laser light
Takao et al. Fabrication of SiO/sub 2/microlenses on silicone rubber using a vacuum-ultraviolet F/sub 2/laser
JP2983438B2 (en) Modification method of fluororesin molding surface
JPH0362831A (en) Surface-processing of polymer molded article with laser
Niino et al. Excimer laser ablation of polymers and carbon fiber composites
Wurzberg et al. Preadhesion laser surface treatment of polycarbonate and polyetherimide
INAZAKI et al. Surface modification of polytetrafluoroethylene with ArF excimer laser irradiation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees