JP3864211B2 - Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser - Google Patents
Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser Download PDFInfo
- Publication number
- JP3864211B2 JP3864211B2 JP2000338754A JP2000338754A JP3864211B2 JP 3864211 B2 JP3864211 B2 JP 3864211B2 JP 2000338754 A JP2000338754 A JP 2000338754A JP 2000338754 A JP2000338754 A JP 2000338754A JP 3864211 B2 JP3864211 B2 JP 3864211B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- water
- fluorine
- vacuum ultraviolet
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002313 fluoropolymer Polymers 0.000 title description 14
- 239000004811 fluoropolymer Substances 0.000 title description 14
- 238000002715 modification method Methods 0.000 title description 5
- 238000000465 moulding Methods 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 32
- 229910052731 fluorine Inorganic materials 0.000 claims description 29
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 26
- 239000011737 fluorine Substances 0.000 claims description 26
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 11
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims description 2
- 241001089723 Metaphycus omega Species 0.000 claims 1
- 239000000047 product Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 15
- 238000004381 surface treatment Methods 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 238000013532 laser treatment Methods 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001638 boron Chemical class 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 150000002429 hydrazines Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Polymers ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- MARDFMMXBWIRTK-UHFFFAOYSA-N [F].[Ar] Chemical compound [F].[Ar] MARDFMMXBWIRTK-UHFFFAOYSA-N 0.000 description 1
- VFQHLZMKZVVGFQ-UHFFFAOYSA-N [F].[Kr] Chemical compound [F].[Kr] VFQHLZMKZVVGFQ-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000000816 ethylene group Polymers [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004805 propylene group Polymers [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、フッ素系高分子成形品の表面処理方法に関する。より詳しく言えば本発明は、水(水蒸気)を含む系において真空紫外フッ素レーザーを照射し、残渣等の不純物を高分子表面に残すことなく、表面の構造特性や機能性を向上させ、レーザー照射表面のみを位置選択的に親水化させる新規な表面処理方法に関する。
【0002】
【従来の技術】
紫外域の高強度パルス光を発振するエキシマレーザーを用いた高分子表面反応は、ポリマーの精密な表面処理・表面加工法として、基礎および応用の両面から活発に検討が進められている。
特にポリ四フッ化エチレンに代表されるフッ素系ポリマーは、熱的および化学的に安定性が高く工業的に広く興味が持たれているが、しかし、表面自由エネルギーが非常に低いために表面は撥水撥油性を示し、表面の接着性が悪く応用分野が制約されている現状がある。したがって、成形品自体の諸特性を保ったままで、表面の接着性を向上させるために、様々な表面改質法によって極性基を導入することが検討されている。
本発明者らはこれまでに、エキシマレーザー照射によるフッ素系高分子成形品の表面処理方法(特許1966682号(特許公告平07-005773号))を報告した。これは、ヒドラジン類の存在下においてArFエキシマレーザーまたはKrFエキシマレーザーの照射によって成形品表面を親水化する手法である。しかしながら、この方法では作業安全上取扱いに注意を有するヒドラジン類を試薬として使うことが問題であった。
【0003】
また、このほかにも紫外エキシマレーザーを用いたフッ素系ポリマーの表面改質技術として、ケイ素誘導体等を用いる方法(葛西ら、特開平07−179636号)、ホウ素誘導体等を用いる方法(村原ら、特開平06−329818号、特開平06−293837号)、周期律表第II族に属する金属等を用いる方法(岡田ら、特開平06−240026号)、芳香族系紫外線吸収化合物等を用いる方法(西井ら、特開平07−207049号)、ホウ素誘導体の粉末を混入したフッ素樹脂を用いる方法(五色、特開平06−220229号)などが挙げられる。これらの手法は、紫外エキシマレーザーの波長にフッ素系ポリマーの吸収がないために、この波長に吸収を有するとともに効果的にポリマー表面を改質できる試薬を共存させた状態でレーザー照射を行うものである。しかし、これらの方法においては高分子表面に物理的なダメージを与えたり、試薬類の取扱いに十分な注意が必要であるなどの問題があった。
近年、波長190nm以下の真空紫外光を用いた表面改質技術の研究が、新規な光源の開発とともに活発化している。波長172nmのキセノンエキシマランプを用いてフッ素系ポリマーの表面を改質した技術としては、水を用いる方法(平本ら、特開平07−179629号)、ホウ素化合物水溶液を用いる方法(平本ら、特開平07−179628号)、大気中での照射(葛西、特開平08−165369号)、凝縮層を用いる方法(筒井、特開平09−188773号)などがある。これらの方法では、まず真空紫外光照射によってフッ素系ポリマー表面層のC−F結合が切断されて、ポリマー表面が活性化された後に表面改質が進行することが述べられている。
【0004】
しかし、これら真空紫外線ランプを用いた方法では、光源の強度が弱いために目的の改質特性を得るために長時間の照射が必要なことや、位置選択的な表面改質ができないなどの欠点がある。また、波長157nmのフッ素レーザー照射によって、フッ素系ポリマーの表面を改質した技術としては、アルコール水溶液等を用いる方法(稲崎、特開平06−279590号)、シリカ粒子を用いる方法(江口ら、特開平10−249271号)等の試薬や微粒子を用いた表面改質方法が挙げられる。フッ素レーザー照射によって樹脂表面層のC−F結合が切断されて、ポリマー表面が活性化された後に表面改質が進行することが述べられている。
一方、真空紫外レーザーを用いた微細加工の研究は、真空中または不活性ガス中において研究が進められており、セラミックス(大原ら、特開平09−048684号)、酸化物薄膜(北原ら、特開平09−048698号)、撥水・撥油性ノズルプレート(青木、特開平10−278278号)、石英ガラス・ポリテトラフルオロエチレン(和田ら、特開平06−079478号)などが挙げられる。これらの研究は、レーザー照射によって被加工物の表面層を除去(エッチング)する手法であり、被加工物の表面を親水化する表面改質法とは異なる技術である。
さらに、稲崎による特開平06−228343号では、電気抵抗率100MΩ・cm以上の水存在下におけるArFエキシマレーザー照射によるフッ素樹脂の表面改質方法が述べられ、この中でフッ素レーザーの使用についても言及されている。この発明では電気抵抗率100MΩ・cmを越える超高純度の水の使用によってフッ素樹脂表面が親水化されることが述べられている。
しかし、電気抵抗率100MΩ・cmを越える超高純度の水の製造には極めて高度な技術が必要で、多額の製造コストが必要になる欠点がある。
【0005】
【発明が解決しようとする課題】
本発明は、フッ素系高分子成形品表面を位置選択的に親水化させた部位を作製する方法を提供することを目的とする。本発明は、合成樹脂成形品のより効果的な表面処理加工方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、真空紫外レーザー高分子表面加工法について鋭意研究を重ねた結果、電気抵抗率20MΩ・cm以下の水または水蒸気を含む系において真空紫外レーザーを照射すると、フッ素系高分子表面のフッ素原子が水酸基または水素原子と置換し、レーザー照射面のみを親水化させることが可能であることを見い出し、これらの知見に基づき種々検討を重ね本発明をなすに至った。
すなわち本発明は、フッ素系高分子成形品に水または水蒸気の存在下に波長157nmの真空紫外フッ素レーザーを照射し、該高分子成形品の表面を親水化させることを特徴とするフッ素系高分子成形品表面の表面改質方法を提供するものである。
次に本発明を詳細に説明する。ここでいう高分子成形品とは、フィルム、シート、繊維、繊維強化樹脂、樹脂成形品等の材料を指し、必ずしも最終的な製品として成形品である必要はなく、その形状に限定はない。
本発明に用いられる水としては、電気抵抗率20MΩ・cm以下の水(H2O)およびその同位体(重水など)などがあげられる。典型的には、脱イオン水、蒸留水、限外濾過水が挙げられる。
本発明では高エネルギー光子である真空紫外光を用いているので、微量の不純物を含んだ低純度の水を用いても、高エネルギー光子によって反応活性種が多量に生成するために、樹脂表面処理に何らの悪影響を及ぼさない。
このフッ素系高分子成形品と水分子の反応を説明する。まず、真空紫外レーザーを水分子に照射すると、水分子が真空紫外光を吸収し、電子励起状態の水が生成する。このとき、波長157nmにおける水分子の光の吸収係数(吸収断面積)は、液体状態の水で約104cm−1(J.L.Weeksら、Radiation Research, vol.19, pp.559-567 (1963))、気体状態の水で約3x10−18cm2(J.M.Hellerら、Journal of Chemical Physics, vol.60, No.9, pp.3483-3486 (1974))であるので、アルゴンフッ素エキシマレーザー(波長193nm;水の吸収係数約10−1cm−1)、クリプトンフッ素エキシマレーザー(波長248nm;水の吸収係数10−2cm−1以下)、および、キセノンエキシマランプ(波長172nm;水の吸収係数約102cm−1)などのフッ素レーザーよりも長波長の光源波長よりも大きな吸収を有していることがわかる。このように157nmの吸収が大きいことは、表面改質を行うのに必要な活性種の生成量を確保する上で極めて重要である。
【0007】
次に、真空紫外光照射によって生成した電子励起状態の水は、水素原子や水酸基ラジカルなどの反応中間体に高い量子収率で分解する。波長157nmでは、その量子収率は約0.6である(N.Getoffら、Photochemistry and Photobiology, vol.8, pp.167-178 (1968))。この量子収率も吸収係数と同様に波長依存性があり、長波長側では著しく減少する。例えば、172nmでは0.4、193nmでは0.2である。このように、157nmのレーザーを用いると、他の光源と比較してその高い吸収率と量子収率の相乗効果によって、水分子の光分解反応を高効率に行うことが可能になる。
発生した活性種の水素原子はフッ素原子に対して高い化学反応性を有している。したがって、フッ素系高分子成形品を反応容器の中に入れると、成形品の表面ではフッ素原子と水素原子が反応し、炭素−フッ素結合が切断されてフッ化水素分子が生成する反応が起こり、高分子主鎖の炭素原子の反応性が向上する(H.Niinoら、Applied Surface Science, vol.96-98, pp.550-557(1996))。このフッ素原子が脱離した炭素原子には、別の水分子が光分解して生成した水素原子や水酸基ラジカルが成形品表面に置換する反応が直ちにおこる。したがって、成形品表面では水素原子や水酸基を有するポリマー分子鎖が生成し、表面親水化が観測される。
以上のように、波長157nmの真空紫外フッ素レーザーを用いると、作業安全性の高い水を高効率で分解し、フッ素樹脂の表面改質に有効な活性種を大量に生成させることが可能になることがわかる。また、本法によって発生させた反応中間体の寿命はそれほど長くないために、レーザー光が照射されている表面部位のみに置換反応は起こり、位置選択的な表面反応が行なわれる。
【0008】
本発明方法において、真空紫外レーザーの強度は、アブレーションが起こるしきい値強度よりも低い強度で行なうことが好ましく(約100mJ/cm2/パルス以下)、また、水蒸気のガス圧力は高いほうが効果的である(室温での飽和蒸気圧:約25Torr)。しかしながら、重要なことは、改質したい成型品の表面部位に活性種が十分に供給されることである。前述したように、フッ素樹脂は、波長157nmに大きな吸収を有しているために、樹脂フィルムの裏面からレーザーを照射しても内部で大半のレーザーが吸収されてしまい、表面改質には効果的ではない。また、水および水蒸気も波長157nmに吸収を有しているので、形成品とレーザー装置の間に大量の水が存在すると、レーザーが成型品近傍まで到達することができず、レーザー照射によって生成した活性種が成型品表面と反応できず、表面改質が達成されない。たとえば、室温での飽和蒸気圧である25Torrの水蒸気濃度は約8x1017分子・cm−3であるので、その吸収係数は約2cm−1となり、水蒸気層の厚みを0.5mm程度に制御することで、形成品表面に活性種を供給することができる。また、反応容器への水蒸気の導入方法としては水蒸気単体のみでも可能であるが、窒素ガスや希ガス(アルゴン、ヘリウムなど)などの波長157nmに吸収を有しないガス類を含んだ状態で反応容器に導入することも可能である。
【0009】
水分子を含む系でフッ素レーザーの照射を行なったポリ四フッ化エチレン(PTFE)フィルム表面が、水酸基に置換されていることがX線光電子分光測定(XPS)ならびに表面接触角測定からにより確認された。レーザー処理前のPTFE表面からは、炭素C1sピークならびにフッ素F1sピークが検出された。
このとき、炭素とフッ素の原子数比は1:2であった。レーザー処理を行った試料表面からは、新たに酸素O1sピークが観測されるとともに、フッ素原子の割合が処理前に比べて減少した。さらに、水に対する接触角も130度から70度に変化し、表面が親水化されていることが明らかになった。
これらの実験結果は、レーザー処理によって成型品表面層のフッ素原子が水素原子や水酸基に置換していることを示している。このような簡便・迅速な方法でフッ素系高分子成形品表面を親水化させることが可能になった。水酸基によって表面改質されたフッ素系高分子成形品は、バルクの諸特性が保持されたまま表面自由エネルギーが大きくなっているために、フッ素ポリマーの長所を生かした上で表面接着性の向上、表面ぬれ性の向上、色素の吸着性向上、医療材料への応用ならびに、細胞の増殖基板などに応用範囲を広げることが可能である。
【0010】
また、水酸基と他の試薬との化学反応によって官能基変換を行なうことも可能である。例えば、無水酢酸のような有機酸無水物による化学処理を行なうと、水酸基にアセチル基が付加し末端メチル基の効果によって表面が親油化特性が発現する。
また、本発明においては、高分子フィルムの改質したい部位に相当するマスク(金属板製パターンなど)を通過させたレーザービームを照射することで、希望する照射部分のみに、表面処理を行なうことが可能である。一方、フッ素レーザーのビームは、ヘリウム-ネオンレーザーやYAGレーザー等の他のレーザーのビームと比較して、ビーム形状は大きく、ビームを走査させ、任意の形状の改質すべき部位を照射することで、大面積処理にも容易に対応できる。特に、本発明では、真空紫外レーザーによる非熱的な光化学反応により、水分子が反応するので、照射部位以外の周辺には何らの熱的損傷を伴わず、極めて効果的に表面処理を行なうことができる。
【0011】
本発明におけるレーザーとしては、水分子の吸収波長を発振する真空紫外レーザーが適しており、特に好適には、フッ素レーザー(波長:157nm)である。また、レーザーの基本波長光を非線形光学効果などにより、真空紫外光領域のレーザー光に変換したものも有効である。レーザーのフルエンスとしては、高分子の種類により異なるが、パルス幅がナノ秒程度として約0.1mJ/パルス以上の高強度レーザーが望ましい。なお、本発明において、対象となるフッ素系合成樹脂は、非晶性、結晶性、芳香族系、非芳香族系のいずれにおいてもよく、例えば、ポリ四フッ素化エチレン、ポリ六フッ素化プロピレン、ポリフッ素化ビニリデン、ポリ三フッ素化塩化エチレン樹脂のいずれかか、四フッ化エチレン・六フッ化プロピレン共重合体、エチレン四フッ素化エチレン共重合体のようなこれらの共重合物又は共縮合物、または、これらの混合物からなる合成樹脂である。
【0012】
(実施例)次に本発明を実施例に基づきさらに詳細に説明する。
実施例1 ポリ四フッ化エチレンフィルムをフッ化カルシウムを窓材とする反応容器にセットし、室温、水蒸気雰囲気(25Torr) においてフッ素レーザーを4mJ・cm-2・パルス-1の強度で100Hzのパルス繰り返しで、60秒間照射し、表面処理膜を得た。このとき水蒸気は電気抵抗率2MΩ・cmの脱イオン水から得た。
レーザー照射によって、水に対する表面の接触角は130度から90度に減少し、表面が親水化したことが判明した。また、レーザー処理後の試料表面のX線光電子分光測定(XPS)からは、炭素やフッ素に由来するピークの他に新たに酸素のO1sピークがあらわれ、フッ素のF1sピークの強度が炭素のC1sピークと比較して減少した。レーザー処理前の試料表面の原子数比は炭素:フッ素:酸素=1.0:2.0:0.0であるのに対して、レーザー処理後は炭素:フッ素:酸素=1.0:1.6:0.05であった。以上の実験結果から、表面に水酸基が導入されていることが確認された。
【0013】
実施例2 ポリ四フッ化エチレンフィルムをフッ化カルシウムを窓材とする反応容器にセットし、室温、水蒸気雰囲気(25Torr) においてフッ素レーザーを4mJ・cm-2・パルス-1の強度で100Hzのパルス繰り返しで、100秒間照射し、表面処理膜を得た。このとき水蒸気は電気抵抗率2MΩ・cmの脱イオン水から得た。
レーザー照射によって、水に対する表面の接触角は130度から70度に減少し、表面が親水化したことが判明した。また、レーザー処理後の試料表面のX線光電子分光測定(XPS)からは、炭素やフッ素に由来するピークの他に新たに酸素のO1sピークがあらわれ、フッ素のF1sピークの強度が炭素のC1sピークと比較して減少した。以上の実験結果から、表面に水酸基が導入されていることが確認された。
比較例1 ポリ四フッ化エチレン(PTFE)フィルムをフッ化カルシウムを窓材とする反応容器にセットし、室温、真空雰囲気においてフッ素レーザーを4mJ・cm-2・パルス-1の強度で100Hzのパルス繰り返しで、100秒間照射し、表面処理膜を得た。レーザー処理前後における水に対する表面の接触角は130度まで変化せず、親水化表面処理を行うにはレーザー照射とともに水の存在が必要不可欠であることが判明した。
【0014】
【発明の効果】
本発明によれば、真空紫外レーザーを用いたフッ素系高分子成形品の表面処理加工法は、前記レーザーがエネルギー及び位置制御性に優れているために、極めて効果的に精密で均一な親水基導入による親水化表面処理を、レーザー照射によるパターン形成部位のみに行なうことができる。[0001]
[Industrial application fields]
The present invention relates to a surface treatment method for a fluoropolymer molded article. More specifically, the present invention irradiates a vacuum ultraviolet fluorine laser in a system containing water (water vapor), improves the structural characteristics and functionality of the surface without leaving impurities such as residues on the polymer surface, and performs laser irradiation. The present invention relates to a novel surface treatment method in which only the surface is selectively hydrophilized.
[0002]
[Prior art]
The polymer surface reaction using an excimer laser that oscillates high-intensity pulsed light in the ultraviolet region has been actively studied from both the basic and applied aspects as a precise surface treatment and surface processing method for polymers.
In particular, fluoropolymers represented by polytetrafluoroethylene have high thermal and chemical stability and are of wide industrial interest. However, the surface free energy is so low that the surface is It has water and oil repellency, has poor surface adhesion, and has limited application fields. Therefore, in order to improve surface adhesion while maintaining various characteristics of the molded product itself, it has been studied to introduce polar groups by various surface modification methods.
The present inventors have previously reported a surface treatment method for a fluoropolymer molded article by excimer laser irradiation (Patent No. 1966682 (Patent Publication No. 07-005773)). This is a technique of hydrophilizing the surface of a molded article by irradiation with an ArF excimer laser or a KrF excimer laser in the presence of hydrazines. However, in this method, there is a problem in using hydrazines which are careful in handling for work safety as reagents.
[0003]
In addition, as a surface modification technique of a fluorine-based polymer using an ultraviolet excimer laser, a method using a silicon derivative or the like (Kasai et al., JP 07-179636), a method using a boron derivative or the like (Murahara et al. JP-A 06-329818, JP-A 06-293837), a method using a metal belonging to Group II of the periodic table (Okada et al., JP 06-240026), an aromatic UV-absorbing compound, etc. Examples include a method (Nishii et al., JP 07-207049), a method using a fluororesin mixed with a boron derivative powder (five colors, JP 06-220229), and the like. In these methods, since there is no absorption of fluoropolymer at the wavelength of the ultraviolet excimer laser, laser irradiation is performed in a state where a reagent that has absorption at this wavelength and can effectively modify the polymer surface coexists. is there. However, these methods have problems such as physical damage to the polymer surface and sufficient care in handling the reagents.
In recent years, research on surface modification technology using vacuum ultraviolet light having a wavelength of 190 nm or less has been activated with the development of new light sources. As a technique for modifying the surface of the fluoropolymer using a xenon excimer lamp with a wavelength of 172 nm, a method using water (Hiramoto et al., JP 07-179629 A), a method using an aqueous boron compound solution (Hiramoto et al., JP-A-07-179628), irradiation in the atmosphere (Kasai, JP-A-08-165369), a method using a condensed layer (Tsutsui, JP-A-09-188773), and the like. In these methods, it is stated that the surface modification proceeds after the C—F bond of the fluorine-based polymer surface layer is cut by irradiation with vacuum ultraviolet light and the polymer surface is activated.
[0004]
However, these methods using vacuum ultraviolet lamps have disadvantages such as the fact that the intensity of the light source is weak, so that long-time irradiation is required to obtain the desired modification characteristics, and position-selective surface modification is not possible. There is. Further, as a technique for modifying the surface of the fluoropolymer by irradiation with a fluorine laser having a wavelength of 157 nm, a method using an alcohol aqueous solution (Inasaki, JP 06-279590), a method using silica particles (Eguchi et al., Special Examples include surface modification methods using reagents and fine particles such as Kaihei 10-249271). It is stated that surface modification proceeds after the C—F bond of the resin surface layer is cut by irradiation with fluorine laser and the polymer surface is activated.
On the other hand, research on microfabrication using a vacuum ultraviolet laser has been conducted in a vacuum or in an inert gas. Ceramics (Ohara et al., JP 09-048684 A), oxide thin films (Kitahara et al. No. 09-048698), water / oil repellent nozzle plate (Aoki, JP 10-278278), quartz glass / polytetrafluoroethylene (Wada et al., JP 06-0779478), and the like. These studies are techniques for removing (etching) the surface layer of the workpiece by laser irradiation, and are different from the surface modification method for hydrophilizing the surface of the workpiece.
Furthermore, Inazaki No. 06-228343 by Inazaki describes a method for surface modification of a fluororesin by ArF excimer laser irradiation in the presence of water having an electrical resistivity of 100 MΩ · cm or higher, and mentions the use of a fluorine laser in this. Has been. In the present invention, it is stated that the surface of the fluororesin is made hydrophilic by using ultra-high purity water having an electrical resistivity exceeding 100 MΩ · cm.
However, the production of ultra-high-purity water having an electrical resistivity exceeding 100 MΩ · cm requires a very advanced technique and has a drawback of requiring a large production cost.
[0005]
[Problems to be solved by the invention]
An object of this invention is to provide the method of producing the site | part which hydrophilized the surface of the fluorine-type polymer molded article position-selectively. An object of this invention is to provide the more effective surface treatment processing method of a synthetic resin molded product.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the surface processing method of the vacuum ultraviolet laser polymer, the inventors of the present invention, when irradiated with a vacuum ultraviolet laser in a system containing water or water vapor with an electrical resistivity of 20 MΩ · cm or less, The inventors have found that it is possible to replace the fluorine atom with a hydroxyl group or a hydrogen atom to make only the laser irradiated surface hydrophilic, and based on these findings, various studies have been made and the present invention has been made.
That is, the present invention provides a fluoropolymer characterized by irradiating a fluorine-based polymer molded article with a vacuum ultraviolet fluorine laser having a wavelength of 157 nm in the presence of water or water vapor to hydrophilize the surface of the polymer molded article. A surface modification method for the surface of a molded product is provided.
Next, the present invention will be described in detail. The polymer molded product herein refers to a material such as a film, a sheet, a fiber, a fiber reinforced resin, a resin molded product, etc., and does not necessarily need to be a molded product as a final product, and the shape is not limited.
Examples of the water used in the present invention include water (H 2 O) having an electrical resistivity of 20 MΩ · cm or less and its isotopes (such as heavy water). Typical examples include deionized water, distilled water, and ultrafiltered water.
Since vacuum ultraviolet light, which is a high-energy photon, is used in the present invention, a large amount of reactive species are generated by high-energy photons even when using low-purity water containing a small amount of impurities. Will not have any adverse effect.
The reaction between this fluoropolymer molded product and water molecules will be described. First, when water molecules are irradiated with a vacuum ultraviolet laser, the water molecules absorb vacuum ultraviolet light and water in an electronically excited state is generated. At this time, the light absorption coefficient (absorption cross section) of water molecules at a wavelength of 157 nm is about 10 4 cm −1 in liquid water (JLWeeks et al., Radiation Research, vol.19, pp.559-567 (1963)). ), About 3 × 10 −18 cm 2 in gaseous water (JMHeller et al., Journal of Chemical Physics, vol. 60, No. 9, pp. 3483-3486 (1974)), so an argon fluorine excimer laser (wavelength 193 nm Absorption coefficient of water about 10 −1 cm −1 ), krypton fluorine excimer laser (wavelength 248 nm; absorption coefficient of water 10 −2 cm −1 or less), and xenon excimer lamp (wavelength 172 nm; absorption coefficient of water about 10 It can be seen that it has a greater absorption than the light source wavelength longer than that of a fluorine laser such as 2 cm −1 ). Such a large absorption at 157 nm is extremely important in securing the amount of active species generated necessary for surface modification.
[0007]
Next, water in an electronically excited state generated by irradiation with vacuum ultraviolet light is decomposed into a reaction intermediate such as a hydrogen atom or a hydroxyl group with a high quantum yield. At a wavelength of 157 nm, the quantum yield is about 0.6 (N. Getoff et al., Photochemistry and Photobiology, vol. 8, pp. 167-178 (1968)). This quantum yield is also wavelength-dependent, similar to the absorption coefficient, and decreases significantly on the long wavelength side. For example, it is 0.4 at 172 nm and 0.2 at 193 nm. Thus, when a 157 nm laser is used, the photolysis reaction of water molecules can be performed with high efficiency due to the synergistic effect of its high absorption rate and quantum yield compared to other light sources.
The generated active species hydrogen atom has high chemical reactivity with the fluorine atom. Therefore, when a fluoropolymer molded product is put in a reaction vessel, a reaction occurs in which fluorine atoms and hydrogen atoms react on the surface of the molded product, and a carbon-fluorine bond is broken to generate hydrogen fluoride molecules. The reactivity of carbon atoms in the polymer main chain is improved (H. Niino et al., Applied Surface Science, vol. 96-98, pp. 550-557 (1996)). The carbon atom from which the fluorine atom has been released immediately undergoes a reaction in which a hydrogen atom or a hydroxyl radical generated by photolysis of another water molecule is substituted on the surface of the molded product. Therefore, polymer molecular chains having hydrogen atoms and hydroxyl groups are formed on the surface of the molded product, and surface hydrophilization is observed.
As described above, when a vacuum ultraviolet fluorine laser having a wavelength of 157 nm is used, water with high work safety can be decomposed with high efficiency, and a large amount of active species effective for surface modification of fluororesin can be generated. I understand that. In addition, since the lifetime of the reaction intermediate generated by this method is not so long, a substitution reaction occurs only on the surface portion irradiated with the laser beam, and a position-selective surface reaction is performed.
[0008]
In the method of the present invention, it is preferable that the intensity of the vacuum ultraviolet laser is lower than the threshold intensity at which ablation occurs (about 100 mJ / cm 2 / pulse or less), and the higher the gas pressure of water vapor, the more effective (Saturated vapor pressure at room temperature: about 25 Torr). However, it is important that the active species is sufficiently supplied to the surface portion of the molded product to be modified. As described above, since the fluororesin has a large absorption at a wavelength of 157 nm, even if the laser is irradiated from the back surface of the resin film, most of the laser is absorbed inside, which is effective for surface modification. Not right. In addition, since water and water vapor also have absorption at a wavelength of 157 nm, when a large amount of water is present between the formed product and the laser device, the laser cannot reach the vicinity of the molded product and is generated by laser irradiation. The active species cannot react with the surface of the molded product, and surface modification is not achieved. For example, since the water vapor concentration at 25 Torr, which is the saturated vapor pressure at room temperature, is about 8 × 10 17 molecules · cm −3 , the absorption coefficient is about 2 cm −1 and the thickness of the water vapor layer is controlled to about 0.5 mm. Thus, the active species can be supplied to the surface of the formed product. In addition, as a method of introducing water vapor into the reaction vessel, it is possible to use only water vapor alone, but the reaction vessel contains a gas having no absorption at a wavelength of 157 nm, such as nitrogen gas or rare gas (argon, helium, etc.). It is also possible to introduce to.
[0009]
It was confirmed by X-ray photoelectron spectroscopy (XPS) and surface contact angle measurement that the surface of polytetrafluoroethylene (PTFE) film irradiated with fluorine laser in a system containing water molecules was substituted with a hydroxyl group. It was. A carbon C1s peak and a fluorine F1s peak were detected from the PTFE surface before the laser treatment.
At this time, the atomic ratio of carbon and fluorine was 1: 2. A new oxygen O1s peak was observed from the laser-treated sample surface, and the proportion of fluorine atoms decreased compared to the pretreatment surface. Furthermore, the contact angle with water also changed from 130 degrees to 70 degrees, and it became clear that the surface was made hydrophilic.
These experimental results indicate that the fluorine atoms in the surface layer of the molded product are substituted with hydrogen atoms or hydroxyl groups by laser treatment. It has become possible to hydrophilize the surface of a fluoropolymer molded article by such a simple and rapid method. Fluoropolymer molded products whose surface has been modified by hydroxyl groups have increased surface free energy while maintaining various bulk properties, and therefore improved surface adhesion while taking advantage of the advantages of fluoropolymers. It is possible to expand the range of application to improvement of surface wettability, improvement of dye adsorption, application to medical materials, and cell growth substrates.
[0010]
It is also possible to perform functional group conversion by a chemical reaction between a hydroxyl group and another reagent. For example, when a chemical treatment with an organic acid anhydride such as acetic anhydride is performed, an acetyl group is added to the hydroxyl group, and the surface exhibits lipophilicity due to the effect of the terminal methyl group.
Further, in the present invention, surface treatment is performed only on a desired irradiated portion by irradiating a laser beam that has passed through a mask (such as a metal plate pattern) corresponding to a portion of the polymer film to be modified. Is possible. On the other hand, the fluorine laser beam has a larger beam shape compared to other laser beams such as a helium-neon laser and a YAG laser. Can easily handle large area processing. In particular, in the present invention, water molecules react by a non-thermal photochemical reaction by a vacuum ultraviolet laser, so that the surface treatment is performed extremely effectively without any thermal damage in the periphery other than the irradiated part. Can do.
[0011]
As the laser in the present invention, a vacuum ultraviolet laser that oscillates the absorption wavelength of water molecules is suitable, and a fluorine laser (wavelength: 157 nm) is particularly preferred. In addition, it is also effective to convert laser fundamental wavelength light into laser light in the vacuum ultraviolet region by a nonlinear optical effect or the like. The fluence of the laser varies depending on the type of polymer, but a high-intensity laser having a pulse width of about 0.1 mJ / pulse or more as a nanosecond is desirable. In the present invention, the target fluorine-based synthetic resin may be amorphous, crystalline, aromatic, or non-aromatic. For example, polytetrafluorinated ethylene, polyhexafluorinated propylene, Any of polyfluorinated vinylidene, polytrifluorinated ethylene chloride resin, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene tetrafluorinated ethylene copolymer, or copolymers or cocondensates thereof Or a synthetic resin made of a mixture thereof.
[0012]
(Examples) Next, the present invention will be described in more detail based on examples.
Example 1 A polytetrafluoroethylene film was set in a reaction vessel using calcium fluoride as a window material, and a fluorine laser was applied at a room temperature and a steam atmosphere (25 Torr) with a pulse of 100 Hz with an intensity of 4 mJ · cm −2 · pulse −1. The surface treatment film was obtained by repeating irradiation for 60 seconds. At this time, water vapor was obtained from deionized water having an electrical resistivity of 2 MΩ · cm.
It was found that the contact angle of the surface with water decreased from 130 degrees to 90 degrees by laser irradiation, and the surface became hydrophilic. In addition, X-ray photoelectron spectroscopy (XPS) of the sample surface after laser treatment shows a new O1s peak for oxygen in addition to the peak derived from carbon and fluorine, and the intensity of the F1s peak for fluorine is the C1s peak for carbon. Decreased compared to The atomic ratio of the sample surface before laser treatment is carbon: fluorine: oxygen = 1.0: 2.0: 0.0, whereas carbon: fluorine: oxygen = 1.0: 1 after laser treatment. .6: 0.05. From the above experimental results, it was confirmed that hydroxyl groups were introduced on the surface.
[0013]
Example 2 A polytetrafluoroethylene film is set in a reaction vessel using calcium fluoride as a window material, and a fluorine laser is applied at 100 Hz with an intensity of 4 mJ · cm −2 · pulse −1 at room temperature in a water vapor atmosphere (25 Torr). The surface treatment film was obtained by repeating irradiation for 100 seconds. At this time, water vapor was obtained from deionized water having an electrical resistivity of 2 MΩ · cm.
It was found that the contact angle of the surface with water decreased from 130 degrees to 70 degrees by laser irradiation, and the surface became hydrophilic. In addition, X-ray photoelectron spectroscopy (XPS) of the sample surface after laser treatment shows a new O1s peak for oxygen in addition to the peak derived from carbon and fluorine, and the intensity of the F1s peak for fluorine is the C1s peak for carbon. Decreased compared to From the above experimental results, it was confirmed that hydroxyl groups were introduced on the surface.
Comparative Example 1 A polytetrafluoroethylene (PTFE) film was set in a reaction vessel using calcium fluoride as a window material, and a fluorine laser was applied at a pulse of 100 Hz with an intensity of 4 mJ · cm-2 · pulse-1 in a vacuum atmosphere at room temperature. The surface treatment film was obtained by repeating irradiation for 100 seconds. The contact angle of the surface with water before and after the laser treatment did not change up to 130 degrees, and it was found that the presence of water was indispensable together with the laser irradiation for the hydrophilized surface treatment.
[0014]
【The invention's effect】
According to the present invention, the surface treatment method of a fluoropolymer molded product using a vacuum ultraviolet laser is very effective because the laser is excellent in energy and position controllability, so that a precise and uniform hydrophilic group can be obtained. Hydrophilization surface treatment by introduction can be performed only on the pattern formation site by laser irradiation.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000338754A JP3864211B2 (en) | 2000-11-07 | 2000-11-07 | Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000338754A JP3864211B2 (en) | 2000-11-07 | 2000-11-07 | Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002146066A JP2002146066A (en) | 2002-05-22 |
JP3864211B2 true JP3864211B2 (en) | 2006-12-27 |
Family
ID=18813917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000338754A Expired - Lifetime JP3864211B2 (en) | 2000-11-07 | 2000-11-07 | Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3864211B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4175183B2 (en) | 2003-06-04 | 2008-11-05 | 富士ゼロックス株式会社 | Method for producing polymer optical waveguide |
JP4225207B2 (en) | 2004-01-23 | 2009-02-18 | 富士ゼロックス株式会社 | Method for producing polymer optical waveguide |
JP4769934B2 (en) * | 2005-03-30 | 2011-09-07 | 国立大学法人 宮崎大学 | Plastic surface modification method, plastic surface plating method, and plastic |
JP4887015B2 (en) * | 2005-09-06 | 2012-02-29 | 独立行政法人理化学研究所 | Etching method of ultraviolet light transmitting polymer material |
JP5916159B2 (en) * | 2014-08-27 | 2016-05-11 | 田中貴金属工業株式会社 | Method for forming metal pattern and conductor |
JP7481683B2 (en) * | 2020-07-27 | 2024-05-13 | ウシオ電機株式会社 | Method for modifying fluororesin surface, method for producing surface-modified fluororesin, and joining method |
-
2000
- 2000-11-07 JP JP2000338754A patent/JP3864211B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002146066A (en) | 2002-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06192452A (en) | Surface modification of fluoropolymer molding by using ultraviolet laser | |
Zhang et al. | Modification of polymers with UV excimer radiation from lasers and lamps | |
US5098618A (en) | Surface modification of plastic substrates | |
JPH01244623A (en) | Manufacture of oxide film | |
JP3864211B2 (en) | Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser | |
EP1731480B1 (en) | Method for producing f2-containing gas and method for modifying article surface | |
Wada et al. | Direct photoetching of polymer films using vacuum ultraviolet radiation generated by high‐order anti‐Stokes Raman scattering | |
JP2782595B2 (en) | Surface modification method of fluoropolymer molded article using ultraviolet laser | |
JP3194010B2 (en) | Modified solid surface with highly reactive active species immobilized on the surface | |
JPH075776B2 (en) | Chemical plating method for fluoropolymer moldings | |
Yamaguchi et al. | Micromachining of crosslinked PTFE by direct photo‐etching using synchrotron radiation | |
JP2860400B2 (en) | Method for releasing highly reactive active species and method for modifying solid surface | |
JPH0796097B2 (en) | Method of forming conductive thin film | |
JPH07118421A (en) | Hydrophilic fluorine resin molded product | |
JPH0655846B2 (en) | Etching method for polymer moldings | |
JP5581648B2 (en) | Carbon decontamination treatment method and carbon decontamination treatment apparatus | |
US11384213B2 (en) | Method of increasing the hydrophilicity of a fluorine-containing polymer | |
JP2935084B2 (en) | Hydrophilic fluorinated resin molded product | |
JPH075777B2 (en) | Method for immobilizing organic compounds on polymer surface and solid substrate surface using UV laser | |
JPH07110904B2 (en) | Hydrophilic fluorine film | |
Bartnik et al. | Surface modification of solids by extreme ultraviolet and plasma treatment | |
D'couto et al. | A Comparative Study of the Photoablation of Polyimide-Doped Poly (Tetrafluoroethylene) at 308 NM and 248 NM | |
JPH11147966A (en) | Modification of fluororesin | |
JP2706705B2 (en) | Method for producing organic thin film by ultraviolet laser | |
JPH075775B2 (en) | Method for immobilizing organic compounds on polymer surface and solid substrate surface using UV laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060814 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3864211 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |